1
|
Liu CJ, Ammon W, Jones RJ, Nolan JC, Gong D, Maffei C, Edlow BL, Augustinack JC, Magnain C, Yendiki A, Villiger M, Fischl B, Wang H. Three-dimensional fiber orientation mapping of the human brain at micrometer resolution. RESEARCH SQUARE 2024:rs.3.rs-4725871. [PMID: 39149445 PMCID: PMC11326409 DOI: 10.21203/rs.3.rs-4725871/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g. diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) and polarization microscopy can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation or thin slices, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15 degrees and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.
Collapse
Affiliation(s)
- Chao J. Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- These authors contributed equally to this work
| | - William Ammon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- These authors contributed equally to this work
| | - Robert J. Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jackson C. Nolan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Dayang Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jean C. Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
2
|
Radhakrishnan H, Zhao C, Sydnor VJ, Baller EB, Cook PA, Fair DA, Giesbrecht B, Larsen B, Murtha K, Roalf DR, Rush‐Goebel S, Shinohara RT, Shou H, Tisdall MD, Vettel JM, Grafton ST, Cieslak M, Satterthwaite TD. A practical evaluation of measures derived from compressed sensing diffusion spectrum imaging. Hum Brain Mapp 2024; 45:e26580. [PMID: 38520359 PMCID: PMC10960521 DOI: 10.1002/hbm.26580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 03/25/2024] Open
Abstract
Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Chenying Zhao
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Erica B. Baller
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Philip A. Cook
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Damien A. Fair
- Masonic Institute for the Developing BrainUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Barry Giesbrecht
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Bart Larsen
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kristin Murtha
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David R. Roalf
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sage Rush‐Goebel
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing & AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing & AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - M. Dylan Tisdall
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jean M. Vettel
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- U.S. Army Research LaboratoryAberdeen Proving GroundAberdeenMarylandUSA
| | - Scott T. Grafton
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Sun F, Huang Y, Wang J, Hong W, Zhao Z. Research Progress in Diffusion Spectrum Imaging. Brain Sci 2023; 13:1497. [PMID: 37891866 PMCID: PMC10605731 DOI: 10.3390/brainsci13101497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Studies have demonstrated that many regions in the human brain include multidirectional fiber tracts, in which the diffusion of water molecules within image voxels does not follow a Gaussian distribution. Therefore, the conventional diffusion tensor imaging (DTI) that hypothesizes a single fiber orientation within a voxel is intrinsically incapable of revealing the complex microstructures of brain tissues. Diffusion spectrum imaging (DSI) employs a pulse sequence with different b-values along multiple gradient directions to sample the diffusion information of water molecules in the entire q-space and then quantitatively estimates the diffusion profile using a probability density function with a high angular resolution. Studies have suggested that DSI can reliably observe the multidirectional fibers within each voxel and allow fiber tracking along different directions, which can improve fiber reconstruction reflecting the true but complicated brain structures that were not observed in the previous DTI studies. Moreover, with increasing angular resolution, DSI is able to reveal new neuroimaging biomarkers used for disease diagnosis and the prediction of disorder progression. However, so far, this method has not been used widely in clinical studies, due to its overly long scanning time and difficult post-processing. Within this context, the current paper aims to conduct a comprehensive review of DSI research, including the fundamental principles, methodology, and application progress of DSI tractography. By summarizing the DSI studies in recent years, we propose potential solutions towards the existing problem in the methodology and applications of DSI technology as follows: (1) using compressed sensing to undersample data and to reconstruct the diffusion signal may be an efficient and promising method for reducing scanning time; (2) the probability density function includes more information than the orientation distribution function, and it should be extended in application studies; and (3) large-sample study is encouraged to confirm the reliability and reproducibility of findings in clinical diseases. These findings may help deepen the understanding of the DSI method and promote its development in clinical applications.
