1
|
Ekerdt C, Menks WM, Fernández G, McQueen JM, Takashima A, Janzen G. White matter connectivity linked to novel word learning in children. Brain Struct Funct 2024; 229:2461-2477. [PMID: 39325144 PMCID: PMC11612013 DOI: 10.1007/s00429-024-02857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Children and adults are excellent word learners. Increasing evidence suggests that the neural mechanisms that allow us to learn words change with age. In a recent fMRI study from our group, several brain regions exhibited age-related differences when accessing newly learned words in a second language (L2; Takashima et al. Dev Cogn Neurosci 37, 2019). Namely, while the Teen group (aged 14-16 years) activated more left frontal and parietal regions, the Young group (aged 8-10 years) activated right frontal and parietal regions. In the current study we analyzed the structural connectivity data from the aforementioned study, examining the white matter connectivity of the regions that showed age-related functional activation differences. Age group differences in streamline density as well as correlations with L2 word learning success and their interaction were examined. The Teen group showed stronger connectivity than the Young group in the right arcuate fasciculus (AF). Furthermore, white matter connectivity and memory for L2 words across the two age groups correlated in the left AF and the right anterior thalamic radiation (ATR) such that higher connectivity in the left AF and lower connectivity in the right ATR was related to better memory for L2 words. Additionally, connectivity in the area of the right AF that exhibited age-related differences predicted word learning success. The finding that across the two age groups, stronger connectivity is related to better memory for words lends further support to the hypothesis that the prolonged maturation of the prefrontal cortex, here in the form of structural connectivity, plays an important role in the development of memory.
Collapse
Affiliation(s)
- Clara Ekerdt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Willeke M Menks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - James M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Atsuko Takashima
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gabriele Janzen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Jafarlou F. Oculomotor Rehabilitation Improves Reading Abilities in Dyslexic Children With Concurrent Eye Movement Abnormalities. Clin Pediatr (Phila) 2024; 63:1276-1286. [PMID: 38189250 DOI: 10.1177/00099228231221335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The oculomotor abnormalities have been reported in some dyslexic children. The purpose of the study was to evaluate the effects of oculomotor rehabilitation on the reading performance of dyslexic children. Subjects were 50 dyslexic children. Those with oculomotor abnormalities (n = 30) were randomly assigned into 2 groups matched for age. The case group received oculomotor rehabilitation. The rehabilitation program consists of 3 different exercises. The reading and dyslexia tests were performed before and after the intervention. The correct scores of reading tests in the case group posttest increased significantly compared with the control group, and there is a significant difference between the two groups (P = .001). The positive effects of oculomotor rehabilitation on the reading performance of dyslexic children confirmed that the oculomotor program could be a practical tool for improving reading performance in dyslexic children.
Collapse
Affiliation(s)
- Fatemeh Jafarlou
- Department of Audiology, School of Rehabilitation Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Audiology, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ren H, Li YZ, Bi HY, Yang Y. The shared neurobiological basis of developmental dyslexia and developmental stuttering: A meta-analysis of functional and structural MRI studies. Int J Clin Health Psychol 2024; 24:100519. [PMID: 39582485 PMCID: PMC11585698 DOI: 10.1016/j.ijchp.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024] Open
Abstract
Background Developmental dyslexia (DD) and persistent developmental stuttering (PDS) are the most representative written and spoken language disorders, respectively, and both significantly hinder life success. Although widespread brain alterations are evident in both DD and PDS, it remains unclear to what extent these two language disorders share common neural substrates. Methods A systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM) studies of PDS and DD were conducted to explore the shared functional and anatomical alterations across these disorders. Results The results of fMRI studies indicated shared hypoactivation in the left inferior temporal gyrus and inferior parietal gyrus across PDS and DD compared to healthy controls. When examined separately for children and adults, we found that child participants exhibited reduced activation in the left inferior temporal gyrus, inferior parietal gyrus, precentral gyrus, middle temporal gyrus, and inferior frontal gyrus, possibly reflecting the universal causes of written and spoken language disorders. In contrast, adult participants exhibited hyperactivation in the right precentral gyrus and left cingulate motor cortex, possibly reflecting common compensatory mechanisms. Anatomically, the analysis of VBM studies revealed decreased gray matter volume in the left inferior frontal gyrus across DD and PDS, which was exclusively observed in children. Finally, meta-analytic connectivity modeling and brain-behavior correlation analyses were conducted to explore functional connectivity patterns and related cognitive functions of the brain regions commonly involved in DD and PDS. Conclusions This study identified concordances in brain abnormalities across DD and PDS, suggesting common neural substrates for written and spoken language disorders and providing new insights into the transdiagnostic neural signatures of language disorders.
Collapse
Affiliation(s)
- Huan Ren
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi zhen Li
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| |
Collapse
|
4
|
Kepinska O, Bouhali F, Degano G, Berthele R, Tanaka H, Hoeft F, Golestani N. Intergenerational transmission of the structure of the auditory cortex and reading skills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.610780. [PMID: 39314393 PMCID: PMC11419080 DOI: 10.1101/2024.09.11.610780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
High-level cognitive skill development relies on genetic and environmental factors, tied to brain structure and function. Inter-individual variability in language and music skills has been repeatedly associated with the structure of the auditory cortex: the shape, size and asymmetry of the transverse temporal gyrus (TTG) or gyri (TTGs). TTG is highly variable in shape and size, some individuals having one single gyrus (also referred to as Heschl's gyrus, HG) while others presenting duplications (with a common stem or fully separated) or higher-order multiplications of TTG. Both genetic and environmental influences on children's cognition, behavior, and brain can to some to degree be traced back to familial and parental factors. In the current study, using a unique MRI dataset of parents and children (135 individuals from 37 families), we ask whether the anatomy of the auditory cortex is related to reading skills, and whether there are intergenerational effects on TTG(s) anatomy. For this, we performed detailed, automatic segmentations of HG and of additional TTG(s), when present, extracting volume, surface area, thickness and shape of the gyri. We tested for relationships between these and reading skill, and assessed their degree of familial similarity and intergenerational transmission effects. We found that volume and area of all identified left TTG(s) combined was positively related to reading scores, both in children and adults. With respect to intergenerational similarities in the structure of the auditory cortex, we identified structural brain similarities for parent-child pairs of the 1st TTG (Heschl's gyrus, HG) (in terms of volume, area and thickness for the right HG, and shape for the left HG) and of the lateralization of all TTG(s) surface area for father-child pairs. Both the HG and TTG-lateralization findings were significantly more likely for parent-child dyads than for unrelated adult-child pairs. Furthermore, we established characteristics of parents' TTG that are related to better reading abilities in children: fathers' small left HG, and a small ratio of HG to planum temporale. Our results suggest intergenerational transmission of specific structural features of the auditory cortex; these may arise from genetics and/or from shared environment.
