1
|
Jun S, Malone SM, Alderson TH, Harper J, Hunt RH, Thomas KM, Wilson S, Iacono WG, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Netw Neurosci 2024; 8:1089-1104. [PMID: 39735509 PMCID: PMC11674572 DOI: 10.1162/netn_a_00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (>1 Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting state (N = 926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of subsecond connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that rapid connectome state transitions shape individuals' cognitive abilities and traits. Such subsecond connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
2
|
Jun S, Alderson TH, Malone SM, Harper J, Hunt RH, Thomas KM, Iacono WG, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. Netw Neurosci 2024; 8:1065-1088. [PMID: 39735507 PMCID: PMC11674403 DOI: 10.1162/netn_a_00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
3
|
Valt C, Tavella A, Berchio C, Seebold D, Sportelli L, Rampino A, Salisbury DF, Bertolino A, Pergola G. MEG Microstates: An Investigation of Underlying Brain Sources and Potential Neurophysiological Processes. Brain Topogr 2024; 37:993-1009. [PMID: 39115626 PMCID: PMC11408537 DOI: 10.1007/s10548-024-01073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
Microstates are transient scalp configurations of brain activity measured by electroencephalography (EEG). The application of microstate analysis in magnetoencephalography (MEG) data remains challenging. In one MEG dataset (N = 113), we aimed to identify MEG microstates at rest, explore their brain sources, and relate them to changes in brain activity during open-eyes (ROE) or closed-eyes resting state (RCE) and an auditory Mismatch Negativity (MMN) task. In another dataset of simultaneously recorded EEG-MEG data (N = 21), we investigated the association between MEG and EEG microstates. Six MEG microstates (mMS) provided the best clustering of resting-state activity, each linked to different brain sources: mMS 1-2: left/right occipito-parietal; mMS 3: fronto-temporal; mMS 4: centro-medial; mMS 5-6: left/right fronto-parietal. Increases in occipital alpha power in RCE relative to ROE correlated with greater mMS 1-2 time coverage (τbs < 0.20, ps > .002), while the lateralization of deviance detection in MMN was associated with mMS 5-6 time coverage (τbs < 0.16, ps > .012). No temporal correlation was found between EEG and MEG microstates (ps > .05), despite some overlap in brain sources and global explained variance between mMS 2-3 and EEG microstates B-C (rs > 0.60, ps < .002). Hence, the MEG signal can be decomposed into microstates, but mMS brain activity clustering captures phenomena different from EEG microstates. Source reconstruction and task-related modulations link mMS to large-scale networks and localized activities. Thus, mMSs offer insights into brain dynamics and task-specific processes, complementing EEG microstates in studying physiological and dysfunctional brain activity.
Collapse
Affiliation(s)
- Christian Valt
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
| | - Angelantonio Tavella
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Department of Mental Health, ASL Bari, Bari, Italy
| | - Cristina Berchio
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leonardo Sportelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Psychiatric Unit, Bari University Hospital, Bari, Italy
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Psychiatric Unit, Bari University Hospital, Bari, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Barzon G, Ambrosini E, Vallesi A, Suweis S. EEG microstate transition cost correlates with task demands. PLoS Comput Biol 2024; 20:e1012521. [PMID: 39388512 PMCID: PMC11495555 DOI: 10.1371/journal.pcbi.1012521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 10/22/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
The ability to solve complex tasks relies on the adaptive changes occurring in the spatio-temporal organization of brain activity under different conditions. Altered flexibility in these dynamics can lead to impaired cognitive performance, manifesting for instance as difficulties in attention regulation, distraction inhibition, and behavioral adaptation. Such impairments result in decreased efficiency and increased effort in accomplishing goal-directed tasks. Therefore, developing quantitative measures that can directly assess the effort involved in these transitions using neural data is of paramount importance. In this study, we propose a framework to associate cognitive effort during the performance of tasks with electroencephalography (EEG) activation patterns. The methodology relies on the identification of discrete dynamical states (EEG microstates) and optimal transport theory. To validate the effectiveness of this framework, we apply it to a dataset collected during a spatial version of the Stroop task, a cognitive test in which participants respond to one aspect of a stimulus while ignoring another, often conflicting, aspect. The Stroop task is a cognitive test where participants must respond to one aspect of a stimulus while ignoring another, often conflicting, aspect. Our findings reveal an increased cost linked to cognitive effort, thus confirming the framework's effectiveness in capturing and quantifying cognitive transitions. By utilizing a fully data-driven method, this research opens up fresh perspectives for physiologically describing cognitive effort within the brain.