Collapse
Affiliation(s)
- Fenfen Sun
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China; (F.S.); (Y.H.); (J.W.)
| | - Yingwen Huang
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China; (F.S.); (Y.H.); (J.W.)
| | - Jingru Wang
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China; (F.S.); (Y.H.); (J.W.)
| | - Wenjun Hong
- Department of Rehabilitation Medicine, Afiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China;
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Liu CJ, Ammon W, Jones RJ, Nolan JC, Gong D, Maffei C, Edlow BL, Augustinack JC, Magnain C, Yendiki A, Villiger M, Fischl B, Wang H. Quantitative imaging of three-dimensional fiber orientation in the human brain via two illumination angles using polarization-sensitive optical coherence tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563298. [PMID: 37961162 PMCID: PMC10634685 DOI: 10.1101/2023.10.20.563298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) provide important tools to directly quantify fiber orientation at micrometer resolution. However, brain imaging based on the optic axis by PS-OCT so far has been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work, we present a novel method to obtain the 3D fiber orientation in full angular space with only two illumination angles. We measure the optic axis orientation and the apparent birefringence by PS-OCT from a normal and a 15 deg tilted illumination, and then apply a computational method yielding the 3D optic axis orientation and true birefringence. We verify that our method accurately recovers a large range of through-plane orientations from -85 deg to 85 deg with a high angular precision. We further present 3D fiber orientation maps of entire coronal sections of human cerebrum and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that further development of our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain and other complex fibrous tissues at microscopic level.
Collapse
|
5
|
Menzel M, Gräßel D, Rajkovic I, Zeineh MM, Georgiadis M. Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI. eLife 2023; 12:e84024. [PMID: 37166005 PMCID: PMC10259419 DOI: 10.7554/elife.84024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity. Scattered light imaging (SLI) and small-angle X-ray scattering (SAXS) reveal axonal orientations with microscopic resolution and high specificity, respectively. Here, we apply both scattering techniques on the same samples and cross-validate them, laying the groundwork for ground-truth axonal orientation imaging and validating dMRI. We evaluate brain regions that include unidirectional and crossing fibers in human and vervet monkey brain sections. SLI and SAXS quantitatively agree regarding in-plane fiber orientations including crossings, while dMRI agrees in the majority of voxels with small discrepancies. We further use SAXS and dMRI to confirm theoretical predictions regarding SLI determination of through-plane fiber orientations. Scattered light and X-ray imaging can provide quantitative micrometer 3D fiber orientations with high resolution and specificity, facilitating detailed investigations of complex fiber architecture in the animal and human brain.
Collapse
Affiliation(s)
- Miriam Menzel
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of TechnologyDelftNetherlands
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbHJülichGermany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbHJülichGermany
| | - Ivan Rajkovic
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator LaboratoryStandfordUnited States
| | - Michael M Zeineh
- Department of Radiology, Stanford School of MedicineStanfordUnited States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of MedicineStanfordUnited States
| |
Collapse
|
6
|
Radhakrishnan H, Zhao C, Sydnor VJ, Baller EB, Cook PA, Fair D, Giesbrecht B, Larsen B, Murtha K, Roalf DR, Rush-Goebel S, Shinohara R, Shou H, Tisdall MD, Vettel J, Grafton S, Cieslak M, Satterthwaite T. Establishing the Validity of Compressed Sensing Diffusion Spectrum Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529546. [PMID: 36865219 PMCID: PMC9980087 DOI: 10.1101/2023.02.22.529546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of twenty-six participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n=20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chenying Zhao
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica B. Baller
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip A. Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Barry Giesbrecht
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Bart Larsen
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Murtha
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R. Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sage Rush-Goebel
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell Shinohara
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - M. Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Vettel
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Scott Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Maffei C, Girard G, Schilling KG, Aydogan DB, Adluru N, Zhylka A, Wu Y, Mancini M, Hamamci A, Sarica A, Teillac A, Baete SH, Karimi D, Yeh FC, Yildiz ME, Gholipour A, Bihan-Poudec Y, Hiba B, Quattrone A, Quattrone A, Boshkovski T, Stikov N, Yap PT, de Luca A, Pluim J, Leemans A, Prabhakaran V, Bendlin BB, Alexander AL, Landman BA, Canales-Rodríguez EJ, Barakovic M, Rafael-Patino J, Yu T, Rensonnet G, Schiavi S, Daducci A, Pizzolato M, Fischi-Gomez E, Thiran JP, Dai G, Grisot G, Lazovski N, Puch S, Ramos M, Rodrigues P, Prčkovska V, Jones R, Lehman J, Haber SN, Yendiki A. Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI. Neuroimage 2022; 257:119327. [PMID: 35636227 PMCID: PMC9453851 DOI: 10.1016/j.neuroimage.2022.119327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.
