1
|
Fimiani C, Pereira JA, Gerber J, Berg I, DeGeer J, Bachofner S, Fischer JS, Kauffmann M, Suter U. The E3 ubiquitin ligase Nedd4 fosters developmental myelination in the mouse central and peripheral nervous system. Glia 2025; 73:422-444. [PMID: 39511974 DOI: 10.1002/glia.24642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Ubiquitination is a major post-translational regulatory mechanism that tunes numerous aspects of ubiquitinated target proteins, including localization, stability, and function. During differentiation and myelination, Oligodendrocytes (OLs) in the central nervous system and Schwann cells (SCs) in the peripheral nervous system undergo major cellular changes, including the tightly controlled production of large and accurate amounts of proteins and lipids. Such processes have been implied to depend on regulatory aspects of ubiquitination, with E3 ubiquitin ligases being generally involved in the selection of specific ubiquitination substrates by ligating ubiquitin to targets and granting target selectivity. In this study, we have used multiple transgenic mouse lines to investigate the functional impact of the E3 ubiquitin ligase Nedd4 in the OL- and SC-lineages. Our findings in the developing spinal cord indicate that Nedd4 is required for the correct accumulation of differentiated OLs and ensures proper myelination, supporting and further expanding previously suggested conceptual models. In sciatic nerves, we found that Nedd4 is required for timely radial sorting of axons by SCs as a pre-requirement for correct onset of myelination. Moreover, Nedd4 ensures correct myelin thickness in both SCs and spinal cord OLs.
Collapse
Affiliation(s)
- Cristina Fimiani
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Berg
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sven Bachofner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonas S Fischer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manuel Kauffmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Mihailovic JM, Sanganahalli BG, Hyder F, Chitturi J, Elkabes S, Heary RF, Kannurpatti SS. Cross-hemicord spinal fiber reorganization associates with cortical sensory and motor network expansion in the rat model of hemicontusion cervical spinal cord injury. Neurosci Lett 2024; 820:137607. [PMID: 38141752 PMCID: PMC10797561 DOI: 10.1016/j.neulet.2023.137607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.
Collapse
Affiliation(s)
- Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences-New Jersey Medical School, 30 Bergen Street, Newark, NJ 07103, United States
| | - Stella Elkabes
- Department of Neurosurgery, Rutgers Biomedical and Health Sciences-New Jersey Medical School. 205 South Orange Avenue, Newark, NJ 07103, United States.
| | - Robert F Heary
- Division of Neurosurgery, Hackensack Meridian School of Medicine, Mountainside Medical Center, Montclair, NJ, United States.
| | - Sridhar S Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences-New Jersey Medical School, 30 Bergen Street, Newark, NJ 07103, United States.
| |
Collapse
|
3
|
Nami H, Perone CS, Cohen-Adad J. Histology-informed automatic parcellation of white matter tracts in the rat spinal cord. Front Neuroanat 2022; 16:960475. [DOI: 10.3389/fnana.2022.960475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
The white matter is organized into “tracts” or “bundles,” which connect different parts of the central nervous system. Knowing where these tracts are located in each individual is important for understanding the cause of potential sensorial, motor or cognitive deficits and for developing appropriate treatments. Traditionally, tracts are found using tracer injection, which is a difficult, slow and poorly scalable technique. However, axon populations from a given tract exhibit specific characteristics in terms of morphometrics and myelination. Hence, the delineation of tracts could, in principle, be done based on their morphometry. The objective of this study was to generate automatic parcellation of the rat spinal white matter tracts using the manifold information from scanning electron microscopy images of the entire spinal cord. The axon morphometrics (axon density, axon diameter, myelin thickness and g-ratio) were computed pixelwise following automatic axon segmentation using AxonSeg. The parcellation was based on an agglomerative clustering algorithm to group the tracts. Results show that axon morphometrics provide sufficient information to automatically identify some white matter tracts in the spinal cord, however, not all tracts were correctly identified. Future developments of microstructure quantitative MRI even bring hope for a personalized clustering of white matter tracts in each individual patient. The generated atlas and the associated code can be found at https://github.com/neuropoly/tract-clustering.