Collapse
Affiliation(s)
- Giacomo Barzon
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Fondazione Bruno Kessler, Povo, Italy
| | - Ettore Ambrosini
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Antonino Vallesi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Samir Suweis
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Cerna J, Gupta P, He M, Ziegelman L, Hu Y, Hernandez ME. Tai Chi Practice Buffers Aging Effects in Functional Brain Connectivity. Brain Sci 2024; 14:901. [PMID: 39335397 PMCID: PMC11430092 DOI: 10.3390/brainsci14090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Tai Chi (TC) practice has been shown to improve both cognitive and physical function in older adults. However, the neural mechanisms underlying the benefits of TC remain unclear. Our primary aims are to explore whether distinct age-related and TC-practice-related relationships can be identified with respect to either temporal or spatial (within/between-network connectivity) differences. This cross-sectional study examined recurrent neural network dynamics, employing an adaptive, data-driven thresholding approach to source-localized resting-state EEG data in order to identify meaningful connections across time-varying graphs, using both temporal and spatial features derived from a hidden Markov model (HMM). Mann-Whitney U tests assessed between-group differences in temporal and spatial features by age and TC practice using either healthy younger adult controls (YACs, n = 15), healthy older adult controls (OACs, n = 15), or Tai Chi older adult practitioners (TCOAs, n = 15). Our results showed that aging is associated with decreased within-network and between-network functional connectivity (FC) across most brain networks. Conversely, TC practice appears to mitigate these age-related declines, showing increased FC within and between networks in older adults who practice TC compared to non-practicing older adults. These findings suggest that TC practice may abate age-related declines in neural network efficiency and stability, highlighting its potential as a non-pharmacological intervention for promoting healthy brain aging. This study furthers the triple-network model, showing that a balancing and reorientation of attention might be engaged not only through higher-order and top-down mechanisms (i.e., FPN/DAN) but also via the coupling of bottom-up, sensory-motor (i.e., SMN/VIN) networks.
Collapse
Affiliation(s)
- Jonathan Cerna
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Prakhar Gupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Maxine He
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Liran Ziegelman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Yang Hu
- Department of Kinesiology, San Jose State University, San Jose, CA 95192, USA;
| | - Manuel E. Hernandez
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Coleman SC, Seedat ZA, Pakenham DO, Quinn AJ, Brookes MJ, Woolrich MW, Mullinger KJ. Post-task responses following working memory and movement are driven by transient spectral bursts with similar characteristics. Hum Brain Mapp 2024; 45:e26700. [PMID: 38726799 PMCID: PMC11082833 DOI: 10.1002/hbm.26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/09/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.