Collapse
Affiliation(s)
- Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, United States.
| | - Gabriel Girard
- University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kurt G Schilling
- Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | | | - Andrey Zhylka
- Biomedical Engineering, Eindhoven University of Technology, Netherlands
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States
| | - Matteo Mancini
- Cardiff University Brain Research Imaging Center (CUBRIC), Cardiff University, Cardiff, United Kingdom; NeuroPoly, Polytechnique Montreal, Montreal, Canada
| | - Andac Hamamci
- Department of Biomedical Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Alessia Sarica
- Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Achille Teillac
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, Bron 69500, France; Université Claude Bernard, Lyon 1, Villeurbanne 69100, France
| | - Steven H Baete
- Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; Department of Radiology, Center for Biomedical Imaging, NYU School of Medicine, New York, NY, United States
| | - Davood Karimi
- Department of Radiology, Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mert E Yildiz
- Department of Biomedical Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ali Gholipour
- Department of Radiology, Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yann Bihan-Poudec
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, Bron 69500, France; Université Claude Bernard, Lyon 1, Villeurbanne 69100, France
| | - Bassem Hiba
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, Bron 69500, France; Université Claude Bernard, Lyon 1, Villeurbanne 69100, France
| | - Andrea Quattrone
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | | | | | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, United States
| | - Alberto de Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Neurology Department, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Josien Pluim
- Biomedical Engineering, Eindhoven University of Technology, Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Bennett A Landman
- Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Erick J Canales-Rodríguez
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Muhamed Barakovic
- Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Neurologic Clinic and Polyclinic, Basel, Switzerland
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Thomas Yu
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Gaëtan Rensonnet
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Simona Schiavi
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; University of Verona, Verona, Italy
| | | | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Elda Fischi-Gomez
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Jean-Philippe Thiran
- University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - George Dai
- Wellesley College, Wellesley, MA, United States
| | | | | | | | | | | | | | - Robert Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, United States
| | - Julia Lehman
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, United States
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, United States
| |
Collapse
|
8
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
9
|
Fan Q, Eichner C, Afzali M, Mueller L, Tax CMW, Davids M, Mahmutovic M, Keil B, Bilgic B, Setsompop K, Lee HH, Tian Q, Maffei C, Ramos-Llordén G, Nummenmaa A, Witzel T, Yendiki A, Song YQ, Huang CC, Lin CP, Weiskopf N, Anwander A, Jones DK, Rosen BR, Wald LL, Huang SY. Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact. Neuroimage 2022; 254:118958. [PMID: 35217204 PMCID: PMC9121330 DOI: 10.1016/j.neuroimage.2022.118958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.
Collapse
Affiliation(s)
- Qiuyun Fan
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Cornelius Eichner
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK; Image Sciences Institute, University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
| | - Mathias Davids
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yi-Qiao Song
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Liu CJ, Ammon W, Jones RJ, Nolan J, Wang R, Chang S, Frosch MP, Yendiki A, Boas DA, Magnain C, Fischl B, Wang H. Refractive-index matching enhanced polarization sensitive optical coherence tomography quantification in human brain tissue. BIOMEDICAL OPTICS EXPRESS 2022; 13:358-372. [PMID: 35154876 PMCID: PMC8803034 DOI: 10.1364/boe.443066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 05/11/2023]
Abstract
The importance of polarization-sensitive optical coherence tomography (PS-OCT) has been increasingly recognized in human brain imaging. Despite the recent progress of PS-OCT in revealing white matter architecture and orientation, quantification of fine-scale fiber tracts in the human brain cortex has been a challenging problem, due to a low birefringence in the gray matter. In this study, we investigated the effect of refractive index matching by 2,2'-thiodiethanol (TDE) immersion on the improvement of PS-OCT measurements in ex vivo human brain tissue. We show that we can obtain fiber orientation maps of U-fibers that underlie sulci, as well as cortical fibers in the gray matter, including radial fibers in gyri and distinct layers of fibers exhibiting laminar organization. Further analysis shows that index matching reduces the noise in axis orientation measurements by 56% and 39%, in white and gray matter, respectively. Index matching also enables precise measurements of apparent birefringence, which was underestimated in the white matter by 82% but overestimated in the gray matter by 16% prior to TDE immersion. Mathematical simulations show that the improvements are primarily attributed to the reduction in the tissue scattering coefficient, leading to an enhanced signal-to-noise ratio in deeper tissue regions, which could not be achieved by conventional noise reduction methods.
Collapse
Affiliation(s)
- Chao J Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - William Ammon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert J Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jackson Nolan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Shuaibin Chang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- MIT HST, Computer Science and AI Lab, Cambridge, MA 02139, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|