1
|
Xu Q, Yao J, Xing C, Xu X, Chen YC, Zhang T, Zheng JX. Structural and covariance network alterations of the hippocampus and amygdala in congenital hearing loss children. Neuroscience 2024; 562:182-189. [PMID: 39442858 DOI: 10.1016/j.neuroscience.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/12/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The hippocampus and amygdala, as important components of the limbic system, play crucial roles in central remodeling in congenital hearing loss. This study aimed to investigate the morphological integrity and network properties of the subfields of hippocampus and amygdala in children with congenital hearing loss. METHODS A total of 24 children with congenital hearing loss and 17 age- and sex- matched healthy controls (HC) are included in the study. T1-weighted images are analyzed by segmenting the brain into cortical and subcortical regions. Intergroup difference of volumes were explored. Structural covariance networks for the whole brain and hippocampus-amygdala subregions were constructed. Between-group differences of network property are investigated by comparing area under a range of network sparsity. RESULTS Patients with congenital hearing loss exhibited significantly larger volumes in the right dentate gyrus and CA3 of the hippocampus. However, there were no significant differences in total hippocampal or showed decreased global efficiency and increased characteristic path length, indicating reduced network integration. Lower betweenness centrality was observed in the left hippocampal fissure in the hearing loss group. The changes in volume and network topological properties are not affected by age and sex. CONCLUSION Children with congenital hearing loss display specific volumetric increases in hippocampal subregions, suggesting compensatory adaptations to auditory deprivation. The hippocampus-amygdala network shows significant reorganization, potentially underpinning cognitive and behavioral development issues associated with congenital hearing loss. These findings highlight the importance of targeted neural substrates in understanding and addressing the developmental challenges faced by children with congenital hearing loss.
Collapse
Affiliation(s)
- Qianhui Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Jun Yao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Radiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Jin-Xia Zheng
- Department of Radiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| |
Collapse
|
2
|
He J, Cabrera-Mendoza B, De Angelis F, Pathak GA, Koller D, Curhan SG, Curhan GC, Mecca AP, van Dyck CH, Polimanti R. Sex differences in the pleiotropy of hearing difficulty with imaging-derived phenotypes: a brain-wide investigation. Brain 2024; 147:3395-3408. [PMID: 38454550 PMCID: PMC11449129 DOI: 10.1093/brain/awae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Hearing difficulty (HD) is a major health burden in older adults. While ageing-related changes in the peripheral auditory system play an important role, genetic variation associated with brain structure and function could also be involved in HD predisposition. We analysed a large-scale HD genome-wide association study (GWAS; ntotal = 501 825, 56% females) and GWAS data related to 3935 brain imaging-derived phenotypes (IDPs) assessed in up to 33 224 individuals (52% females) using multiple MRI modalities. To investigate HD pleiotropy with brain structure and function, we conducted genetic correlation, latent causal variable, Mendelian randomization and multivariable generalized linear regression analyses. Additionally, we performed local genetic correlation and multi-trait co-localization analyses to identify genomic regions and loci implicated in the pleiotropic mechanisms shared between HD and brain IDPs. We observed a widespread genetic correlation of HD with 120 IDPs in females, 89 in males and 171 in the sex-combined analysis. The latent causal variable analysis showed that some of these genetic correlations could be due to cause-effect relationships. For seven of them, the causal effects were also confirmed by the Mendelian randomization approach: vessel volume→HD in the sex-combined analysis; hippocampus volume→HD, cerebellum grey matter volume→HD, primary visual cortex volume→HD and HD→fluctuation amplitudes of node 46 in resting-state functional MRI dimensionality 100 in females; global mean thickness→HD and HD→mean orientation dispersion index in superior corona radiata in males. The local genetic correlation analysis identified 13 pleiotropic regions between HD and these seven IDPs. We also observed a co-localization signal for the rs13026575 variant between HD, primary visual cortex volume and SPTBN1 transcriptomic regulation in females. Brain structure and function may have a role in the sex differences in HD predisposition via possible cause-effect relationships and shared regulatory mechanisms.
Collapse
Affiliation(s)
- Jun He
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Dora Koller
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Sharon G Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06510, USA
- Departments of Neuroscience and Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
3
|
Gordon SG, Sacco A, Lomber SG. Automated registration-based skull stripping procedure for feline neuroimaging. Neuroimage 2024; 299:120826. [PMID: 39244076 DOI: 10.1016/j.neuroimage.2024.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Skull stripping is a fundamental preprocessing step in modern neuroimaging analyses that consists of removing non-brain voxels from structural images. When performed entirely manually, this laborious step can be rate-limiting for analyses, with the potential to influence the population size chosen. This emphasizes the need for a fully- or semi-automated masking procedure to decrease man-hours without an associated decline in accuracy. These algorithms are plentiful in human neuroimaging but are relatively lacking for the plethora of animal species used in research. Unfortunately, software designed for humans cannot be easily transformed for animal use due to the high amount of tailoring required to accurately account for the considerable degree of variation within the highly folded human cortex. As most animals have a relatively less complex cerebral morphology, intersubject variability is consequently decreased, presenting the possibility to simply warp the brain mask of a template image into subject space for the purpose of skull stripping. This study presents the use of the Cat Automated Registration-based Skull Stripper (CARSS) tool on feline structural images. Validation metrics revealed that this method was able to perform on par with manual raters on >90 % of scans tested, and that its consistency across multiple runs was superior to that of masking performed by two independent raters. Additionally, CARSS outperformed three well-known skull stripping programs on the validation dataset. Despite a handful of manual interventions required, the presented tool reduced the man-hours required to skull strip 60 feline images over tenfold when compared to a fully manual approach, proving to be invaluable for feline neuroimaging studies, particularly those with large population sizes.