Collapse
Affiliation(s)
- Sebastian C. Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Zelekha A. Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Young EpilepsyLingfieldUK
| | - Daisie O. Pakenham
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Clinical NeurophysiologyQueen's Medical Centre, Nottingham University Hospitals NHS TrustNottinghamUK
| | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
7
|
Chen C, Guo Z, Peng W, Wang S, Qiu S, Zhang J, Chen X, He H. Tracking the Immediate and Short-Term Effects of Continuous Theta Burst Stimulation on Dynamic Brain States. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1386-1396. [PMID: 38526882 DOI: 10.1109/tnsre.2024.3378712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Continuous Theta Burst Stimulation (cTBS) has been shown to modulate cortical oscillations and induce cortical inhibitory effects. Electroencephalography (EEG) studies have shown some immediate effects of cTBS on brain activity. To investigate both immediate effects and short-term effects of cTBS on dynamic brain changes, cTBS was applied to 22 healthy participants over their left motor cortex. We recorded eyes-open, resting-state EEG and performance in the Nine-Hole Peg Test (NHPT) before cTBS, immediately after cTBS, and 80 minutes after cTBS. We identified nine states using a Hidden Markov Model (HMM)-based approach to describe the process of dynamic brain changes. The spatial activation, temporal profiles of HMM states and behavioral performance of NHPT were assessed and compared. cTBS altered the temporal profiles of S1-S5 immediately after cTBS and the temporal profiles of S5, S6 and S7 80 min after cTBS. Moreover, cTBS improved motor function of the left hand. State 1 was characterized as the activation of right occipito-temporal area, and NHPT behavioral performance of the left hand positively correlated with the occurrence of state 1, and negatively correlated with the interval time of state 1 after cTBS. The transitions between S1 or S7 and other states showed dynamic reconfiguration during after-effect sustained time after cTBS. These results suggest that the dynamic characteristics of state 1 are potential biomarkers for characterizing the aftereffect changes of cTBS.
Collapse
|
8
|
Mikutta CA, Knight RT, Sammler D, Müller TJ, Koenig T. Electrocorticographic Activation Patterns of Electroencephalographic Microstates. Brain Topogr 2024; 37:287-295. [PMID: 36939988 PMCID: PMC10884069 DOI: 10.1007/s10548-023-00952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Electroencephalography (EEG) microstates are short successive periods of stable scalp field potentials representing spontaneous activation of brain resting-state networks. EEG microstates are assumed to mediate local activity patterns. To test this hypothesis, we correlated momentary global EEG microstate dynamics with the local temporo-spectral evolution of electrocorticography (ECoG) and stereotactic EEG (SEEG) depth electrode recordings. We hypothesized that these correlations involve the gamma band. We also hypothesized that the anatomical locations of these correlations would converge with those of previous studies using either combined functional magnetic resonance imaging (fMRI)-EEG or EEG source localization. We analyzed resting-state data (5 min) of simultaneous noninvasive scalp EEG and invasive ECoG and SEEG recordings of two participants. Data were recorded during the presurgical evaluation of pharmacoresistant epilepsy using subdural and intracranial electrodes. After standard preprocessing, we fitted a set of normative microstate template maps to the scalp EEG data. Using covariance mapping with EEG microstate timelines and ECoG/SEEG temporo-spectral evolutions as inputs, we identified systematic changes in the activation of ECoG/SEEG local field potentials in different frequency bands (theta, alpha, beta, and high-gamma) based on the presence of particular microstate classes. We found significant covariation of ECoG/SEEG spectral amplitudes with microstate timelines in all four frequency bands (p = 0.001, permutation test). The covariance patterns of the ECoG/SEEG electrodes during the different microstates of both participants were similar. To our knowledge, this is the first study to demonstrate distinct activation/deactivation patterns of frequency-domain ECoG local field potentials associated with simultaneous EEG microstates.