Collapse
Affiliation(s)
- Olga Kepinska
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Giulio Degano
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Raphael Berthele
- Institute of Multilingualism, University of Fribourg, Fribourg, Switzerland
| | - Hiroko Tanaka
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, USA
- Banner University Medical Center - Tucson, Tucson, AZ, USA
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Brain Imaging Research Center, University of Connecticut, Storrs, CT, USA
- Departments of Mathematics, Neuroscience, Psychiatry, Educational Psychology, Pediatrics, Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Narly Golestani
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Fu Y, Yan X, Mao J, Su H, Cao F. Abnormal brain activation during speech perception and production in children and adults with reading difficulty. NPJ SCIENCE OF LEARNING 2024; 9:53. [PMID: 39181867 PMCID: PMC11344838 DOI: 10.1038/s41539-024-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Reading difficulty (RD) is associated with phonological deficits; however, it remains unknown whether the phonological deficits are different in children and adults with RD as reflected in foreign speech perception and production. In the current study, using functional Near-infrared spectroscopy (fNIRS), we found less difference between Chinese adults and Chinese children in the RD groups than the control groups in the activation of the right inferior frontal gyrus (IFG) and the dorsolateral prefrontal cortex (DLPFC) during Spanish speech perception, suggesting slowed development in these regions associated with RD. Furthermore, using multivariate pattern analysis (MVPA), we found that activation patterns in the left middle temporal gyrus (MTG), premotor, supplementary motor area (SMA), and IFG could serve as reliable markers of RD. We provide both behavioral and neurological evidence for impaired speech perception and production in RD readers which can serve as markers of RD.
Collapse
Affiliation(s)
- Yang Fu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiaohui Yan
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiaqi Mao
- Basque Center on Cognition, Brain and Language, BCBL, San Sebastian, Spain
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Fan Cao
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
- State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Horowitz-Kraus T, Dudley J, Rosch K, Fotang J, Farah R. Localized alterations in cortical thickness and sulcal depth of the cingulo-opercular network in relation to lower reading fluency skills in children with dyslexia. Brain Res 2024; 1834:148891. [PMID: 38554796 DOI: 10.1016/j.brainres.2024.148891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The traditional models of reading development describe how language processing and word decoding contribute to reading comprehension and how impairments in word decoding, a defining feature of dyslexia, affect reading comprehension outcomes. However, these models do not include word and sentence reading (contextual reading) fluency, both of which engage executive functions, with notably decreased performance in children with dyslexia. In the current study, we compared cortical thickness and sulcal depth (CT/SD) in the cingulo-opercular (CO) executive functions brain network in children with dyslexia and typical readers and examined associations with word vs. contextual reading fluency. Overall, CT was lower in insular regions and higher in parietal and caudal anterior cingulate cortex regions in children with dyslexia. Children with dyslexia showed positive correlations between word reading fluency and CT/SD in insular regions, whereas no significant correlations were observed in typical readers. For sentence reading fluency, negative correlations with CT/SD were found in insular regions in children with dyslexia, while positive correlations with SD were found in insular regions in typical readers. These results demonstrate the differential relations between word and sentence reading fluency and anatomical circuitry supporting executive functions in children with dyslexia vs. typical readers. It also suggests that word and sentence reading fluency, relate to morphology of executive function-related regions in children with dyslexia, whereas in typical readers, only sentence reading fluency relates to morphology of executive function regions. The results also highlight the role of the insula within the CO network in reading fluency. Here we suggest that word and sentence reading fluency are distinct components of reading that should each be included in the Simple View of Reading traditional model.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion; Faculty of Biomedical Engineering, Technion; Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jonathan Dudley
- Reading and Literacy Discovery Center, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, MD, USA
| | | | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion; Faculty of Biomedical Engineering, Technion
| |
Collapse
|
7
|
Economou M, Vanden Bempt F, Van Herck S, Glatz T, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Cortical Structure in Pre-Readers at Cognitive Risk for Dyslexia: Baseline Differences and Response to Intervention. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:264-287. [PMID: 38832361 PMCID: PMC11093402 DOI: 10.1162/nol_a_00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/12/2023] [Indexed: 06/05/2024]
Abstract
Early childhood is a critical period for structural brain development as well as an important window for the identification and remediation of reading difficulties. Recent research supports the implementation of interventions in at-risk populations as early as kindergarten or first grade, yet the neurocognitive mechanisms following such interventions remain understudied. To address this, we investigated cortical structure by means of anatomical MRI before and after a 12-week tablet-based intervention in: (1) at-risk children receiving phonics-based training (n = 29; n = 16 complete pre-post datasets), (2) at-risk children engaging with AC training (n = 24; n = 15 complete pre-post datasets) and (3) typically developing children (n = 25; n = 14 complete pre-post datasets) receiving no intervention. At baseline, we found higher surface area of the right supramarginal gyrus in at-risk children compared to typically developing peers, extending previous evidence that early anatomical differences exist in children who may later develop dyslexia. Our longitudinal analysis revealed significant post-intervention thickening of the left supramarginal gyrus, present exclusively in the intervention group but not the active control or typical control groups. Altogether, this study contributes new knowledge to our understanding of the brain morphology associated with cognitive risk for dyslexia and response to early intervention, which in turn raises new questions on how early anatomy and plasticity may shape the trajectories of long-term literacy development.
Collapse
Affiliation(s)
| | | | | | - Toivo Glatz
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
8
|
Zhang Y, Huang J, Huang L, Peng L, Wang X, Zhang Q, Zeng Y, Yang J, Li Z, Sun X, Liang S. Atypical characteristic changes of surface morphology and structural covariance network in developmental dyslexia. Neurol Sci 2024; 45:2261-2270. [PMID: 37996775 DOI: 10.1007/s10072-023-07193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Developmental dyslexia (DD) is a neurodevelopmental disorder that is characterized by difficulties with all aspects of information acquisition in the written word, including slow and inaccurate word recognition. The neural basis behind DD has not been fully elucidated. METHOD The study included 22 typically developing (TD) children, 16 children with isolated spelling disorder (SpD), and 20 children with DD. The cortical thickness, folding index, and mean curvature of Broca's area, including the triangular part of the left inferior frontal gyrus (IFGtriang) and the opercular part of the left inferior frontal gyrus, were assessed to explore the differences of surface morphology among the TD, SpD, and DD groups. Furthermore, the structural covariance network (SCN) of the triangular part of the left inferior frontal gyrus was analyzed to explore the changes of structural connectivity in the SpD and DD groups. RESULTS The DD group showed higher curvature and cortical folding of the left IFGtriang than the TD group and SpD group. In addition, compared with the TD group and the SpD group, the structural connectivity between the left IFGtriang and the left middle-frontal gyrus and the right mid-orbital frontal gyrus was increased in the DD group, and the structural connectivity between the left IFGtriang and the right precuneus and anterior cingulate was decreased in the DD group. CONCLUSION DD had atypical structural connectivity in brain regions related to visual attention, memory and which might impact the information input and integration needed for reading and spelling.