Collapse
Affiliation(s)
- Stephen G Gordon
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Alessandra Sacco
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Stephen G Lomber
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Zhang P, Yang J, Shu Y, Cheng M, Zhao X, Wang K, Lu L, Xing Q, Niu G, Meng L, Wang X, Zhou L, Zhang X. The value of synthetic MRI in detecting the brain changes and hearing impairment of children with sensorineural hearing loss. Front Neurosci 2024; 18:1365141. [PMID: 38919907 PMCID: PMC11197400 DOI: 10.3389/fnins.2024.1365141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Sensorineural hearing loss (SNHL) can arise from a diverse range of congenital and acquired factors. Detecting it early is pivotal for nurturing speech, language, and cognitive development in children with SNHL. In our study, we utilized synthetic magnetic resonance imaging (SyMRI) to assess alterations in both gray and white matter within the brains of children affected by SNHL. Methods The study encompassed both children diagnosed with SNHL and a control group of children with normal hearing {1.5-month-olds (n = 52) and 3-month-olds (n = 78)}. Participants were categorized based on their auditory brainstem response (ABR) threshold, delineated into normal, mild, moderate, and severe subgroups.Clinical parameters were included and assessed the correlation with SNHL. Quantitative analysis of brain morphology was conducted using SyMRI scans, yielding data on brain segmentation and relaxation time.Through both univariate and multivariate analyses, independent factors predictive of SNHL were identified. The efficacy of the prediction model was evaluated using receiver operating characteristic (ROC) curves, with visualization facilitated through the utilization of a nomogram. It's important to note that due to the constraints of our research, we worked with a relatively small sample size. Results Neonatal hyperbilirubinemia (NH) and children with inner ear malformation (IEM) were associated with the onset of SNHL both at 1.5 and 3-month groups. At 3-month group, the moderate and severe subgroups exhibited elevated quantitative T1 values in the inferior colliculus (IC), lateral lemniscus (LL), and middle cerebellar peduncle (MCP) compared to the normal group. Additionally, WMV, WMF, MYF, and MYV were significantly reduced relative to the normal group. Additionally, SNHL-children with IEM had high T1 values in IC, and LL and reduced WMV, WMF, MYV and MYF values as compared with SNHL-children without IEM at 3-month group. LL-T1 and WMF were independent risk factors associated with SNHL. Consequently, a prediction model was devised based on LL-T1 and WMF. ROC for training set, validation set and external set were 0.865, 0.806, and 0.736, respectively. Conclusion The integration of T1 quantitative values and brain volume segmentation offers a valuable tool for tracking brain development in children affected by SNHL and assessing the progression of the condition's severity.
Collapse
Affiliation(s)
- Penghua Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinze Yang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yikai Shu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Meiying Cheng
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhao
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kaiyu Wang
- MRI Research, GE Healthcare, Beijing, China
| | - Lin Lu
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingna Xing
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangying Niu
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingsong Meng
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Wang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Zhou
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoan Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Yuan D, Tournis E, Ryan ME, Lai CM, Geng X, Young NM, Wong PCM. Early-stage use of hearing aids preserves auditory cortical structure in children with sensorineural hearing loss. Cereb Cortex 2024; 34:bhae145. [PMID: 38610087 PMCID: PMC11021813 DOI: 10.1093/cercor/bhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Hearing is critical to spoken language, cognitive, and social development. Little is known about how early auditory experiences impact the brain structure of children with bilateral sensorineural hearing loss. This study examined the influence of hearing aid use and residual hearing on the auditory cortex of children with severe to profound congenital sensorineural hearing loss. We evaluated cortical preservation in 103 young pediatric cochlear implant candidates (55 females and 48 males) by comparing their multivoxel pattern similarity of auditory cortical structure with that of 78 age-matched children with typical hearing. The results demonstrated that early-stage hearing aid use preserved the auditory cortex of children with bilateral congenital sensorineural hearing loss. Children with less residual hearing experienced a more pronounced advantage from hearing aid use. However, this beneficial effect gradually diminished after 17 months of hearing aid use. These findings support timely fitting of hearing aids in conjunction with early implantation to take advantage of neural preservation to maximize auditory and spoken language development.
Collapse
Affiliation(s)
- Di Yuan
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
- Department of Psychology, The Chinese University of Hong Kong, 3F, Sino Building Shatin, N.T., Hong Kong SAR, China
| | - Elizabeth Tournis
- Department of Audiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, United States
| | - Maura E Ryan
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, United States
- Department of Medical Imaging, Northwestern University Feinberg School of Medicine, 676 N. St. Clair St,Chicago, IL 60611, United States
| | - Ching Man Lai
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
| | - Xiujuan Geng
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
| | - Nancy M Young
- Division of Otolaryngology, Ann and Robert H Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, United States
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair St, Chicago, IL 60611, United States
- Knowles Hearing Center, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208-3540, United States
| | - Patrick C M Wong
- Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong SAR, China
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, G/F, Leung Kau Kui Building, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
6
|
Alemi R, Wolfe J, Neumann S, Manning J, Hanna L, Towler W, Wilson C, Bien A, Miller S, Schafer E, Gemignani J, Koirala N, Gracco VL, Deroche M. Motor Processing in Children With Cochlear Implants as Assessed by Functional Near-Infrared Spectroscopy. Percept Mot Skills 2024; 131:74-105. [PMID: 37977135 PMCID: PMC10863375 DOI: 10.1177/00315125231213167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Auditory-motor and visual-motor networks are often coupled in daily activities, such as when listening to music and dancing; but these networks are known to be highly malleable as a function of sensory input. Thus, congenital deafness may modify neural activities within the connections between the motor, auditory, and visual cortices. Here, we investigated whether the cortical responses of children with cochlear implants (CI) to a simple and repetitive motor task would differ from that of children with typical hearing (TH) and we sought to understand whether this response related to their language development. Participants were 75 school-aged children, including 50 with CI (with varying language abilities) and 25 controls with TH. We used functional near-infrared spectroscopy (fNIRS) to record cortical responses over the whole brain, as children squeezed the back triggers of a joystick that vibrated or not with the squeeze. Motor cortex activity was reflected by an increase in oxygenated hemoglobin concentration (HbO) and a decrease in deoxygenated hemoglobin concentration (HbR) in all children, irrespective of their hearing status. Unexpectedly, the visual cortex (supposedly an irrelevant region) was deactivated in this task, particularly for children with CI who had good language skills when compared to those with CI who had language delays. Presence or absence of vibrotactile feedback made no difference in cortical activation. These findings support the potential of fNIRS to examine cognitive functions related to language in children with CI.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Lindsay Hanna