Collapse
Affiliation(s)
- Christian A Mikutta
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Private Clinic Meiringen, Meiringen, Switzerland
- Interdisciplinary Biosciences Doctoral Training Partnership, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California-Berkeley, 132 Barker Hall, 94720, Berkeley, CA, USA
| | - Daniela Sammler
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Thomas J Müller
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Private Clinic Meiringen, Meiringen, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Fernández-Martín R, Feys O, Juvené E, Aeby A, Urbain C, De Tiège X, Wens V. Towards the automated detection of interictal epileptiform discharges with magnetoencephalography. J Neurosci Methods 2024; 403:110052. [PMID: 38151188 DOI: 10.1016/j.jneumeth.2023.110052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The analysis of clinical magnetoencephalography (MEG) in patients with epilepsy traditionally relies on visual identification of interictal epileptiform discharges (IEDs), which is time consuming and dependent on subjective criteria. NEW METHOD Here, we explore the ability of Independent Components Analysis (ICA) and Hidden Markov Modeling (HMM) to automatically detect and localize IEDs. We tested our pipelines on resting-state MEG recordings from 10 school-aged children with (multi)focal epilepsy. RESULTS In focal epilepsy patients, both pipelines successfully detected visually identified IEDs, but also revealed unidentified low-amplitude IEDs. Success was more mitigated in patients with multifocal epilepsy, as our automated pipeline missed IED activity associated with some foci-an issue that could be alleviated by post-hoc manual selection of epileptiform ICs or HMM states. COMPARISON WITH EXISTING METHODS We compared our results with visual IED detection by an experienced clinical magnetoencephalographer, getting heightened sensitivity and requiring minimal input from clinical practitioners. CONCLUSIONS IED detection based on ICA or HMM represents an efficient way to identify IED localization and timing. The development of these automatic IED detection algorithms provide a step forward in clinical MEG practice by decreasing the duration of MEG analysis and enhancing its sensitivity.
Collapse
Affiliation(s)
- Raquel Fernández-Martín
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium.
| | - Odile Feys
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Elodie Juvené
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Department of Pediatric Neurology, Brussels, Belgium
| | - Alec Aeby
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Department of Pediatric Neurology, Brussels, Belgium
| | - Charline Urbain
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Centre for Research in Cognition and Neurosciences (CRCN), Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Hôpital Erasme, Service of translational Neuroimaging, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Hôpital Erasme, Service of translational Neuroimaging, Brussels, Belgium
| |
Collapse
|
10
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
11
|
Zanesco AP. Normative Temporal Dynamics of Resting EEG Microstates. Brain Topogr 2024; 37:243-264. [PMID: 37702825 DOI: 10.1007/s10548-023-01004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The large-scale electrophysiological events known as electroencephalographic microstates provide an important window into the intrinsic activity of whole-brain neuronal networks. The spontaneous activity of coordinated brain networks, including the ongoing temporal dynamics expressed by microstates, are thought to reflect individuals' neurocognitive functioning, and predict development, disease progression, and psychological differences among varied populations. A comprehensive understanding of human brain function therefore requires characterizing typical and atypical patterns in the temporal dynamics of microstates. But population-level estimates of normative microstate temporal dynamics are still unknown. To address this gap, I conducted a systematic search of the literature and accompanying meta-analysis of the average dynamics of microstates obtained from studies investigating spontaneous brain activity in individuals during periods of eyes-closed and eyes-open rest. Meta-analyses provided estimates of the average temporal dynamics of microstates across 93 studies totaling 6583 unique individual participants drawn from diverse populations. Results quantified the expected range of plausible estimates of average microstate dynamics across study samples, as well as characterized heterogeneity resulting from sampling variability and systematic differences in development, clinical diagnoses, or other study methodological factors. Specifically, microstate dynamics significantly differed for samples with specific developmental differences or clinical diagnoses, relative to healthy, typically developing samples. This research supports the notion that microstates and their dynamics reflect functionally relevant properties of large-scale brain networks, encoding typical and atypical neurocognitive functioning.