Collapse
Affiliation(s)
- Yusi Zhang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian, China
| | - Jiayang Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lixin Peng
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xiuxiu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Junchao Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xi Sun
- College of Information Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
9
|
Eichner C, Berger P, Klein CC, Friederici AD. Lateralization of dorsal fiber tract targeting Broca's area concurs with language skills during development. Prog Neurobiol 2024; 236:102602. [PMID: 38582324 DOI: 10.1016/j.pneurobio.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/26/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Language is bounded to the left hemisphere in the adult brain and the functional lateralization can already be observed early during development. Here we investigate whether this is paralleled by a lateralization of the white matter structural language network. We analyze the strength and microstructural properties of language-related fiber tracts connecting temporal and frontal cortices with a separation of two dorsal tracts, one targeting the posterior Broca's area (BA44) and one targeting the precentral gyrus (BA6). In a large sample of young children (3-6 years), we demonstrate that, in contrast to the BA6-targeting tract, the microstructural asymmetry of the BA44-targeting fiber tract significantly correlates locally with different aspects of development. While the asymmetry in its anterior segment reflects age, the asymmetry in its posterior segment is associated with the children's language skills. These findings demonstrate a fine-grained structure-to-function mapping in the lateralized network and go beyond our current view of language-related human brain maturation.
Collapse
Affiliation(s)
- Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Philipp Berger
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Cheslie C Klein
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| |
Collapse
|
10
|
Nordt M, Gomez J, Natu VS, Rezai AA, Finzi D, Kular H, Grill-Spector K. Longitudinal development of category representations in ventral temporal cortex predicts word and face recognition. Nat Commun 2023; 14:8010. [PMID: 38049393 PMCID: PMC10696026 DOI: 10.1038/s41467-023-43146-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/01/2023] [Indexed: 12/06/2023] Open
Abstract
Regions in ventral temporal cortex that are involved in visual recognition of categories like words and faces undergo differential development during childhood. However, categories are also represented in distributed responses across high-level visual cortex. How distributed category representations develop and if this development relates to behavioral changes in recognition remains largely unknown. Here, we used functional magnetic resonance imaging to longitudinally measure the development of distributed responses across ventral temporal cortex to 10 categories in school-age children over several years. Our results reveal both strengthening and weakening of category representations with age, which was mainly driven by changes across category-selective voxels. Representations became particularly more distinct for words in the left hemisphere and for faces bilaterally. Critically, distinctiveness for words and faces across category-selective voxels in left and right lateral ventral temporal cortex, respectively, predicted individual children's word and face recognition performance. These results suggest that the development of distributed representations in ventral temporal cortex has behavioral ramifications and advance our understanding of prolonged cortical development during childhood.
Collapse
Affiliation(s)
- Marisa Nordt
- Department of Psychology, Stanford University, Stanford, CA, USA.
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen, Aachen, Germany.
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Juelich, Germany.
| | - Jesse Gomez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Vaidehi S Natu
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Alex A Rezai
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Dawn Finzi
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Holly Kular
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
da Rocha JLD, Kepinska O, Schneider P, Benner J, Degano G, Schneider L, Golestani N. Multivariate Concavity Amplitude Index (MCAI) for characterizing Heschl's gyrus shape. Neuroimage 2023; 272:120052. [PMID: 36965861 DOI: 10.1016/j.neuroimage.2023.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Heschl's gyrus (HG), which includes primary auditory cortex, is highly variable in its shape (i.e. gyrification patterns), between hemispheres and across individuals. Differences in HG shape have been observed in the context of phonetic learning skill and expertise, and of professional musicianship, among others. Two of the most common configurations of HG include single HG, where a single transverse temporal gyrus is present, and common stem duplications (CSD), where a sulcus intermedius (SI) arises from the lateral aspect of HG. Here we describe a new toolbox, called 'Multivariate Concavity Amplitude Index' (MCAI), which automatically assesses the shape of HG. MCAI works on the output of TASH, our first toolbox which automatically segments HG, and computes continuous indices of concavity, which arise when sulci are present, along the outer perimeter of an inflated representation of HG, in a directional manner. Thus, MCAI provides a multivariate measure of shape, which is reproducible and sensitive to small variations in shape. We applied MCAI to structural magnetic resonance imaging (MRI) data of N=181 participants, including professional and amateur musicians and from non-musicians. Former studies have shown large variations in HG shape in the former groups. We validated MCAI by showing high correlations between the dominant (i.e. highest) lateral concavity values and continuous visual assessments of the degree of lateral gyrification of the first gyrus. As an application of MCAI, we also replicated previous visually obtained findings showing a higher likelihood of bilateral CSDs in musicians. MCAI opens a wide range of applications in evaluating HG shape in the context of individual differences, expertise, disorder and genetics.
Collapse
Affiliation(s)
- Josué Luiz Dalboni da Rocha
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, USA; Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland.
| | - Olga Kepinska
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria; Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Peter Schneider
- Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany; Centre for Systematic Musicology, University of Graz, Graz, Austria; Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Jan Benner
- Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany
| | - Giulio Degano
- Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - Letitia Schneider
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Narly Golestani
- Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland; Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria; Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Oliaee A, Mohebbi M, Shirani S, Rostami R. Extraction of discriminative features from EEG signals of dyslexic children; before and after the treatment. Cogn Neurodyn 2022; 16:1249-1259. [PMID: 36408072 PMCID: PMC9666605 DOI: 10.1007/s11571-022-09794-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Dyslexia is a neurological disorder manifested as difficulty reading and writing. It can occur despite adequate instruction, intelligence, and intact sensory abilities. Different electroencephalogram (EEG) patterns have been demonstrated between dyslexic and healthy subjects in previous studies. This study focuses on the difference between patients before and after treatment. The main goal is to identify the subset of features that adequately discriminate subjects before and after a specific treatment plan. The treatment consists of Transcranial Direct Current Stimulation (tDCS) and occupational therapy using the BrainWare SAFARI software. The EEG signals of sixteen dyslexic children were recorded during the eyes-closed resting state before and after treatment. The preprocessing step was followed by the extraction of a wide range of features to investigate the differences related to the treatment. An optimal subset of features extracted from recorded EEG signals was determined using Principal Component Analysis (PCA) in conjunction with the Sequential Floating Forward Selection (SFFS) algorithm. The results showed that treatment leads to significant changes in EEG features like spectral and phase-related EEG features, in various regions. It has been demonstrated that the extracted subset of discriminative features can be useful for classification applications in treatment assessment. The most discriminative subset of features could classify the data with an accuracy of 92% with SVM classifier. The above result confirms the efficacy of the treatment plans in improving dyslexic children's cognitive skills.