Collapse
|
4
|
Jin L, Zhang J, Hua X, Xu X, Li J, Wang J, Wang M, Liu H, Qiu H, Chen M, Zhang X, Wang Y, Huang Z. Astrocytic SARM1 promotes neuroinflammation and axonal demyelination in experimental autoimmune encephalomyelitis through inhibiting GDNF signaling. Cell Death Dis 2022; 13:759. [PMID: 36055989 PMCID: PMC9440144 DOI: 10.1038/s41419-022-05202-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Astrocytes are important components of the innate immune response in the central nervous system (CNS), involving in the inflammatory and neurotoxic responses that occur in CNS diseases, such as multiple sclerosis (MS). Recent studies have shown that SARM1 plays a critical role in axonal degeneration and inflammation. However, the detailed role of astrocytic SARM1 in MS remains unclear. Here, we established the MS model of mice - experimental autoimmune encephalomyelitis (EAE) and found that SARM1 was upregulated in astrocytes of the spinal cords of EAE mice. Moreover, conditional knockout of astrocytic SARM1 (SARM1GFAP-CKO mice, SARM1Aldh1L1-CKO mice) delayed EAE with later onset, alleviated the inflammatory infiltration, and inhibited the demyelination and neuronal death. Mechanically, RNA-seq revealed that the expression of glial-derived neurotrophic factor (GDNF) was upregulated in SARM1-/- astrocytes. Western blot and immunostaining further confirmed the upregulation of GDNF in spinal cord astrocytes of SARM1GFAP-CKO EAE mice. Interestingly, the downregulation of GDNF by streptozotocin (STZ, a drug used to downregulate GDNF) treatment worsened the deficits of SARM1GFAP-CKO EAE mice. These findings identify that astrocytic SARM1 promotes neuroinflammation and axonal demyelination in EAE by inhibiting the expression of GDNF, reveal the novel role of SARM1/GDNF signaling in EAE, and provide new therapeutic ideas for the treatment of MS.
Collapse
Affiliation(s)
- Lingting Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- School of Pharmacy, and Department of Neurosurgery of the Affiliated Hospital,, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaojiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mianxian Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huitao Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haoyu Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Man Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Zhihui Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- School of Pharmacy, and Department of Neurosurgery of the Affiliated Hospital,, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
5
|
Daeschler SC, Bourget MH, Derakhshan D, Sharma V, Asenov SI, Gordon T, Cohen-Adad J, Borschel GH. Rapid, automated nerve histomorphometry through open-source artificial intelligence. Sci Rep 2022; 12:5975. [PMID: 35396530 PMCID: PMC8993871 DOI: 10.1038/s41598-022-10066-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/21/2022] [Indexed: 12/23/2022] Open
Abstract
We aimed to develop and validate a deep learning model for automated segmentation and histomorphometry of myelinated peripheral nerve fibers from light microscopic images. A convolutional neural network integrated in the AxonDeepSeg framework was trained for automated axon/myelin segmentation using a dataset of light-microscopic cross-sectional images of osmium tetroxide-stained rat nerves including various axonal regeneration stages. In a second dataset, accuracy of automated segmentation was determined against manual axon/myelin labels. Automated morphometry results, including axon diameter, myelin sheath thickness and g-ratio were compared against manual straight-line measurements and morphometrics extracted from manual labels with AxonDeepSeg as a reference standard. The neural network achieved high pixel-wise accuracy for nerve fiber segmentations with a mean (± standard deviation) ground truth overlap of 0.93 (± 0.03) for axons and 0.99 (± 0.01) for myelin sheaths, respectively. Nerve fibers were identified with a sensitivity of 0.99 and a precision of 0.97. For each nerve fiber, the myelin thickness, axon diameter, g-ratio, solidity, eccentricity, orientation, and individual x -and y-coordinates were determined automatically. Compared to manual morphometry, automated histomorphometry showed superior agreement with the reference standard while reducing the analysis time to below 2.5% of the time needed for manual morphometry. This open-source convolutional neural network provides rapid and accurate morphometry of entire peripheral nerve cross-sections. Given its easy applicability, it could contribute to significant time savings in biomedical research while extracting unprecedented amounts of objective morphologic information from large image datasets.
Collapse
Affiliation(s)
- Simeon Christian Daeschler
- SickKids Research Institute, Neuroscience and Mental Health Program, Hospital for Sick Children (SickKids), Toronto, ON, Canada.