Collapse
Affiliation(s)
- Anthony P Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
12
|
Marzetti L, Makkinayeri S, Pieramico G, Guidotti R, D'Andrea A, Roine T, Mutanen TP, Souza VH, Kičić D, Baldassarre A, Ermolova M, Pankka H, Ilmoniemi RJ, Ziemann U, Luca Romani G, Pizzella V. Towards real-time identification of large-scale brain states for improved brain state-dependent stimulation. Clin Neurophysiol 2024; 158:196-203. [PMID: 37827877 DOI: 10.1016/j.clinph.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy; Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Abruzzo, Italy.
| | - Saeed Makkinayeri
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Giulia Pieramico
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Antea D'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Turku Brain and Mind Center, University of Turku, Turku, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Dubravko Kičić
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Maria Ermolova
- Hertie-Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany; Department of Neurology & Stroke, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Hanna Pankka
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ulf Ziemann
- Hertie-Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany; Department of Neurology & Stroke, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy; Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| |
Collapse
|
13
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575736. [PMID: 38293067 PMCID: PMC10827041 DOI: 10.1101/2024.01.15.575736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (> 1Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting-state (N=926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands, and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of sub-second connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that the specific order in which rapid connectome states are sequenced shapes individuals' cognitive abilities and traits. Such sub-second connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
14
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575731. [PMID: 38293031 PMCID: PMC10827044 DOI: 10.1101/2024.01.15.575731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infra-slow (<0.1Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting-state (N=928, 473 females), we quantified heritability of multivariate (multi-state) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ~60-500ms. Temporal features were heritable, particularly, Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for heritability of spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects strongly shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
15
|
Wens V. Exploring the limits of MEG spatial resolution with multipolar expansions. Neuroimage 2023; 270:119953. [PMID: 36842521 DOI: 10.1016/j.neuroimage.2023.119953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
The advent of scalp magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) may represent a step change in the field of human electrophysiology. Compared to cryogenic MEG based on superconducting quantum interference devices (SQUIDs, placed 2-4 cm above scalp), scalp MEG promises significantly higher spatial resolution imaging but it also comes with numerous challenges regarding how to optimally design OPM arrays. In this context, we sought to provide a systematic description of MEG spatial resolution as a function of the number of sensors (allowing comparison of low- vs. high-density MEG), sensor-to-brain distance (cryogenic SQUIDs vs. scalp OPM), sensor type (magnetometers vs. gradiometers; single- vs. multi-component sensors), and signal-to-noise ratio. To that aim, we present an analytical theory based on MEG multipolar expansions that enables, once supplemented with experimental input and simulations, quantitative assessment of the limits of MEG spatial resolution in terms of two qualitatively distinct regimes. In the regime of asymptotically high-density MEG, we provide a mathematically rigorous description of how magnetic field smoothness constraints spatial resolution to a slow, logarithmic divergence. In the opposite regime of low-density MEG, it is sensor density that constraints spatial resolution to a faster increase following a square-root law. The transition between these two regimes controls how MEG spatial resolution saturates as sensors approach sources of neural activity. This two-regime model of MEG spatial resolution integrates known observations (e.g., the difficulty of improving spatial resolution by increasing sensor density, the gain brought by moving sensors on scalp, or the usefulness of multi-component sensors) and gathers them under a unifying theoretical framework that highlights the underlying physics and reveals properties inaccessible to simulations. We propose that this framework may find useful applications to benchmark the design of future OPM-based scalp MEG systems.
Collapse
Affiliation(s)
- Vincent Wens
- LN(2)T - Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Translational Neuroimaging, H.U.B. - Hôpital Erasme, Brussels, Belgium.