Collapse
Affiliation(s)
- Anahita Oliaee
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Maryam Mohebbi
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Sepehr Shirani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, Faculty of Psychology, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Yu X, Ferradal S, Dunstan J, Carruthers C, Sanfilippo J, Zuk J, Zöllei L, Gagoski B, Ou Y, Grant PE, Gaab N. Patterns of Neural Functional Connectivity in Infants at Familial Risk of Developmental Dyslexia. JAMA Netw Open 2022; 5:e2236102. [PMID: 36301547 PMCID: PMC9614583 DOI: 10.1001/jamanetworkopen.2022.36102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/23/2022] [Indexed: 11/14/2022] Open
Abstract
Importance Developmental dyslexia is a heritable learning disability affecting 7% to 10% of the general population and can have detrimental impacts on mental health and vocational potential. Individuals with dyslexia show altered functional organization of the language and reading neural networks; however, it remains unknown how early in life these neural network alterations might emerge. Objective To determine whether the early emergence of large-scale neural functional connectivity (FC) underlying long-term language and reading development is altered in infants with a familial history of dyslexia (FHD). Design, Setting, and Participants This cohort study included infants recruited at Boston Children's Hospital between May 2011 and February 2019. Participants underwent structural and resting-state functional magnetic resonance imaging in the Department of Radiology at Boston Children's Hospital. Infants with FHD were matched with infants without FHD based on age and sex. Data were analyzed from April 2019 to June 2021. Exposures FHD was defined as having at least 1 first-degree relative with a dyslexia diagnosis or documented reading difficulties. Main Outcomes and Measures Whole-brain FC patterns associated with 20 predefined cerebral regions important for long-term language and reading development were computed for each infant. Multivariate pattern analyses were applied to identify specific FC patterns that differentiated between infants with vs without FHD. For classification performance estimates, 99% CIs were calculated as the classification accuracy minus chance level. Results A total of 98 infants (mean [SD] age, 8.5 [2.3] months; 51 [52.0%] girls) were analyzed, including 35 infants with FHD and 63 infants without FHD. Multivariate pattern analyses identified distinct FC patterns between infants with vs without FHD in the left fusiform gyrus (classification accuracy, 0.55 [99% CI, 0.046-0.062]; corrected P < .001; Cohen d = 0.76). Connections linking left fusiform gyrus to regions in the frontal and parietal language and attention networks were among the paths with the highest contributions to the classification performance. Conclusions and Relevance These findings suggest that on the group level, FHD was associated with an early onset of atypical FC of regions important for subsequent word form recognition during reading acquisition. Longitudinal studies linking the atypical functional network and school-age reading abilities will be essential to further elucidate the ontogenetic mechanisms underlying the development of dyslexia.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts
| | - Silvina Ferradal
- Department of Intelligent Systems Engineering, Indiana University, Bloomington
| | - Jade Dunstan
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Clarisa Carruthers
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Joseph Sanfilippo
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Jennifer Zuk
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, Massachusetts
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Yangming Ou
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - P. Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Graduate School of Education, Cambridge, Massachusetts
| |
Collapse
|
14
|
Helland T. Trends in Dyslexia Research during the Period 1950 to 2020-Theories, Definitions, and Publications. Brain Sci 2022; 12:1323. [PMID: 36291256 PMCID: PMC9599304 DOI: 10.3390/brainsci12101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION The focus of the present paper is on (1) how dyslexia research and hence definitions have developed during the period 1950-2020 and includes (2) a database search of scientific publications on dyslexia during the same period. The focus is on the definitions of dyslexia and the organization of the network search based on the causal four-level model by Morton and Frith. METHOD (1) The definitions are presented in accordance with a historic review of dyslexia research from 1950 to 2020 and based on (2) Google Scholar counts of publications on dyslexia, on defining dyslexia, on dyslexia at the four levels (symptomatic, cognitive, biological, environmental), and by areas (sensorimotor, comorbidity). Finally, a percentage calculation shows the relative development within each level and area by decennium (1950-1960, 1960-1970, 1970-1980, 1990-2000, 2002-2010, 2010-2020). RESULTS (1) Of the seven definitions presented, only the definition by the BDA 2007 included the four levels of the causal model. (2) The number of publications increased substantially over the period. However, relatively few publications have defined dyslexia. An increase in publications from 1950 to 2020 was seen across the four levels and two areas-however, with an alteration in the thematic focus over this time span. SUMMARY Defining dyslexia has still not reached a consensus. This uncertainty may explain why only one of the seven definitions proved satisfactory according to the four-level model. Along with the general increase in research, publications on dyslexia have increased accordingly during the period 1950 to 2020. Although the symptomatic level has played a dominant role over the whole period, thematic shifts have been seen over these 70 years. In particular, a substantial thematic shift was seen by the turn of the millennium. There has been a relative increase in the focus on literacy at the symptomatic level, on phonological awareness at the cognitive level, in gender at the biological level, and second language learning as comorbidities. However, increases in counts are not alone a valid indication of scientific progress. In particular, the lack of definitional criteria as a basis for participant and method selection should attract much more focus in future studies. The present study underlines the multifactorial nature of dyslexia, as evidenced by a substantial increase in the number of publications on the subject. It is a challenge for future research to continuously use and possibly redefine dyslexia definitions in line with such standards.
Collapse
Affiliation(s)
- Turid Helland
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, P.O. Box 7807, NO-5020 Bergen, Norway
| |
Collapse
|
15
|
Beyer M, Liebig J, Sylvester T, Braun M, Heekeren HR, Froehlich E, Jacobs AM, Ziegler JC. Structural gray matter features and behavioral preliterate skills predict future literacy - A machine learning approach. Front Neurosci 2022; 16:920150. [PMID: 36248649 PMCID: PMC9558903 DOI: 10.3389/fnins.2022.920150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
When children learn to read, their neural system undergoes major changes to become responsive to print. There seem to be nuanced interindividual differences in the neurostructural anatomy of regions that later become integral parts of the reading network. These differences might affect literacy acquisition and, in some cases, might result in developmental disorders like dyslexia. Consequently, the main objective of this longitudinal study was to investigate those interindividual differences in gray matter morphology that might facilitate or hamper future reading acquisition. We used a machine learning approach to examine to what extent gray matter macrostructural features and cognitive-linguistic skills measured before formal literacy teaching could predict literacy 2 years later. Forty-two native German-speaking children underwent T1-weighted magnetic resonance imaging and psychometric testing at the end of kindergarten. They were tested again 2 years later to assess their literacy skills. A leave-one-out cross-validated machine-learning regression approach was applied to identify the best predictors of future literacy based on cognitive-linguistic preliterate behavioral skills and cortical measures in a priori selected areas of the future reading network. With surprisingly high accuracy, future literacy was predicted, predominantly based on gray matter volume in the left occipito-temporal cortex and local gyrification in the left insular, inferior frontal, and supramarginal gyri. Furthermore, phonological awareness significantly predicted future literacy. In sum, the results indicate that the brain morphology of the large-scale reading network at a preliterate age can predict how well children learn to read.