| | - Marie-Hélène Bourget
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | | | - Vasudev Sharma
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,University of Toronto, Toronto, ON, Canada
| | - Stoyan Ivaylov Asenov
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Tessa Gordon
- SickKids Research Institute, Neuroscience and Mental Health Program, Hospital for Sick Children (SickKids), Toronto, ON, Canada.,Division of Plastic and Reconstructive Surgery, the Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Cohen-Adad
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada.,Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Gregory Howard Borschel
- SickKids Research Institute, Neuroscience and Mental Health Program, Hospital for Sick Children (SickKids), Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada.,Division of Plastic and Reconstructive Surgery, the Hospital for Sick Children, Toronto, ON, Canada.,Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Zhang J, Xu X, Liu H, Jin L, Shen X, Xie C, Xiang W, Yang D, Feng W, Wang J, Wang M, Dong T, Qiu H, Wu L, Wang Y, Zhang X, Huang Z. Astrocytic YAP prevents the demyelination through promoting expression of cholesterol synthesis genes in experimental autoimmune encephalomyelitis. Cell Death Dis 2021; 12:907. [PMID: 34611127 PMCID: PMC8492624 DOI: 10.1038/s41419-021-04203-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023]
Abstract
Cholesterols are the main components of myelin, and are mainly synthesized in astrocytes and transported to oligodendrocytes and neurons in the adult brain. It has been reported that Hippo/yes-associated protein (YAP) pathways are involved in cholesterol synthesis in the liver, however, it remains unknown whether YAP signaling can prevent the demyelination through promoting cholesterol synthesis in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis characterized by neuroinflammation and demyelination. Here, we found that YAP was upregulated and activated in astrocytes of spinal cords of EAE mice through suppression of the Hippo pathway. YAP deletion in astrocytes aggravated EAE with earlier onset, severer inflammatory infiltration, demyelination, and more loss of neurons. Furthermore, we found that the neuroinflammation was aggravated and the proliferation of astrocytes was decreased in YAPGFAP-CKO EAE mice. Mechanically, RNA-seq revealed that the expression of cholesterol-synthesis pathway genes such as HMGCS1 were decreased in YAP-/- astrocytes. qPCR, western blot, and immunostaining further confirmed the more significant reduction of HMGCS1 in spinal cord astrocytes of YAPGFAP-CKO EAE mice. Interestingly, upregulation of cholesterol-synthesis pathways by diarylpropionitrile (DPN) (an ERβ-ligand, to upregulate the expression of HMGCS1) treatment partially rescued the demyelination deficits in YAPGFAP-CKO EAE mice. Finally, activation of YAP by XMU-MP-1 treatment promoted the expression of HMGCS1 in astrocytes and partially rescued the demyelination and inflammatory infiltration deficits in EAE mice. These findings identify unrecognized functions of astrocytic YAP in the prevention of demyelination through promoting cholesterol synthesis in EAE, and reveal a novel pathway of YAP/HMGCS1 for cholesterol synthesis in EAE pathology.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Body Weight
- Cell Proliferation
- Cholesterol/biosynthesis
- Demyelinating Diseases/genetics
- Down-Regulation/genetics
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Gene Expression Regulation
- Hippo Signaling Pathway
- Inflammation/pathology
- Mice, Knockout
- Models, Biological
- Neurons/metabolism
- Neurons/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recovery of Function
- Spinal Cord/pathology
- Spinal Cord/ultrastructure
- Up-Regulation/genetics
- YAP-Signaling Proteins/deficiency
- YAP-Signaling Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, and Department of Neurosurgery of the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Liu
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingting Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changnan Xie
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiwei Xiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd., Wenzhou, Zhejiang, China
| | - Jiaojiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mianxian Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianyingying Dong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoyu Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihao Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhihui Huang
- School of Pharmacy, and Department of Neurosurgery of the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Simultaneous 3D Visualization of the Microvascular and Neural Network in Mouse Spinal Cord Using Synchrotron Radiation Micro-Computed Tomography. Neurosci Bull 2021; 37:1469-1480. [PMID: 34146232 PMCID: PMC8490558 DOI: 10.1007/s12264-021-00715-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/06/2021] [Indexed: 11/01/2022] Open
Abstract
Effective methods for visualizing neurovascular morphology are essential for understanding the normal spinal cord and the morphological alterations associated with diseases. However, ideal techniques for simultaneously imaging neurovascular structure in a broad region of a specimen are still lacking. In this study, we combined Golgi staining with angiography and synchrotron radiation micro-computed tomography (SRμCT) to visualize the 3D neurovascular network in the mouse spinal cord. Using our method, the 3D neurons, nerve fibers, and vasculature in a broad region could be visualized in the same image at cellular resolution without destructive sectioning. Besides, we found that the 3D morphology of neurons, nerve fiber tracts, and vasculature visualized by SRμCT were highly consistent with that visualized using the histological method. Moreover, the 3D neurovascular structure could be quantitatively evaluated by the combined methodology. The method shown here will be useful in fundamental neuroscience studies.
Collapse
|