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Will Towler
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Caleb Wilson
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Bien
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Miller
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Erin Schafer
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Jessica Gemignani
- Department of Developmental and Social Psychology, University of Padua, Padova, Italy
| | | | | | - Mickael Deroche
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
7
|
Machado MG, Machado TH, Caramelli P, Gonçalves Tosatti JA, da Silva Carvalho SA, de Resende LM. Effects of Hearing Aid Use on Individuals Diagnosed with Hearing Loss and Dementia: A Systematic Review. J Alzheimers Dis 2024; 100:1133-1143. [PMID: 38995779 DOI: 10.3233/jad-231460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Background The assumption that hearing rehabilitation could improve quality of life and reduce dementia risk in people with hearing loss is a subject that needs further studies, especially clinical trials. It is necessary to determine the effects of hearing aid use, as part of hearing rehabilitation, among people diagnosed with dementia. Objective To systematically review the literature to evaluate the effects of hearing aid use on cognition and quality of life of people with dementia. Methods Protocol for this systematic review was registered (CRD42023387187). The Cochrane Central Register of Controlled Trials, Embase, MEDLINE, Scopus, CINAHL, and Web of Science databases, as well as grey literature, including Google Scholar and ResearchGate, were systematically searched for clinical trials using MeSH terms. The PICOS principle was used to develop the inclusion criteria: population (P): adults and older adults, individuals diagnosed with dementia and hearing loss; intervention (I): rehabilitation with hearing aids; control (C): not using a hearing aid; outcome (O): cognitive and/or quality of life assessment using validated tests; study design (S): clinical trial. Results The initial search yielded 576 studies, five of which met the inclusion criteria for qualitative analyses. Two of the included studies were randomized clinical trials, and three were crossover clinical trials, demonstrating the lack of studies on the subject. Four studies included participants with Alzheimer's disease. Quality of life was found to improve with the use of hearing aids, and hearing rehabilitation was not shown to affect cognitive outcomes. Conclusions Hearing aid use appears to have a positive impact on quality of life.
Collapse
Affiliation(s)
- Mariane Gomes Machado
- Department of Speech-Language Pathology and Audiology, Post-graduation Program in Speech-Language and Hearing Sciences, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Helena Machado
- Department of Speech-Language Pathology and Audiology, Post-graduation Program in Speech-Language and Hearing Sciences, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Caramelli
- Department of Internal Medicine, Behavioral and Cognitive Research Group, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jessica Abdo Gonçalves Tosatti
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sirley Alves da Silva Carvalho
- Department of Speech-Language Pathology and Audiology, Post-graduation Program in Speech-Language and Hearing Sciences, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Macedo de Resende
- Department of Speech-Language Pathology and Audiology, Post-graduation Program in Speech-Language and Hearing Sciences, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Song L, Wang P, Li H, Weiss PH, Fink GR, Zhou X, Chen Q. Increased functional connectivity between the auditory cortex and the frontoparietal network compensates for impaired visuomotor transformation after early auditory deprivation. Cereb Cortex 2023; 33:11126-11145. [PMID: 37814363 DOI: 10.1093/cercor/bhad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Early auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.
Collapse
Affiliation(s)
- Li Song
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Pengfei Wang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
| |
Collapse
|
9
|
Huber M, Reuter L, Weitgasser L, Pletzer B, Rösch S, Illg A. Hearing loss, depression, and cognition in younger and older adult CI candidates. Front Neurol 2023; 14:1272210. [PMID: 37900591 PMCID: PMC10613094 DOI: 10.3389/fneur.2023.1272210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Background and Aim Hearing loss in old age is associated with cognitive decline and with depression. Our study aimed to investigate the relationship between hearing loss, cognitive decline, and secondary depressive symptoms in a sample of younger and older cochlear implant candidates with profound to severe hearing loss. Methods This study is part of a larger cohort study designated to provide information on baseline data before CI. Sixty-one cochlear implant candidates with hearing loss from adulthood onwards (>18 years) were enrolled in this study. All had symmetrical sensorineural hearing loss in both ears (four-frequency hearing threshold difference of no more than 20 dB, PTA). Individuals with primary affective disorders, psychosis, below-average intelligence, poor German language skills, visual impairment, and a medical diagnosis with potential impact on cognition (e.g., neurodegenerative diseases,) were excluded. Four-frequency hearing thresholds (dB, PTA, better ear) were collected. Using the Abbreviated Profile of Hearing Aid Benefit, we assessed subjective hearing in noise. Clinical and subclinical depressive symptoms were assessed with the Beck Depression Inventory (BDI II). Cognitive status was assessed with a neurocognitive test battery. Results Our findings revealed a significant negative association between subjective hearing in noise (APHAB subscale "Background Noise") and BDII. However, we did not observe any link between hearing thresholds, depression, and cognition. Additionally, no differences emerged between younger (25-54 years) and older subjects (55-75 years). Unexpectedly, further unplanned analyses unveiled correlations between subjective hearing in quiet environments (APHAB) and cognitive performance [phonemic fluency (Regensburg Word Fluency), cognitive flexibility (TMTB), and nonverbal episodic memory (Nonverbal Learning Test), as well as subjective hearing of aversive/loud sounds (APHAB)], cognitive performance [semantic word fluency (RWT), and inhibition (Go/Nogo) and depression]. Duration of hearing loss and speech recognition at quiet (Freiburg Monosyllables) were not related to depression and cognitive performance. Conclusion Impact of hearing loss on mood and cognition appears to be independent, suggesting a relationship with distinct aspects of hearing loss. These results underscore the importance of considering not only conventional audiometric measures like hearing thresholds but also variables related to hearing abilities during verbal communication in everyday life, both in quiet and noisy settings.