Collapse
Affiliation(s)
- Moana Beyer
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Johanna Liebig
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Teresa Sylvester
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Hauke R. Heekeren
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
- Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Eva Froehlich
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Arthur M. Jacobs
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Johannes C. Ziegler
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université and Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
16
|
Ligges C, Lehmann T. Multiple Case Studies in German Children with Dyslexia: Characterization of Phonological, Auditory, Visual, and Cerebellar Processing on the Group and Individual Levels. Brain Sci 2022; 12:1292. [PMID: 36291226 PMCID: PMC9599942 DOI: 10.3390/brainsci12101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The underlying mechanisms of dyslexia are still debated. The question remains as to whether there is evidence of a predominant type of deficit or whether it is a multideficit disorder with individual profiles. The assumptions of which mechanism causes the disorder influences the selection of the training approach. METHODS A sample of German neurotypical reading children (NT) and children with dyslexia (DYSL) was investigated with a comprehensive behavioral test battery assessing phonological, auditory, visual, and cerebellar performance, thus addressing performance described in three major theories in dyslexia. RESULTS In the present sample using the test battery of the present study, DYSL had the strongest impairment in phonological and auditory processing, accompanied by individual processing deficits in cerebellar performance, but only a few in the investigated visual domains. Phonological awareness and auditory performance were the only significant predictors for reading ability. CONCLUSION These findings point out that those reading difficulties were associated with phonological as well as auditory processing deficits in the present sample. Future research should investigate individual deficit profiles longitudinally, with studies starting before literacy acquisition at as many processing domains as possible. These individual deficit profiles should then be used to select appropriate interventions to promote reading and spelling.
Collapse
Affiliation(s)
- Carolin Ligges
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
17
|
Mandke K, Flanagan S, Macfarlane A, Gabrielczyk F, Wilson A, Gross J, Goswami U. Neural sampling of the speech signal at different timescales by children with dyslexia. Neuroimage 2022; 253:119077. [PMID: 35278708 DOI: 10.1016/j.neuroimage.2022.119077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Phonological difficulties characterize individuals with dyslexia across languages. Currently debated is whether these difficulties arise from atypical neural sampling of (or entrainment to) auditory information in speech at slow rates (<10 Hz, related to speech rhythm), faster rates, or neither. MEG studies with adults suggest that atypical sampling in dyslexia affects faster modulations in the neurophysiological gamma band, related to phoneme-level representation. However, dyslexic adults have had years of reduced experience in converting graphemes to phonemes, which could itself cause atypical gamma-band activity. The present study was designed to identify specific linguistic timescales at which English children with dyslexia may show atypical entrainment. Adopting a developmental focus, we hypothesized that children with dyslexia would show atypical entrainment to the prosodic and syllable-level information that is exaggerated in infant-directed speech and carried primarily by amplitude modulations <10 Hz. MEG was recorded in a naturalistic story-listening paradigm. The modulation bands related to different types of linguistic information were derived directly from the speech materials, and lagged coherence at multiple temporal rates spanning 0.9-40 Hz was computed. Group differences in lagged speech-brain coherence between children with dyslexia and control children were most marked in neurophysiological bands corresponding to stress and syllable-level information (<5 Hz in our materials), and phoneme-level information (12-40 Hz). Functional connectivity analyses showed network differences between groups in both hemispheres, with dyslexic children showing significantly reduced global network efficiency. Global network efficiency correlated with dyslexic children's oral language development and with control children's reading development. These developmental data suggest that dyslexia is characterized by atypical neural sampling of auditory information at slower rates. They also throw new light on the nature of the gamma band temporal sampling differences reported in MEG dyslexia studies with adults.
Collapse
Affiliation(s)
- Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | - Sheila Flanagan
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Annabel Macfarlane
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Fiona Gabrielczyk
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Angela Wilson
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
18
|
Xiao P, Zhu K, Liu Q, Xie X, Jiang Q, Feng Y, Wu X, Tang J, Song R. Association between developmental dyslexia and anxiety/depressive symptoms among children in China: The chain mediating of time spent on homework and stress. J Affect Disord 2022; 297:495-501. [PMID: 34743962 DOI: 10.1016/j.jad.2021.10.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The relationship between dyslexia and anxiety/depressive symptoms among children in China is unclear. Besides, the pathways to explain the risks are also undefined. METHODS 3993 primary school students from grade 2 to 6 were recruited in this study. The Dyslexia Checklist for Chinese Children and the Pupil Rating Scale-Revised Screening for Learning Disabilities were used to filter the dyslexic children. The Chinese perceived stress scale, the Screen for Child Anxiety Related Emotional Disorders, and the Children's Depression Inventory-Short Form were used separately to assess stress, anxiety symptoms, and depressive symptoms of the children. Time spent on homework was obtained by asking their parents: "How long does it take the children to complete the homework every day?". The chain mediation models were examined using SPSS PROCESS macro 3.3 software. RESULTS Dyslexic children spend more time on homework (2.61±1.15), and have higher scores for depression (4.75±3.60) and stress (26.55±7.40) compared to normal children (1.87±0.77, 3.25±3.32, and 23.20±8.43, respectively). The differences are statistically significant (all P<0.01). There is no direct association between dyslexia and anxiety symptoms, while dyslexia has a direct link with depressive symptoms. Dyslexia could affect anxiety/depressive symptoms via the independent mediating effect of stress and the chain mediating effect of time spent on homework and stress. The total indirect effect is 0.21 and 0.25, respectively. LIMITATIONS The data used in our study is self-reported and this is a cross-sectional study. CONCLUSIONS Time spent on homework and stress could mediate the association between dyslexia and anxiety/depressive symptoms.
Collapse
Affiliation(s)
- Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Tang
- Department of Children's Rehabilitation, Wuhan Psychology Hospital, Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Qi T, Schaadt G, Friederici AD. Associated functional network development and language abilities in children. Neuroimage 2021; 242:118452. [PMID: 34358655 PMCID: PMC8463838 DOI: 10.1016/j.neuroimage.2021.118452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
During childhood, the brain is gradually converging to the efficient functional architecture observed in adults. How the brain's functional architecture evolves with age, particularly in young children, is however, not well understood. We examined the functional connectivity of the core language regions, in association with cortical growth and language abilities, in 175 young children in the age range of 4 to 9 years. We analyzed the brain's developmental changes using resting-state functional and T1-weighted structural magnetic resonance imaging data. The results showed increased functional connectivity strength with age between the pars triangularis of the left inferior frontal gyrus and left temporoparietal regions (cohen's d = 0.54, CI: 0.24 - 0.84), associated with children's language abilities. Stronger functional connectivity between bilateral prefrontal and temporoparietal regions was associated with better language abilities regardless of age. In addition, the stronger functional connectivity between the left inferior frontal and temporoparietal regions was associated with larger surface area and thinner cortical thickness in these regions, which in turn was associated with superior language abilities. Thus, using functional and structural brain indices, coupled with behavioral measures, we elucidate the association of functional language network development, language ability, and cortical growth, thereby adding to our understanding of the neural basis of language acquisition in young children.