| |
Collapse
|
16
|
Yu Y, Oh Y, Kounios J, Beeman M. Uncovering the Interplay of Oscillatory Processes During Creative Problem Solving: A Dynamic Modeling Approach. CREATIVITY RESEARCH JOURNAL 2023; 35:438-454. [PMID: 38145249 PMCID: PMC10745236 DOI: 10.1080/10400419.2023.2172871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
To solve a new problem, people spontaneously engage multiple cognitive processes. Previous work has identified a diverse set of oscillatory components critical at different stages of creative problem solving. In this project, we use hidden state modeling to untangle the roles of oscillation processes over time as people solve puzzles. Building on earlier work, we further developed analytical methods, such as incorporating source separating techniques and identifying the optimal number of states using cross-validation. We extracted brain states characterized by spatio-spectral topographies from time-resolved EEG spectral powers. The data driven approach allowed us to infer the dynamic, trial-by-trial, state sequences, and provided a comprehensive depiction of how various oscillation components interact recurrently throughout the trial. The properties of the states suggest their dissociable cognitive functions. For example, we identified three states with dominant activation in alpha bands but having distinct spatial distributions. People were differentially engaged in these states depending on the stages (e.g., onset or response) and outcomes of the trials (solved with insight or analysis). The current approach, applicable to many tasks requiring extended trial duration, can potentially reconcile findings from previous EEG studies and drive new hypotheses to further our understanding of the complex creative process.
Collapse
|
17
|
Power L, Allain C, Moreau T, Gramfort A, Bardouille T. Using convolutional dictionary learning to detect task-related neuromagnetic transients and ageing trends in a large open-access dataset. Neuroimage 2023; 267:119809. [PMID: 36584759 DOI: 10.1016/j.neuroimage.2022.119809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Human neuromagnetic activity is characterised by a complex combination of transient bursts with varying spatial and temporal characteristics. The characteristics of these transient bursts change during task performance and normal ageing in ways that can inform about underlying cortical sources. Many methods have been proposed to detect transient bursts, with the most successful ones being those that employ multi-channel, data-driven approaches to minimize bias in the detection procedure. There has been little research, however, into the application of these data-driven methods to large datasets for group-level analyses. In the current work, we apply a data-driven convolutional dictionary learning (CDL) approach to detect neuromagnetic transient bursts in a large group of healthy participants from the Cam-CAN dataset. CDL was used to extract repeating spatiotemporal motifs in 538 participants between the ages of 18-88 during a sensorimotor task. Motifs were then clustered across participants based on similarity, and relevant task-related clusters were analysed for age-related trends in their spatiotemporal characteristics. Seven task-related motifs resembling known transient burst types were identified through this analysis, including beta, mu, and alpha type bursts. All burst types showed positive trends in their activation levels with age that could be explained by increasing burst rate with age. This work validated the data-driven CDL approach for transient burst detection on a large dataset and identified robust information about the complex characteristics of human brain signals and how they change with age.
Collapse
Affiliation(s)
- Lindsey Power
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cédric Allain
- Inria, Mind team, Université Paris-Saclay, Saclay, France
| | - Thomas Moreau
- Inria, Mind team, Université Paris-Saclay, Saclay, France
| | | | - Timothy Bardouille
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
18
|
Bai D, Yao W, Wang S, Yan W, Wang J. Recurrence network analysis of schizophrenia MEG under different stimulation states. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Kang J, Fan X, Zhong Y, Casanova MF, Sokhadze EM, Li X, Niu Z, Geng X. Transcranial Direct Current Stimulation Modulates EEG Microstates in Low-Functioning Autism: A Pilot Study. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010098. [PMID: 36671670 PMCID: PMC9855011 DOI: 10.3390/bioengineering10010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder that affects several behavioral domains of neurodevelopment. Transcranial direct current stimulation (tDCS) is a new method that modulates motor and cognitive function and may have potential applications in ASD treatment. To identify its potential effects on ASD, differences in electroencephalogram (EEG) microstates were compared between children with typical development (n = 26) and those with ASD (n = 26). Furthermore, children with ASD were divided into a tDCS (experimental) and sham stimulation (control) group, and EEG microstates and Autism Behavior Checklist (ABC) scores before and after tDCS were compared. Microstates A, B, and D differed significantly between children with TD and those with ASD. In the experimental group, the scores of microstates A and C and ABC before tDCS differed from those after tDCS. Conversely, in the control group, neither the EEG microstates nor the ABC scores before the treatment period (sham stimulation) differed from those after the treatment period. This study indicates that tDCS may become a viable treatment for ASD.
