1
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Li H, Rodríguez-Nieto G, Chalavi S, Seer C, Mikkelsen M, Edden RAE, Swinnen SP. MRS-assessed brain GABA modulation in response to task performance and learning. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:22. [PMID: 39217354 PMCID: PMC11366171 DOI: 10.1186/s12993-024-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gamma-aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the human brain, has long been considered essential in human behavior in general and learning in particular. GABA concentration can be quantified using magnetic resonance spectroscopy (MRS). Using this technique, numerous studies have reported associations between baseline GABA levels and various human behaviors. However, regional GABA concentration is not fixed and may exhibit rapid modulation as a function of environmental factors. Hence, quantification of GABA levels at several time points during the performance of tasks can provide insights into the dynamics of GABA levels in distinct brain regions. This review reports on findings from studies using repeated measures (n = 41) examining the dynamic modulation of GABA levels in humans in response to various interventions in the perceptual, motor, and cognitive domains to explore associations between GABA modulation and human behavior. GABA levels in a specific brain area may increase or decrease during task performance or as a function of learning, depending on its precise involvement in the process under investigation. Here, we summarize the available evidence and derive two overarching hypotheses regarding the role of GABA modulation in performance and learning. Firstly, training-induced increases in GABA levels appear to be associated with an improved ability to differentiate minor perceptual differences during perceptual learning. This observation gives rise to the 'GABA increase for better neural distinctiveness hypothesis'. Secondly, converging evidence suggests that reducing GABA levels may play a beneficial role in effectively filtering perceptual noise, enhancing motor learning, and improving performance in visuomotor tasks. Additionally, some studies suggest that the reduction of GABA levels is related to better working memory and successful reinforcement learning. These observations inspire the 'GABA decrease to boost learning hypothesis', which states that decreasing neural inhibition through a reduction of GABA in dedicated brain areas facilitates human learning. Additionally, modulation of GABA levels is also observed after short-term physical exercise. Future work should elucidate which specific circumstances induce robust GABA modulation to enhance neuroplasticity and boost performance.
Collapse
Affiliation(s)
- Hong Li
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Ehrhardt SE, Wards Y, Rideaux R, Marjańska M, Jin J, Cloos MA, Deelchand DK, Zöllner HJ, Saleh MG, Hui SCN, Ali T, Shaw TB, Barth M, Mattingley JB, Filmer HL, Dux PE. Neurochemical Predictors of Generalized Learning Induced by Brain Stimulation and Training. J Neurosci 2024; 44:e1676232024. [PMID: 38531634 PMCID: PMC11112648 DOI: 10.1523/jneurosci.1676-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.
Collapse
Affiliation(s)
- Shane E Ehrhardt
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Reuben Rideaux
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Małgorzata Marjańska
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jin Jin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- Siemens Healthcare Pty Ltd., Brisbane, Queensland 4006, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dinesh K Deelchand
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Steve C N Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tonima Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Thomas B Shaw
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
McManus E, Muhlert N, Duncan NW. InSpectro-Gadget: A Tool for Estimating Neurotransmitter and Neuromodulator Receptor Distributions for MRS Voxels. Neuroinformatics 2024; 22:135-145. [PMID: 38386228 DOI: 10.1007/s12021-024-09654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/23/2024]
Abstract
Magnetic resonance spectroscopy (MRS) is widely used to estimate concentrations of glutamate and γ -aminobutyric acid (GABA) in specific regions of the living human brain. As cytoarchitectural properties differ across the brain, interpreting these measurements can be assisted by having knowledge of such properties for the MRS region(s) studied. In particular, some knowledge of likely local neurotransmitter receptor patterns can potentially give insights into the mechanistic environment GABA- and glutamatergic neurons are functioning in. This may be of particular utility when comparing two or more regions, given that the receptor populations may differ substantially across them. At the same time, when studying MRS data from multiple participants or timepoints, the homogeneity of the sample becomes relevant, as measurements taken from areas with different cytoarchitecture may be difficult to compare. To provide insights into the likely cytoarchitectural environment of user-defined regions-of-interest, we produced an easy to use tool - InSpectro-Gadget - that interfaces with receptor mRNA expression information from the Allen Human Brain Atlas. This Python tool allows users to input masks and automatically obtain a graphical overview of the receptor population likely to be found within. This includes comparison between multiple masks or participants where relevant. The receptors and receptor subunit genes featured include GABA- and glutamatergic classes, along with a wide range of neuromodulators. The functionality of the tool is explained here and its use is demonstrated through a set of example analyses. The tool is available at https://github.com/lizmcmanus/Inspectro-Gadget .