Collapse
Affiliation(s)
- Maria Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Lisa Reuter
- Clinic for Otorhinolaryngology, Medical University of Hannover, Hannover, Germany
| | - Lennart Weitgasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Belinda Pletzer
- Department of Psychology, Center for Neurocognitive Research, University of Salzburg, Salzburg, Austria
| | - Sebastian Rösch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angelika Illg
- Clinic for Otorhinolaryngology, Medical University of Hannover, Hannover, Germany
| |
Collapse
|
10
|
Manno FAM, Cheung P, Basnet V, Khan MS, Mao Y, Pan L, Ma V, Cho WC, Tian S, An Z, Feng Y, Cai YL, Pienkowski M, Lau C. Subtle alterations of vestibulomotor functioning in conductive hearing loss. Front Neurosci 2023; 17:1057551. [PMID: 37706156 PMCID: PMC10495589 DOI: 10.3389/fnins.2023.1057551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/08/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Conductive hearing loss (CHL) attenuates the ability to transmit air conducted sounds to the ear. In humans, severe hearing loss is often accompanied by alterations to other neural systems, such as the vestibular system; however, the inter-relations are not well understood. The overall goal of this study was to assess vestibular-related functioning proxies in a rat CHL model. Methods Male Sprague-Dawley rats (N=134, 250g, 2months old) were used in a CHL model which produced a >20dB threshold shift induced by tympanic membrane puncture. Auditory brainstem response (ABRs) recordings were used to determine threshold depth at different times before and after CHL. ABR threshold depths were assessed both manually and by an automated ABR machine learning algorithm. Vestibular-related functioning proxy assessment was performed using the rotarod, balance beam, elevator vertical motion (EVM) and Ferris-wheel rotation (FWR) assays. Results The Pre-CHL (control) threshold depth was 27.92dB±11.58dB compared to the Post-CHL threshold depth of 50.69dB±13.98dB (mean±SD) across the frequencies tested. The automated ABR machine learning algorithm determined the following threshold depths: Pre-CHL=24.3dB, Post-CHL same day=56dB, Post-CHL 7 days=41.16dB, and Post-CHL 1 month=32.5dB across the frequencies assessed (1, 2, 4, 8, 16, and 32kHz). Rotarod assessment of motor function was not significantly different between pre and post-CHL (~1week) rats for time duration (sec) or speed (RPM), albeit the former had a small effect size difference. Balance beam time to transverse was significantly longer for post-CHL rats, likely indicating a change in motor coordination. Further, failure to cross was only noted for CHL rats. The defection count was significantly reduced for CHL rats compared to control rats following FWR, but not EVM. The total distance traveled during open-field examination after EVM was significantly different between control and CHL rats, but not for FWR. The EVM is associated with linear acceleration (acting in the vertical plane: up-down) stimulating the saccule, while the FWR is associated with angular acceleration (centrifugal rotation about a circular axis) stimulating both otolith organs and semicircular canals; therefore, the difference in results could reflect the specific vestibular-organ functional role. Discussion Less movement (EVM) and increase time to transverse (balance beam) may be associated with anxiety and alterations to defecation patterns (FWR) may result from autonomic disturbances due to the impact of hearing loss. In this regard, vestibulomotor deficits resulting in changes in balance and motion could be attributed to comodulation of auditory and vestibular functioning. Future studies should manipulate vestibular functioning directly in rats with CHL.
Collapse
Affiliation(s)
- Francis A. M. Manno
- Department of Physics, East Carolina University, Greenville, NC, United States
- Department of Biomedical Engineering, Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pikting Cheung
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Vardhan Basnet
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Yuqi Mao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Leilei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Shile Tian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Ling Cai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Martin Pienkowski
- Osborne College of Audiology, Salus University, Elkins Park, PA, United States
| | - Condon Lau
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
He J, Cabrera-Mendoza B, Angelis FD, Pathak GA, Koller D, Curhan SG, Curhan GC, Mecca AP, van Dyck CH, Polimanti R. Sex differences in the pleiotropy of hearing difficulty with imaging-derived phenotypes: a brain-wide investigation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.25.23294639. [PMID: 37693474 PMCID: PMC10491277 DOI: 10.1101/2023.08.25.23294639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Hearing difficulty (HD) is one of the major health burdens in older adults. While aging-related changes in the peripheral auditory system play an important role, genetic variation associated with brain structure and function could also be involved in HD predisposition. Methods We analyzed a large-scale HD genome-wide association study (GWAS; N total = 501,825, 56% females) and GWAS data related to 3,935 brain imaging-derived phenotypes (IDPs) assessed in up to 33,224 individuals (52% females) using multiple magnetic resonance imaging (MRI) modalities. To investigate HD pleiotropy with brain structure and function, we conducted genetic correlation, latent causal variable (LCV), Mendelian randomization (MR), and multivariable generalized linear regression analyses. Additionally, we performed local genetic correlation and multi-trait colocalization analyses to identify genomic regions and loci implicated in the pleiotropic mechanisms shared between HD and brain IDPs. Results We observed a widespread genetic correlation of HD with 120 IDPs in females, 89 IDPs in males, and 171 IDPs in the sex-combined analysis. The LCV analyses showed that some of these genetic correlations could be due to cause-effect relationships. For seven correlations, the causal effects were also confirmed by the MR approach: vessel volume→HD in the sex-combined analysis; hippocampus volume→HD, cerebellum grey matter volume→HD, primary visual cortex volume→HD, and HD→rfMRI-ICA100 node 46 in females; global mean thickness→HD and HD→mean orientation dispersion index in superior corona radiata in males. The local genetic correlation analyses identified 13 pleiotropic regions between HD and these seven IDPs. We also observed a colocalization signal for the rs13026575 variant between HD, primary visual cortex volume, and SPTBN1 transcriptomic regulation in females. Conclusion Brain structure and function may have a role in the sex differences in HD predisposition via possible cause-effect relationships and shared regulatory mechanisms.