Collapse
Affiliation(s)
- Ting Qi
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Education and Psychology, Free University of Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
20
|
Wang J, Pines J, Joanisse M, Booth JR. Reciprocal relations between reading skill and the neural basis of phonological awareness in 7- to 9-year-old children. Neuroimage 2021; 236:118083. [PMID: 33878381 PMCID: PMC8361856 DOI: 10.1016/j.neuroimage.2021.118083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023] Open
Abstract
By using a longitudinal design and functional magnetic resonance imaging (fMRI), our previous study (Wang et al., 2020) found a scaffolding effect of early phonological processing in the superior temporal gyrus (STG) in 6-year-old children on later behavioral reading skill in 7.5-year-old children. Other than this previous study, nothing is known about longitudinal change in the bidirectional relation between reading skill and phonological processing in the brain. To fill this gap, in the current study, we used the same experimental paradigm as in Wang et al. (2020) to measure children's reading skill and brain activity during an auditory phonological awareness task, but with children who were 7.5 years old at Time 1 (T1) and about 1.5 years later when they were 9 years old at Time 2 (T2). The phonological awareness task included both small grain (i.e., onset) and large grain (i.e., rhyme) conditions. In a univariate analysis, we found that better reading skill at T1 predicted lower brain activation in IFG at T2 for onset processing after controlling for brain activation and non-verbal IQ at T1. This suggests that early reading ability reduces the effort of phonemic access, thus supporting the refinement hypothesis. When using general psychophysiological interaction (gPPI), we found that higher functional connectivity from IFG to STG for rhyme processing at T1 predicted better reading skill at T2 after controlling for reading skill and non-verbal IQ at T1. This suggests that the early effectiveness of accessing rhyme representations scaffolds reading acquisition. As both results did not survive multiple comparison corrections, replication of these findings is needed. However, both findings are consistent with prior studies demonstrating that phonological access in the frontal lobe becomes important in older elementary school readers. Moreover, the refinement effect for onsets is consistent with the hypothesis that learning to read allows for better access of small grain phonology, and the scaffolding effect for rhymes supports the idea that reading progresses to larger grain orthography-to-phonology mapping in older skilled readers. The current study, along with our previous study on younger children, indicates that the development of reading skill is associated with (1) the early importance of the quality of the phonological representations to later access of these representations, and (2) early importance of small grain sizes to later development of large grain ones.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| | - Julia Pines
- Neuroscience Program, College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marc Joanisse
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Shen C, Jiang Q, Luo Y, Long J, Tai X, Liu S. Stroop interference in children with developmental dyslexia: An event-related potentials study. Medicine (Baltimore) 2021; 100:e26464. [PMID: 34160450 PMCID: PMC8238329 DOI: 10.1097/md.0000000000026464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Previous studies have identified inhibitory deficits in dyslexic children, but we have little understanding of their neural mechanisms, especially for Chinese children with developmental dyslexia.We used a double-blind controlled trial to study the electroencephalogram responses of dyslexic and non-dyslexic children when performing the Stroop color-word test.Behavioral data showed differences in response time and accuracy between the 2 groups. In the event-related potentials (ERP) results, dyslexic children displayed larger P2 and P3b on congruent trials, while non-dyslexic children displayed larger P2 and P3b on incongruent trials, the 2 groups showed opposite brain activation patterns on the Stroop test.Dyslexic children have poor inhibitory function, and this poor inhibition may be related to their abnormal brain activation patterns.
Collapse
Affiliation(s)
- Chengwei Shen
- Department of Psychology, School of Medical Humanitarians
| | - Qi Jiang
- Department of Psychology, School of Medical Humanitarians
| | - Yan Luo
- Department of Psychology, School of Medical Humanitarians
- Guiyang Maternal and Child Health Care Hospital
| | - Ji Long
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xiujuan Tai
- Guiyang Maternal and Child Health Care Hospital
| | - Shuqing Liu
- Guiyang Maternal and Child Health Care Hospital
| |
Collapse
|
22
|
Liebig J, Froehlich E, Sylvester T, Braun M, Heekeren HR, Ziegler JC, Jacobs AM. Neural processing of vision and language in kindergarten is associated with prereading skills and predicts future literacy. Hum Brain Mapp 2021; 42:3517-3533. [PMID: 33942958 PMCID: PMC8249894 DOI: 10.1002/hbm.25449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
The main objective of this longitudinal study was to investigate the neural predictors of reading acquisition. For this purpose, we followed a sample of 54 children from the end of kindergarten to the end of second grade. Preliterate children were tested for visual symbol (checkerboards, houses, faces, written words) and auditory language processing (spoken words) using a passive functional magnetic resonance imaging paradigm. To examine brain-behavior relationships, we also tested cognitive-linguistic prereading skills at kindergarten age and reading performance of 48 of the same children 2 years later. Face-selective response in the bilateral fusiform gyrus was positively associated with rapid automatized naming (RAN). Response to both spoken and written words at preliterate age was negatively associated with RAN in the dorsal temporo-parietal language system. Longitudinally, neural response to faces in the ventral stream predicted future reading fluency. Here, stronger neural activity in inferior and middle temporal gyri at kindergarten age was associated with higher reading performance. Our results suggest that interindividual differences in the neural system of language and reading affect literacy acquisition and thus might serve as a marker for successful reading acquisition in preliterate children.
Collapse
Affiliation(s)
- Johanna Liebig
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Eva Froehlich
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Teresa Sylvester
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Hauke R Heekeren
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany.,Deparment of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Johannes C Ziegler
- Aix-Marseille Université and Centre National de la Recherche Scientifique, Laboratoire de Psychologie Cognitive, Marseille, France
| | - Arthur M Jacobs
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Electrophysiological correlates of visual attention span in Chinese adults with poor reading fluency. Exp Brain Res 2021; 239:1987-1999. [PMID: 33893841 DOI: 10.1007/s00221-021-06115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Individuals with reading fluency difficulty (RFD) show an impairment in the simultaneous processing of multiple elements, which could be reflected in their visual attention span (VAS) capacity. However, the relationship between VAS impairment and RFD is still controversial. A series of processes underlie VAS, such as the early stage of visual attentional processing and the late stage of allocating and maintaining attentional resources. Therefore, the present study explored the relationships between VAS skills and RFD through the event-related potential (ERP) technique to disentangle the contributing cognitive processes regarding VAS from a temporal perspective. Eighteen Chinese adults with poor reading fluency and 18 age-matched normal readers participated. Their VAS skills were measured by a visual one-back task with symbols as nonverbal stimuli and key pressing as nonverbal responses, while relevant electrophysiological signals were recorded. The results showed that lower d' values and abnormal electrophysiological activities (especially weak amplitudes in the N1 and P3 components) in the VAS task were observed for the nonfluent readers compared with the controls. These findings suggested that the low VAS capacity in adults with poor reading fluency could be reflected by problems both in directing selective attention to visually discriminate stimuli within a multielement string at the early processing stage and in allocating attention to further encode targets at the late processing stage. Alternative explanations were further discussed. The current results provide theoretical explanations of the VAS-RFD relationship from a temporal perspective and provide insights for future remediation of reading fluency difficulty.