Collapse
Affiliation(s)
| | - Nils Muhlert
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Niall W Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Nashaat NH, Elrouby I, Zeidan HM, Kilany A, Abdelraouf ER, Hashish AF, Abdelhady HS, ElKeblawy MM, Shadi MS. Childhood Apraxia of Speech: Exploring Gluten Sensitivity and Changes in Glutamate and Gamma-Aminobutyric Acid Plasma Levels. Pediatr Neurol 2024; 151:104-110. [PMID: 38154236 DOI: 10.1016/j.pediatrneurol.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Individuals with childhood apraxia of speech (CAS) were reported to have genetic variations related to gluten sensitivity and some neuroanatomic changes, which could be associated with alterations in neurotransmitters levels such as glutamate and gamma-aminobutyric acid (GABA). The aim was to measure the levels of antigliadin immunoglobulin A (IgA) antibody, glutamate, and GABA in the plasma of children with CAS compared with children with delayed language development (DLD) and neurotypical (NT) children. METHODS The participants (N = 120) were in three groups: Group I for CAS (N = 30), Group II for DLD (N = 60), and Group III for NT (N = 30). The abilities of children in Groups I and II were evaluated. The plasma levels of antigliadin IgA, glutamate, and GABA were determined by enzyme-linked immunosorbent assay. RESULTS The intelligence quotient and expressive language age in Group I were low compared with Group II (P = 0.001; 0.004). The levels of antigliadin IgA and glutamate in Group I were higher compared with the other two groups, whereas the level of GABA was lower (P < 0.0001). An imbalance between glutamate and GABA was found in Group I. In Group II, no measures differed from NTs except lower GABA levels (P = 0.0007). CONCLUSIONS The elevated levels of antigliadin IgA antibody and glutamate demonstrated high sensitivity and specificity, differentiating children with CAS from children with DLD and NT children. The low levels of GABA contributed to the imbalance between the excitatory and inhibitory neurotransmitters' levels detected in children with CAS.
Collapse
Affiliation(s)
- Neveen Hassan Nashaat
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt; Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.
| | - Iman Elrouby
- Phoniatrics Department, Hearing and Speech Institute, Giza, Egypt
| | - Hala M Zeidan
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ayman Kilany
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ehab Ragaa Abdelraouf
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt; Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Adel F Hashish
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hebatallah Sherif Abdelhady
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Mohamed M ElKeblawy
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Mariam S Shadi
- Unit of Phoniatrics, Otorhinolaryngology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Filmer HL, Loughnan K, Seeto JX, Ballard T, Ehrhardt SE, Shaw TB, Wards Y, Rideaux R, Leow LA, Sewell DK, Dux PE. Individual Differences in Decision Strategy Relate to Neurochemical Excitability and Cortical Thickness. J Neurosci 2023; 43:7006-7015. [PMID: 37657932 PMCID: PMC10586534 DOI: 10.1523/jneurosci.1086-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The speed-accuracy trade-off (SAT), whereby faster decisions increase the likelihood of an error, reflects a cognitive strategy humans must engage in during the performance of almost all daily tasks. To date, computational modeling has implicated the latent decision variable of response caution (thresholds), the amount of evidence required for a decision to be made, in the SAT. Previous imaging has associated frontal regions, notably the left prefrontal cortex and the presupplementary motor area (pre-SMA), with the setting of such caution levels. In addition, causal brain stimulation studies, using transcranial direct current stimulation (tDCS), have indicated that while both of these regions are involved in the SAT, their role appears to be dissociable. tDCS efficacy to impact decision-making processes has previously been linked with neurochemical concentrations and cortical thickness of stimulated regions. However, to date, it is unknown whether these neurophysiological measures predict individual differences in the SAT, and brain stimulation effects on the SAT. Using ultra-high field (7T) imaging, here we report that instruction-based adjustments in caution are associated with both