Collapse
|
12
|
Xing C, Chang W, Liu Y, Tong Z, Xu X, Yin X, Wu Y, Chen YC, Fang X. Alteration in resting-state effective connectivity within the Papez circuit in Presbycusis. Eur J Neurosci 2023; 58:3026-3036. [PMID: 37337805 DOI: 10.1111/ejn.16067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/14/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Previous studies have suggested that the Papez circuit may be involved in the cognitive impairment observed after hearing loss in presbycusis patients, yet relatively little is known about the pattern of changes in effective connectivity within the circuit. The aim of this study was to investigate abnormal alterations in resting-state effective connectivity within the Papez circuit and their association with cognitive decline in presbycusis patients. The spectral dynamic causal modelling (spDCM) approach was used for resting-state effective connectivity analysis in 61 presbycusis patients and 52 healthy controls (HCs) within the Papez circuit. The hippocampus (HPC), mamillary body (MB), anterior thalamic nuclei (ATN), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), entorhinal cortex (ERC), subiculum (Sub) and parahippocampal gyrus (PHG) were selected as the regions of interest (ROIs). The fully connected model difference in effective connectivity between the two groups was assessed, and the correlation between effective connectivity alteration and cognitive scale was analysed. We found that presbycusis patients demonstrated decreased effective connectivity from MB, PCC, and Sub to ACC relative to HCs, whereas higher effective connectivity strength was shown from HPC to MB, from ATN to PHG and from PHG to Sub. The effective connectivity from PHG to Sub was significantly negatively correlated with the complex figure test (CFT)-delay score (rho = -0.259, p = 0.044). The results support and reinforce the role of abnormal effective connectivity within the Papez circuit in the pathophysiology of presbycusis-related cognitive impairment and reveal its potential as a novel imaging marker.
Collapse
Affiliation(s)
- Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Chang
- Department of Laboratory Medicine, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhaopeng Tong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangming Fang
- Department of Medical Imaging, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
13
|
Yuan D, Ng IHY, Feng G, Chang WT, Tong MCF, Young NM, Wong PCM. The Extent of Hearing Input Affects the Plasticity of the Auditory Cortex in Children With Hearing Loss: A Preliminary Study. Am J Audiol 2023; 32:379-390. [PMID: 37080240 DOI: 10.1044/2023_aja-22-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
PURPOSE This study investigated to what extent residual hearing and rehabilitation options (e.g., hearing aids [HAs]) affect the auditory cortex in children with hearing loss. METHOD Twenty-one children with bilateral congenital sensorineural hearing loss who were candidates for cochlear implantation were recruited. Voxel-based morphometry analysis was conducted to assess the gray matter (GM) volume in the auditory cortex. Children's residual hearing was measured by pure-tone audiometry at different frequencies. Multiple linear regression models were conducted to examine the effects of residual hearing and the use of HAs on GM volume in the auditory cortex with the control of age and gender. RESULTS Children with more residual hearing at high frequencies had larger GM volume ratio (corrected by total intracranial volume) in the left Heschl's gyrus (r = -.545, p = .013). An interaction effect between residual hearing and the use of HAs suggested that the effect of residual hearing on GM ratio was moderated by the use of HAs (β = -.791, p = .020). Compared with children with less residual hearing, children who had more residual hearing benefited more from longer use of HAs in terms of a larger GM ratio. CONCLUSIONS Our preliminary findings highlight the impact of residual hearing on the neuroanatomy of the auditory cortex in children with hearing loss. Moreover, our results call for more auditory input via HAs for children with more residual hearing to preserve the auditory cortex before cochlear implantation. For children with less residual hearing who might receive limited benefit from HAs, an early cochlear implant would be necessary.
Collapse
Affiliation(s)
- Di Yuan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Iris H-Y Ng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR
| | - Gangyi Feng
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR
| | - Wai Tsz Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR
| | - Michael C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR
| | - Nancy M Young
- Department of Otolaryngology-Head & Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Division of Otolaryngology-Head & Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Patrick C M Wong
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
14
|
Tang H, Bie Z, Wang B, Yang Z, Li P, Wang X, Liu P. The characteristics of brain structural remodeling in patients with unilateral vestibular schwannoma. J Neurooncol 2023; 162:79-91. [PMID: 36808599 DOI: 10.1007/s11060-023-04247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Brain structural remodeling alters related brain function. However, few studies have assessed morphological alterations of unilateral vestibular schwannoma (VS) patients. Therefore, this study examined the characteristics of brain structural remodeling in unilateral VS patients. METHODS We recruited 39 patients with unilateral VS (19 left, 20 right) and 24 matched normal controls (NCs). We obtained brain structural imaging data using 3T T1-weighted anatomical and diffusion tensor imaging scans. Then, we evaluated both gray and white matter (WM) changes using FreeSurfer software and tract-based spatial statistics, respectively. Furthermore, we constructed a structural covariance network to assess brain structural network properties and the connectivity strength between brain regions. RESULTS Compared with NCs, VS patients showed cortical thickening in non-auditory areas (e.g., the left precuneus), especially left VS patients, along with reduced cortical thickness in the right superior temporal gyrus (auditory areas). VS patients also showed increased fractional anisotropy in extensive non-auditory-related WM (e.g., the superior longitudinal fasciculus), especially right VS patients. Both left and right VS patients showed increased small-worldness (more efficient information transfer). Left VS patients had a single reduced-connectivity subnetwork in contralateral temporal regions (right-side auditory areas), but increased connectivity between some non-auditory regions (e.g., left precuneus and left temporal pole). CONCLUSION VS patients exhibited greater morphological alterations in non-auditory than auditory areas, with structural reductions seen in related auditory areas and a compensatory increase in non-auditory areas. Left and right VS patients show differential patterns of brain structural remodeling. These findings provide a new perspective on the treatment and postoperative rehabilitation of VS.