Collapse
|
24
|
Usman OL, Muniyandi RC, Omar K, Mohamad M. Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism. PLoS One 2021; 16:e0245579. [PMID: 33630876 PMCID: PMC7906397 DOI: 10.1371/journal.pone.0245579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022] Open
Abstract
Achieving biologically interpretable neural-biomarkers and features from neuroimaging datasets is a challenging task in an MRI-based dyslexia study. This challenge becomes more pronounced when the needed MRI datasets are collected from multiple heterogeneous sources with inconsistent scanner settings. This study presents a method of improving the biological interpretation of dyslexia's neural-biomarkers from MRI datasets sourced from publicly available open databases. The proposed system utilized a modified histogram normalization (MHN) method to improve dyslexia neural-biomarker interpretations by mapping the pixels' intensities of low-quality input neuroimages to range between the low-intensity region of interest (ROIlow) and high-intensity region of interest (ROIhigh) of the high-quality image. This was achieved after initial image smoothing using the Gaussian filter method with an isotropic kernel of size 4mm. The performance of the proposed smoothing and normalization methods was evaluated based on three image post-processing experiments: ROI segmentation, gray matter (GM) tissues volume estimations, and deep learning (DL) classifications using Computational Anatomy Toolbox (CAT12) and pre-trained models in a MATLAB working environment. The three experiments were preceded by some pre-processing tasks such as image resizing, labelling, patching, and non-rigid registration. Our results showed that the best smoothing was achieved at a scale value, σ = 1.25 with a 0.9% increment in the peak-signal-to-noise ratio (PSNR). Results from the three image post-processing experiments confirmed the efficacy of the proposed methods. Evidence emanating from our analysis showed that using the proposed MHN and Gaussian smoothing methods can improve comparability of image features and neural-biomarkers of dyslexia with a statistically significantly high disc similarity coefficient (DSC) index, low mean square error (MSE), and improved tissue volume estimations. After 10 repeated 10-fold cross-validation, the highest accuracy achieved by DL models is 94.7% at a 95% confidence interval (CI) level. Finally, our finding confirmed that the proposed MHN method significantly outperformed the normalization method of the state-of-the-art histogram matching.
Collapse
Affiliation(s)
- Opeyemi Lateef Usman
- Faculty of Information Science and Technology, Research Centre for Cyber Security, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Computer Science, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria
| | - Ravie Chandren Muniyandi
- Faculty of Information Science and Technology, Research Centre for Cyber Security, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Khairuddin Omar
- Faculty of Information Science and Technology, Research Centre for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mazlyfarina Mohamad
- Faculty of Health Sciences, Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Chyl K, Fraga-González G, Brem S, Jednoróg K. Brain dynamics of (a)typical reading development-a review of longitudinal studies. NPJ SCIENCE OF LEARNING 2021; 6:4. [PMID: 33526791 PMCID: PMC7851393 DOI: 10.1038/s41539-020-00081-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/07/2020] [Indexed: 05/17/2023]
Abstract
Literacy development is a process rather than a single event and thus should be studied at multiple time points. A longitudinal design employing neuroimaging methods offers the possibility to identify neural changes associated with reading development, and to reveal early markers of dyslexia. The core of this review is a summary of findings from longitudinal neuroimaging studies on typical and atypical reading development. Studies focused on the prediction of reading gains with a single neuroimaging time point complement this review. Evidence from structural studies suggests that reading development results in increased structural integrity and functional specialization of left-hemispheric language areas. Compromised integrity of some of these tracts in children at risk for dyslexia might be compensated by higher anatomical connectivity in the homologous right hemisphere tracts. Regarding function, activation in phonological and audiovisual integration areas and growing sensitivity to print in the ventral occipito-temporal cortex (vOT) seem to be relevant neurodevelopmental markers of successful reading acquisition. Atypical vOT responses at the beginning of reading training and infant auditory brain potentials have been proposed as neuroimaging predictors of dyslexia that can complement behavioral measures. Besides these insights, longitudinal neuroimaging studies on reading and dyslexia are still relatively scarce and small sample sizes raise legitimate concerns about the reliability of the results. This review discusses the challenges of these studies and provides recommendations to improve this research area. Future longitudinal research with larger sample sizes are needed to improve our knowledge of typical and atypical reading neurodevelopment.
Collapse
Affiliation(s)
- Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Nora A, Renvall H, Ronimus M, Kere J, Lyytinen H, Salmelin R. Children at risk for dyslexia show deficient left-hemispheric memory representations for new spoken word forms. Neuroimage 2021; 229:117739. [PMID: 33454404 DOI: 10.1016/j.neuroimage.2021.117739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/28/2022] Open
Abstract
Developmental dyslexia is a specific learning disorder with impairments in reading and spelling acquisition. Apart from literacy problems, dyslexics show inefficient speech encoding and deficient novel word learning, with underlying problems in phonological processing and learning. These problems have been suggested to be related to deficient specialization of the left hemisphere for language processing. To examine this possibility, we tracked with magnetoencephalography (MEG) the activation of the bilateral temporal cortices during formation of neural memory traces for new spoken word forms in 7-8-year-old children with high familial dyslexia risk and in controls. The at-risk children improved equally to their peers in overt repetition of recurring new word forms, but were poorer in explicit recognition of the recurring word forms. Both groups showed reduced activation for the recurring word forms 400-1200 ms after word onset in the right auditory cortex, replicating the results of our previous study on typically developing children (Nora et al., 2017, Children show right-lateralized effects of spoken word-form learning. PLoS ONE 12(2): e0171034). However, only the control group consistently showed a similar reduction of activation for recurring word forms in the left temporal areas. The results highlight the importance of left-hemispheric phonological processing for efficient phonological representations and its disruption in dyslexia.