neurochemical excitability (the balance between GABA+ and glutamate) and cortical thickness across a range of frontal regions in both sexes. In addition, cortical thickness, but not neurochemical concentrations, was associated with the efficacy of left prefrontal and superior medial frontal cortex (SMFC) stimulation to modulate performance. Overall, our findings elucidate key neurophysiological predictors, frontal neural excitation, of individual differences in latent psychological processes and the efficacy of stimulation to modulate these.SIGNIFICANCE STATEMENT The speed-accuracy trade-off (SAT), faster decisions increase the likelihood of an error, reflects a cognitive strategy humans must engage in during most daily tasks. The SAT is often investigated by explicitly instructing participants to prioritize speed or accuracy when responding to stimuli. Using ultra-high field (7T) magnetic resonance imaging (MRI), we found that individual differences in the extent to which participants adjust their decision strategies with instruction related to neurochemical excitability (ratio of GABA+ to glutamate) and cortical thickness in the frontal cortex. Moreover, brain stimulation to the left prefrontal cortex and the superior medial frontal cortex (SMFC) modulated performance, with the efficacy specifically related to cortical thickness. This work sheds new light on the neurophysiological basis of decision strategies and brain stimulation.
Collapse
Affiliation(s)
- Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kathleen Loughnan
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jennifer X Seeto
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Timothy Ballard
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas B Shaw
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Reuben Rideaux
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Psychology, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David K Sewell
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
8
|
Willis HE, Ip IB, Watt A, Campbell J, Jbabdi S, Clarke WT, Cavanaugh MR, Huxlin KR, Watkins KE, Tamietto M, Bridge H. GABA and Glutamate in hMT+ Link to Individual Differences in Residual Visual Function After Occipital Stroke. Stroke 2023; 54:2286-2295. [PMID: 37477008 PMCID: PMC10453332 DOI: 10.1161/strokeaha.123.043269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Damage to the primary visual cortex following an occipital stroke causes loss of conscious vision in the contralateral hemifield. Yet, some patients retain the ability to detect moving visual stimuli within their blind field. The present study asked whether such individual differences in blind field perception following loss of primary visual cortex could be explained by the concentration of neurotransmitters γ-aminobutyric acid (GABA) and glutamate or activity of the visual motion processing, human middle temporal complex (hMT+). METHODS We used magnetic resonance imaging in 19 patients with chronic occipital stroke to measure the concentration of neurotransmitters GABA and glutamate (proton magnetic resonance spectroscopy) and functional activity in hMT+ (functional magnetic resonance imaging). We also tested each participant on a 2-interval forced choice detection task using high-contrast, moving Gabor patches. We then measured and assessed the strength of relationships between participants' residual vision in their blind field and in vivo neurotransmitter concentrations, as well as visually evoked functional magnetic resonance imaging activity in their hMT+. Levels of GABA and glutamate were also measured in a sensorimotor region, which served as a control. RESULTS Magnetic resonance spectroscopy-derived GABA and glutamate concentrations in hMT+ (but not sensorimotor cortex) strongly predicted blind-field visual detection abilities. Performance was inversely related to levels of both inhibitory and excitatory neurotransmitters in hMT+ but, surprisingly, did not correlate with visually evoked blood oxygenation level-dependent signal change in this motion-sensitive region. CONCLUSIONS Levels of GABA and glutamate in hMT+ appear to provide superior information about motion detection capabilities inside perimetrically defined blind fields compared to blood oxygenation level-dependent signal changes-in essence, serving as biomarkers for the quality of residual visual processing in the blind-field. Whether they also reflect a potential for successful rehabilitation of visual function remains to be determined.