Collapse
Affiliation(s)
- Hanlu Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhixu Bie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xingchao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Huber M, Lee HJ, Langereis M, Vermeulen A. Editorial: Quality of life in young cochlear implant recipients: Are there controlling factors and regional differences? Front Psychol 2022; 13:1109242. [PMID: 36591102 PMCID: PMC9798845 DOI: 10.3389/fpsyg.2022.1109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Maria Huber
- Department of Otorhinolaryngology, Paracelsus Medical University, Salzburg, Austria
| | - Hyo-Jeong Lee
- Department of Otolaryngology, Hallym University Medical Center, Chuncheon, South Korea
| | - Margreet Langereis
- Research Department, Pento Speech and Hearing Centres, Nijmegen, Netherlands
| | - Anneke Vermeulen
- Research Department, Pento Speech and Hearing Centres, Nijmegen, Netherlands
| |
Collapse
|
16
|
Du EY, Ortega BK, Ninoyu Y, Williams RW, Cofer GP, Cook JJ, Hornburg KJ, Qi Y, Johnson GA, Friedman RA. Volumetric analysis of the aging auditory pathway using high resolution magnetic resonance histology. Front Aging Neurosci 2022; 14:1034073. [DOI: 10.3389/fnagi.2022.1034073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
Numerous shown consequences of age-related hearing loss have been unveiled; however, the relationship of the cortical and subcortical structures of the auditory pathway with aging is not well known. Investigations into neural structure analysis remain sparse due to difficulties of doing so in animal models; however, recent technological advances have been able to achieve a resolution adequate to perform such studies even in the small mouse. We utilize 12 members of the BXD family of recombinant inbred mice and aged separate cohorts. Utilizing novel magnetic resonance histology imaging techniques, we imaged these mice and generated high spatial resolution three dimensional images which were then comprehensively labeled. We completed volumetric analysis of 12 separate regions of interest specific to the auditory pathway brainstem nuclei and cortical areas with focus on the effect of aging upon said structures. Our results showed significant interstrain variation in the age-related effect on structure volume supporting a genetic influence in this interaction. Through multivariable modeling, we observed heterogenous effects of aging between different structures. Six of the 12 regions of interests demonstrated a significant age-related effect. The auditory cortex and ventral cochlear nucleus were found to decrease in volume with age, while the medial division of the medial geniculate nucleus, lateral lemniscus and its nucleus, and the inferior colliculus increased in size with age. Additionally, no sex-based differences were noted, and we observed a negative relationship between auditory cortex volume and mouse weight. This study is one of the first to perform comprehensive magnetic resonance imaging and quantitative analysis in the mouse brain auditory pathway cytoarchitecture, offering both novel insights into the neuroanatomical basis of age-related changes in hearing as well as evidence toward a genetic influence in this interaction. High resonance magnetic resonance imaging provides a promising efficacious avenue in future mouse model hearing loss investigations.
Collapse
|
17
|
Ignatiadis K, Barumerli R, Tóth B, Baumgartner R. Effects of individualized brain anatomies and EEG electrode positions on inferred activity of the primary auditory cortex. Front Neuroinform 2022; 16:970372. [PMID: 36313125 PMCID: PMC9606706 DOI: 10.3389/fninf.2022.970372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 09/07/2024] Open
Abstract
Due to its high temporal resolution and non-invasive nature, electroencephalography (EEG) is considered a method of great value for the field of auditory cognitive neuroscience. In performing source space analyses, localization accuracy poses a bottleneck, which precise forward models based on individualized attributes such as subject anatomy or electrode locations aim to overcome. Yet acquiring anatomical images or localizing EEG electrodes requires significant additional funds and processing time, making it an oftentimes inaccessible asset. Neuroscientific software offers template solutions, on which analyses can be based. For localizing the source of auditory evoked responses, we here compared the results of employing such template anatomies and electrode positions versus the subject-specific ones, as well as combinations of the two. All considered cases represented approaches commonly used in electrophysiological studies. We considered differences between two commonly used inverse solutions (dSPM, sLORETA) and targeted the primary auditory cortex; a notoriously small cortical region that is located within the lateral sulcus, thus particularly prone to errors in localization. Through systematical comparison of early evoked component metrics and spatial leakage, we assessed how the individualization steps impacted the analyses outcomes. Both electrode locations as well as subject anatomies were found to have an effect, which though varied based on the configuration considered. When comparing the inverse solutions, we moreover found that dSPM more consistently benefited from individualization of subject morphologies compared to sLORETA, suggesting it to be the better choice for auditory cortex localization.
Collapse
Affiliation(s)
| | - Roberto Barumerli
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Robert Baumgartner
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
18
|
Song Q, Qi S, Jin C, Yang L, Qian W, Yin Y, Zhao H, Yu H. Functional Brain Connections Identify Sensorineural Hearing Loss and Predict the Outcome of Cochlear Implantation. Front Comput Neurosci 2022; 16:825160. [PMID: 35431849 PMCID: PMC9005839 DOI: 10.3389/fncom.2022.825160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of congenital sensorineural hearing loss (SNHL) and early intervention, especially by cochlear implantation (CI), are crucial for restoring hearing in patients. However, high accuracy diagnostics of SNHL and prognostic prediction of CI are lacking to date. To diagnose SNHL and predict the outcome of CI, we propose a method combining functional connections (FCs) measured by functional magnetic resonance imaging (fMRI) and machine learning. A total of 68 children with SNHL and 34 healthy controls (HC) of matched age and gender were recruited to construct classification models for SNHL and HC. A total of 52 children with SNHL that underwent CI were selected to establish a predictive model of the outcome measured by the category of auditory performance (CAP), and their resting-state fMRI images were acquired. After the dimensional reduction of FCs by kernel principal component analysis, three machine learning methods including the support vector machine, logistic regression, and k-nearest neighbor and their voting were used as the classifiers. A multiple logistic regression method was performed to predict the CAP of CI. The classification model of voting achieves an area under the curve of 0.84, which is higher than that of three single classifiers. The multiple logistic regression model predicts CAP after CI in SNHL with an average accuracy of 82.7%. These models may improve the identification of SNHL through fMRI images and prognosis prediction of CI in SNHL.