Collapse
Affiliation(s)
- A Nora
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - H Renvall
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland
| | - M Ronimus
- Niilo Mäki Instituutti, FI-40100 Jyväskylä, Finland
| | - J Kere
- Department of Biosciences, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H Lyytinen
- Department of Psychology, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - R Salmelin
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland
| |
Collapse
|
27
|
Fritsch AV, Silva NSM, Sanchez ML. Early screening of reading and writing difficulties in the first grade - a pilot study. REVISTA CEFAC 2021. [DOI: 10.1590/1982-0216/20212339820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Purpose: to investigate the effectiveness of an early identification screening based on the Dynamic Indicators of Basic Early Literacy Skills (DIBELS) test, 6th edition, to early identify first graders at risk of dyslexia. Methods: the sample comprised 34 children assessed at two moments - the screening was conducted while they were in the first grade, while a word dictation was used when they were in the second grade. The data were analyzed with Pearson’s correlation test, linear regression analysis, and ANOVA, with a p-value ≤ 0.05. Results: the results provide evidence that agrees with other studies in that children with signs of risk of dyslexia differ from children with typical development in terms of less phonological skills and that these differences are already present at the beginning of the literacy process. Conclusion: the early screening allows for the identification of the risk factors for dyslexia, making it possible to implement preventive and personalized phonological skills training to make the literacy process easier.
Collapse
|
28
|
Sturm VE, Roy ARK, Datta S, Wang C, Sible IJ, Holley SR, Watson C, Palser ER, Morris NA, Battistella G, Rah E, Meyer M, Pakvasa M, Mandelli ML, Deleon J, Hoeft F, Caverzasi E, Miller ZA, Shapiro KA, Hendren R, Miller BL, Gorno-Tempini ML. Enhanced visceromotor emotional reactivity in dyslexia and its relation to salience network connectivity. Cortex 2021; 134:278-295. [PMID: 33316603 PMCID: PMC7880083 DOI: 10.1016/j.cortex.2020.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/11/2020] [Accepted: 10/31/2020] [Indexed: 12/30/2022]
Abstract
Dyslexia is a neurodevelopmental disorder mainly defined by reading difficulties. During reading, individuals with dyslexia exhibit hypoactivity in left-lateralized language systems. Lower activity in one brain circuit can be accompanied by greater activity in another, and, here, we examined whether right-hemisphere-based emotional reactivity may be elevated in dyslexia. We measured emotional reactivity (i.e., facial behavior, physiological activity, and subjective experience) in 54 children ages 7-12 with (n = 32) and without (n = 22) dyslexia while they viewed emotion-inducing film clips. Participants also underwent task-free functional magnetic resonance imaging. Parents of children with dyslexia completed the Behavior Assessment System for Children, which assesses real-world behavior. During film viewing, children with dyslexia exhibited significantly greater reactivity in emotional facial behavior, skin conductance level, and respiration rate than those without dyslexia. Across the sample, greater emotional facial behavior correlated with stronger connectivity between right ventral anterior insula and right pregenual anterior cingulate cortex (pFWE<.05), key salience network hubs. In children with dyslexia, greater emotional facial behavior related to better real-world social skills and higher anxiety and depression. Our findings suggest there is heightened visceromotor emotional reactivity in dyslexia, which may lead to interpersonal strengths as well as affective vulnerabilities.
Collapse
Affiliation(s)
- Virginia E Sturm
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA.
| | - Ashlin R K Roy
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Samir Datta
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Cheng Wang
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Isabel J Sible
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Sarah R Holley
- Department of Psychology, San Francisco State University, San Francisco, CA, USA.
| | - Christa Watson
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Eleanor R Palser
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Nathaniel A Morris
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Giovanni Battistella
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Esther Rah
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Marita Meyer
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Mikhail Pakvasa
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Maria Luisa Mandelli
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Jessica Deleon
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Fumiko Hoeft
- Department of Psychiatry, University of California, San Francisco, CA, USA.
| | - Eduardo Caverzasi
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Zachary A Miller
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Kevin A Shapiro
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Robert Hendren
- Department of Psychiatry, University of California, San Francisco, CA, USA.
| | - Bruce L Miller
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA.
| |
Collapse
|
29
|
Grant JG, Siegel LS, D'Angiulli A. From Schools to Scans: A Neuroeducational Approach to Comorbid Math and Reading Disabilities. Front Public Health 2020; 8:469. [PMID: 33194932 PMCID: PMC7642246 DOI: 10.3389/fpubh.2020.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
We bridge two analogous concepts of comorbidity, dyslexia-dyscalculia and reading-mathematical disabilities, in neuroscience and education, respectively. We assessed the cognitive profiles of 360 individuals (mean age 25.79 ± 13.65) with disability in reading alone (RD group), mathematics alone (MD group) and both (comorbidity: MDRD group), with tests widely used in both psychoeducational and neuropsychological batteries. As expected, the MDRD group exhibited reading deficits like those shown by the RD group. The former group also exhibited deficits in quantitative reasoning like those shown by the MD group. However, other deficits related to verbal working memory and semantic memory were exclusive to the MDRD group. These findings were independent of gender, age, or socioeconomic and demographic factors. Through a systematic exhaustive review of clinical neuroimaging literature, we mapped the resulting cognitive profiles to correspondingly plausible neuroanatomical substrates of dyslexia and dyscalculia. In our resulting "probing" model, the complex set of domain-specific and domain-general impairments shown in the comorbidity of reading and mathematical disabilities are hypothesized as being related to atypical development of the left angular gyrus. The present neuroeducational approach bridges a long-standing transdisciplinary divide and contributes a step further toward improved early prediction, teaching and interventions for children and adults with combined reading and math disabilities.
Collapse
Affiliation(s)
- Jeremy G Grant
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Linda S Siegel
- Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
30
|
Cui X, Xia Z, McBride C, Li P, Pan J, Shu H. Shared Neural Substrates Underlying Reading and Visual Matching: A Longitudinal Investigation. Front Hum Neurosci 2020; 14:567541. [PMID: 33192396 PMCID: PMC7642616 DOI: 10.3389/fnhum.2020.567541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
The role of visual skills in reading acquisition has long been debated and whether there is shared neurobiological basis between visual skills and reading is not clear. This study investigated the relationship between Visual Matching and reading and their shared neuroanatomical basis. Two hundred and ninety-three typically developing Mandarin-speaking children were followed in a longitudinal study from ages 4 to 11 years old. A subsample of 79 children was further followed up at 14 years old when the MRI data were collected. Results showed that the development of Visual Matching from ages 6 to 8 predicted reading accuracy at age 11. In addition, both the development of Visual Matching and reading accuracy were associated with cortical surface area of a cluster located in fusiform gyrus. These findings suggested that the mapping from visual codes to phonological codes is important in learning to read and that left fusiform gyrus provided neural basis for such mapping. Implications of these findings in light of a new approach toward the neurocognitive mechanisms underlying reading development are discussed.
Collapse
Affiliation(s)
- Xin Cui
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Systems Science, Beijing Normal University, Beijing, China
| | - Catherine McBride
- Department of Psychology, Brain Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Li
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinger Pan
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|