Collapse
Affiliation(s)
- Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding 071000, China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Yiwen Zhong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Manuel F. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Estate M. Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
| | - Zikang Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
- Correspondence: (Z.N.); (X.G.)
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Correspondence: (Z.N.); (X.G.)
| |
Collapse
|
20
|
Olsen AS, Høegh RMT, Hinrich JL, Madsen KH, Mørup M. Combining electro- and magnetoencephalography data using directional archetypal analysis. Front Neurosci 2022; 16:911034. [PMID: 35968377 PMCID: PMC9374169 DOI: 10.3389/fnins.2022.911034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Metastable microstates in electro- and magnetoencephalographic (EEG and MEG) measurements are usually determined using modified k-means accounting for polarity invariant states. However, hard state assignment approaches assume that the brain traverses microstates in a discrete rather than continuous fashion. We present multimodal, multisubject directional archetypal analysis as a scale and polarity invariant extension to archetypal analysis using a loss function based on the Watson distribution. With this method, EEG/MEG microstates are modeled using subject- and modality-specific archetypes that are representative, distinct topographic maps between which the brain continuously traverses. Archetypes are specified as convex combinations of unit norm input data based on a shared generator matrix, thus assuming that the timing of neural responses to stimuli is consistent across subjects and modalities. The input data is reconstructed as convex combinations of archetypes using a subject- and modality-specific continuous archetypal mixing matrix. We showcase the model on synthetic data and an openly available face perception event-related potential data set with concurrently recorded EEG and MEG. In synthetic and unimodal experiments, we compare our model to conventional Euclidean multisubject archetypal analysis. We also contrast our model to a directional clustering model with discrete state assignments to highlight the advantages of modeling state trajectories rather than hard assignments. We find that our approach successfully models scale and polarity invariant data, such as microstates, accounting for intersubject and intermodal variability. The model is readily extendable to other modalities ensuring component correspondence while elucidating spatiotemporal signal variability.
Collapse
Affiliation(s)
- Anders S. Olsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Rasmus M. T. Høegh
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- WS Audiology, Lynge, Denmark
| | - Jesper L. Hinrich
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Kristoffer H. Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Morten Mørup
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Brain-wide neural co-activations in resting human. Neuroimage 2022; 260:119461. [PMID: 35820583 PMCID: PMC9472753 DOI: 10.1016/j.neuroimage.2022.119461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Spontaneous neural activity in human as assessed with resting-state functional magnetic resonance imaging (fMRI) exhibits brain-wide coordinated patterns in the frequency of < 0.1 Hz. However, understanding of fast brain-wide networks at the timescales of neuronal events (milliseconds to sub-seconds) and their spatial, spectral, and transitional characteristics remain limited due to the temporal constraints of hemodynamic signals. With milli-second resolution and whole-head coverage, scalp-based electroencephalography (EEG) provides a unique window into brain-wide networks with neuronal-timescale dynamics, shedding light on the organizing principles of brain functions. Using the state-of-the-art signal processing techniques, we reconstructed cortical neural tomography from resting-state EEG and extracted component-based co-activation patterns (cCAPs). These cCAPs revealed brain-wide intrinsic networks and their dynamics, indicating the configuration/reconfiguration of resting human brains into recurring and transitional functional states, which are featured with the prominent spatial phenomena of global patterns and anti-state pairs of co-(de)activations. Rich oscillational structures across a wide frequency band (i.e., 0.6 Hz, 5 Hz, and 10 Hz) were embedded in the nonstationary dynamics of these functional states. We further identified a superstructure that regulated between-state immediate and long-range transitions involving the entire set of identified cCAPs and governed a significant aspect of brain-wide network dynamics. These findings demonstrated how resting-state EEG data can be functionally decomposed using cCAPs to reveal rich dynamic structures of brain-wide human neural activations.
Collapse
|