Collapse
Affiliation(s)
- Qiyuan Song
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
- *Correspondence: Shouliang Qi,
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lei Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, TX, United States
| | - Yi Yin
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Houyu Zhao,
| | - Hui Yu
- Department of Radiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
- Hui Yu,
| |
Collapse
|
19
|
Grégoire A, Deggouj N, Dricot L, Decat M, Kupers R. Brain Morphological Modifications in Congenital and Acquired Auditory Deprivation: A Systematic Review and Coordinate-Based Meta-Analysis. Front Neurosci 2022; 16:850245. [PMID: 35418829 PMCID: PMC8995770 DOI: 10.3389/fnins.2022.850245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroplasticity following deafness has been widely demonstrated in both humans and animals, but the anatomical substrate of these changes is not yet clear in human brain. However, it is of high importance since hearing loss is a growing problem due to aging population. Moreover, knowing these brain changes could help to understand some disappointing results with cochlear implant, and therefore could improve hearing rehabilitation. A systematic review and a coordinate-based meta-analysis were realized about the morphological brain changes highlighted by MRI in severe to profound hearing loss, congenital and acquired before or after language onset. 25 papers were included in our review, concerning more than 400 deaf subjects, most of them presenting prelingual deafness. The most consistent finding is a volumetric decrease in gray matter around bilateral auditory cortex. This change was confirmed by the coordinate-based meta-analysis which shows three converging clusters in this region. The visual areas of deaf children is also significantly impacted, with a decrease of the volume of both gray and white matters. Finally, deafness is responsible of a gray matter increase within the cerebellum, especially at the right side. These results are largely discussed and compared with those from deaf animal models and blind humans, which demonstrate for example a much more consistent gray matter decrease along their respective primary sensory pathway. In human deafness, a lot of other factors than deafness could interact on the brain plasticity. One of the most important is the use of sign language and its age of acquisition, which induce among others changes within the hand motor region and the visual cortex. But other confounding factors exist which have been too little considered in the current literature, such as the etiology of the hearing impairment, the speech-reading ability, the hearing aid use, the frequent associated vestibular dysfunction or neurocognitive impairment. Another important weakness highlighted by this review concern the lack of papers about postlingual deafness, whereas it represents most of the deaf population. Further studies are needed to better understand these issues, and finally try to improve deafness rehabilitation.
Collapse
Affiliation(s)
- Anaïs Grégoire
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Naïma Deggouj
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Monique Decat
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Ron Kupers
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Ecole d’Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
20
|
Völter C, Götze L, Bajewski M, Dazert S, Thomas JP. Cognition and Cognitive Reserve in Cochlear Implant Recipients. Front Aging Neurosci 2022; 14:838214. [PMID: 35391751 PMCID: PMC8980358 DOI: 10.3389/fnagi.2022.838214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
At present, dementia is a hot topic. Hearing loss is considered to be a modifiable risk factor for cognitive decline. The underlying mechanism remains unclear and might be mediated by socioeconomic and psychosocial factors. Cochlear implantation has been shown not only to restore auditory abilities, but also to decrease mental distress and to improve cognitive functions in people with severe hearing impairment. However, the promising results need to be confirmed. In a prospective single-center study, we tested the neurocognitive abilities of a large group of 71 subjects with bilateral severe hearing impairment with a mean age of 66.03 (SD = 9.15) preoperatively and 6, 12, and 24 months after cochlear implantation using a comprehensive non-auditory computer-based test battery, and we also assessed the cognitive reserve (CR) [Cognitive Reserve Index (CRI)], health-related quality of life (QoL) (Nijmegen Cochlear Implant Questionnaire), and depression (Geriatric Depression Scale-15). Cognitive functions significantly increased after 6 months in attention (p = 0.00004), working memory (operation span task; p = 0.002), and inhibition (p = 0.0002); and after 12 months in recall (p = 0.003) and verbal fluency (p = 0.0048), and remained stable up to 24 months (p ≥ 0.06). The CR positively correlated with cognitive functions pre- and post-operatively (both p < 0.005), but postoperative improvement in cognition was better in subjects with poor CR (p = 0.003). Depression had only a slight influence on one subtest. No correlation was found among cognitive skills, quality of life, and speech perception (each p ≥ 0.05). Cochlear implantation creates an enriched environment stimulating the plasticity of the brain with a global positive impact on neurocognitive functions, especially in subjects with poor preoperative cognitive performance and low cognitive reserve.