Collapse
Affiliation(s)
- Hanna E. Willis
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - I. Betina Ip
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Archie Watt
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Jon Campbell
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Matthew R. Cavanaugh
- Flaum Eye Institute and Center for Visual Science, University of Rochester, NY (M.R.C., K.R.H.)
| | - Krystel R. Huxlin
- Flaum Eye Institute and Center for Visual Science, University of Rochester, NY (M.R.C., K.R.H.)
| | - Kate E. Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology (K.E.W.), University of Oxford, United Kingdom
| | - Marco Tamietto
- Department of Psychology, University of Torino, Italy (M.T.)
- Department of Medical and Clinical Psychology, and CoRPS—Center of Research on Psychology in Somatic Diseases—Tilburg University, the Netherlands (M.T.)
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| |
Collapse
|
9
|
Bramson B, Meijer S, van Nuland A, Toni I, Roelofs K. Anxious individuals shift emotion control from lateral frontal pole to dorsolateral prefrontal cortex. Nat Commun 2023; 14:4880. [PMID: 37573436 PMCID: PMC10423291 DOI: 10.1038/s41467-023-40666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Anxious individuals consistently fail in controlling emotional behavior, leading to excessive avoidance, a trait that prevents learning through exposure. Although the origin of this failure is unclear, one candidate system involves control of emotional actions, coordinated through lateral frontopolar cortex (FPl) via amygdala and sensorimotor connections. Using structural, functional, and neurochemical evidence, we show how FPl-based emotional action control fails in highly-anxious individuals. Their FPl is overexcitable, as indexed by GABA/glutamate ratio at rest, and receives stronger amygdalofugal projections than non-anxious male participants. Yet, high-anxious individuals fail to recruit FPl during emotional action control, relying instead on dorsolateral and medial prefrontal areas. This functional anatomical shift is proportional to FPl excitability and amygdalofugal projections strength. The findings characterize circuit-level vulnerabilities in anxious individuals, showing that even mild emotional challenges can saturate FPl neural range, leading to a neural bottleneck in the control of emotional action tendencies.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands.
- Behavioral Science Institute (BSI), Radboud University Nijmegen, 6525 HR, Nijmegen, The Netherlands.
| | - Sjoerd Meijer
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Annelies van Nuland
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
- Behavioral Science Institute (BSI), Radboud University Nijmegen, 6525 HR, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Pang EW, Hammill C, Taylor MJ, Near J, Schachar R, Crosbie J, Arnold PD, Anagnostou E, Lerch JP. Cerebellar gamma-aminobutyric acid: Investigation of group effects in neurodevelopmental disorders. Autism Res 2023; 16:535-542. [PMID: 36626308 DOI: 10.1002/aur.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
Neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) are thought to arise in part from the disruption in the excitatory/inhibitory balance of gamma-aminobutyric acid (GABA) and glutamate in the brain. Recent evidence has shown the involvement of the cerebellum in cognition and affect regulation, and cerebellar atypical function or damage is reported frequently in NDDs. Magnetic resonance spectroscopy studies have reported decreases in GABA in cortical brain areas in the NDDs, however, GABA levels in the cerebellum have not been examined. To determine possible group effects, we used a MEGA-PRESS acquisition to investigate GABA+ levels in a cerebellar voxel in 343 individuals (aged 2.5-22 years) with ASD, ADHD, OCD and controls. Using a mixed effects model, we found no significant differences between groups in GABA+ concentration. Our findings suggest that cerebellar GABA+ levels do not differentiate NDD groups.
Collapse
Affiliation(s)
- Elizabeth W Pang
- Division of Neurology/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Chris Hammill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Diagnostic Imaging/Neuroscience and Mental Health, Hospital for Sick Children, Toronto and Departments of Medical Imaging and Psychology, University of Toronto, Toronto, Canada
| | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Russell Schachar
- Department of Psychiatry/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jennifer Crosbie
- Department of Psychiatry/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| |
Collapse
|