Collapse
Affiliation(s)
- Christiane Völter
- Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Bochum, Germany
- *Correspondence: Christiane Völter,
| | - Lisa Götze
- Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Bochum, Germany
| | - Marcel Bajewski
- Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Bochum, Germany
| | - Jan Peter Thomas
- Department of Otorhinolaryngology, Head and Neck Surgery, St.-Johannes-Hospital, Dortmund, Germany
| |
Collapse
|
21
|
Hong L, Zeng Q, Li K, Luo X, Xu X, Liu X, Li Z, Fu Y, Wang Y, Zhang T, Chen Y, Liu Z, Huang P, Zhang M. Intrinsic Brain Activity of Inferior Temporal Region Increased in Prodromal Alzheimer's Disease With Hearing Loss. Front Aging Neurosci 2022; 13:772136. [PMID: 35153717 PMCID: PMC8831745 DOI: 10.3389/fnagi.2021.772136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/31/2021] [Indexed: 01/13/2023] Open
Abstract
Background and Objective Hearing loss (HL) is one of the modifiable risk factors for Alzheimer's disease (AD). However, the underlying mechanism behind HL in AD remains elusive. A possible mechanism is cognitive load hypothesis, which postulates that over-processing of degraded auditory signals in the auditory cortex leads to deficits in other cognitive functions. Given mild cognitive impairment (MCI) is a prodromal stage of AD, untangling the association between HL and MCI might provide insights for potential mechanism behind HL. Methods We included 85 cognitively normal (CN) subjects with no hearing loss (NHL), 24 CN with HL, 103 mild cognitive impairment (MCI) patients with NHL, and 23 MCI with HL from the ADNI database. All subjects underwent resting-state functional MRI and neuropsychological scale assessments. Fractional amplitude of low-frequency fluctuation (fALFF) was used to reflect spontaneous brain activity. The mixed-effects analysis was applied to explore the interactive effects between HL and cognitive status (GRF corrected, voxel p-value <0.005, cluster p-value < 0.05, two-tailed). Then, the FDG data was included to further reflect the regional neuronal abnormalities. Finally, Pearson correlation analysis was performed between imaging metrics and cognitive scores to explore the clinical significance (Bonferroni corrected, p < 0.05). Results The interactive effects primarily located in the left superior temporal gyrus (STG) and bilateral inferior temporal gyrus (ITG). Post-hoc analysis showed that NC with HL had lower fALFF in bilateral ITG compared to NC with NHL. NC with HL had higher fALFF in the left STG and decreased fALFF in bilateral ITG compared to MCI with HL. In addition, NC with HL had lower fALFF in the right ITG compared to MCI with NHL. Correlation analysis revealed that fALFF was associated with MMSE and ADNI-VS, while SUVR was associated with MMSE, MoCA, ADNI-EF and ADNI-Lan. Conclusion HL showed different effects on NC and MCI stages. NC had increased spontaneous brain activity in auditory cortex while decreased activity in the ITG. Such pattern altered with disease stage changing and manifested as decreased activity in auditory cortex along with increased activity in ITG in MCI. This suggested that the cognitive load hypothesis may be the underlying mechanism behind HL.
Collapse
Affiliation(s)
- Luwei Hong
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyu Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanv Fu
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanbo Wang
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Peiyu Huang
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Peiyu Huang
| |
Collapse
|
22
|
Uchida Y, Nishita Y, Otsuka R, Sugiura S, Sone M, Yamasoba T, Kato T, Iwata K, Nakamura A. Aging Brain and Hearing: A Mini-Review. Front Aging Neurosci 2022; 13:791604. [PMID: 35095475 PMCID: PMC8792606 DOI: 10.3389/fnagi.2021.791604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/24/2021] [Indexed: 02/03/2023] Open
Abstract
Brain reserve is a topic of great interest to researchers in aging medicine field. Some individuals retain well-preserved cognitive function until they fulfill their lives despite significant brain pathology. One concept that explains this paradox is the reserve hypothesis, including brain reserve that assumes a virtual ability to mitigate the effects of neuropathological changes and reduce the effects on clinical symptoms flexibly and efficiently by making complete use of the cognitive and compensatory processes. One of the surrogate measures of reserve capacity is brain volume. Evidence that dementia and hearing loss are interrelated has been steadily accumulating, and age-related hearing loss is one of the most promising modifiable risk factors of dementia. Research focused on the imaging analysis of the aged brain relative to auditory function has been gradually increasing. Several morphological studies have been conducted to understand the relationship between hearing loss and brain volume. In this mini review, we provide a brief overview of the concept of brain reserve, followed by a small review of studies addressing brain morphology and hearing loss/hearing compensation, including the findings obtained from our previous study that hearing loss after middle age could affect hippocampal and primary auditory cortex atrophy.
Collapse
Affiliation(s)
- Yasue Uchida
- Department of Otolaryngology, Aichi Medical University, Nagakute, Japan
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
- *Correspondence: Yasue Uchida,
| | - Yukiko Nishita
- Department of Epidemiology of Aging, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Rei Otsuka
- Section of NILS-LSA, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Saiko Sugiura
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
- Toyota Josui Mental Clinic, Toyota, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
23
|
Manno FAM, An Z, Kumar R, Wu EX, He J, Feng Y, Lau C. Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Front Syst Neurosci 2021; 15:655172. [PMID: 34456689 PMCID: PMC8397539 DOI: 10.3389/fnsys.2021.655172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.
Collapse
Affiliation(s)
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
24
|
Zou Y, Ma H, Liu B, Li D, Liu D, Wang X, Wang S, Fan W, Han P. Disrupted Topological Organization in White Matter Networks in Unilateral Sudden Sensorineural Hearing Loss. Front Neurosci 2021; 15:666651. [PMID: 34321993 PMCID: PMC8312563 DOI: 10.3389/fnins.2021.666651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a sudden-onset hearing impairment that rapidly develops within 72 h and is mostly unilateral. Only a few patients can be identified with a defined cause by routine clinical examinations. Recently, some studies have shown that unilateral SSNHL is associated with alterations in the central nervous system. However, little is known about the topological organization of white matter (WM) networks in unilateral SSNHL patients in the acute phase. In this study, 145 patients with SSNHL and 91 age-, gender-, and education-matched healthy controls were evaluated using diffusion tensor imaging (DTI) and graph theoretical approaches. The topological properties of WM networks, including global and nodal parameters, were investigated. At the global level, SSNHL patients displayed decreased clustering coefficient, local efficiency, global efficiency, normalized clustering coefficient, normalized characteristic path length, and small-worldness and increased characteristic path length (p < 0.05) compared with healthy controls. At the nodal level, altered nodal centralities in brain regions involved the auditory network, visual network, attention network, default mode network (DMN), sensorimotor network, and subcortical network (p < 0.05, Bonferroni corrected). These findings indicate a shift of the WM network topology in SSNHL patients toward randomization, which is characterized by decreased global network integration and segregation and is reflected by decreased global connectivity and altered nodal centralities. This study could help us understand the potential pathophysiology of unilateral SSNHL.
Collapse
Affiliation(s)
- Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Siqi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|