1
|
Panassollo TRB, Lord S, Rashid U, Taylor D, Mawston G. The effect of chronotropic incompetence on physiologic responses during progressive exercise in people with Parkinson's disease. Eur J Appl Physiol 2024; 124:2799-2807. [PMID: 38683403 PMCID: PMC11365824 DOI: 10.1007/s00421-024-05492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Heart rate (HR) response is likely to vary in people with Parkinson's disease (PD), particularly for those with chronotropic incompetence (CI). This study explores the impact of CI on HR and metabolic responses during cardiopulmonary exercise test (CPET) in people with PD, and its implications for exercise intensity prescription. METHODS Twenty-eight participants with mild PD and seventeen healthy controls underwent CPET to identify the presence or absence of CI. HR and metabolic responses were measured at submaximal (first (VT1) and second (VT2) ventilatory thresholds), and at peak exercise. Main outcome measures were HR, oxygen consumption (VO2), and changes in HR responses (HR/WR slope) to an increase in exercise demand. RESULTS CI was present in 13 (46%) PD participants (PDCI), who during CPET, exhibited blunted HR responses compared to controls and PD non-CI beyond 60% of maximal workload (p ≤ 0.05). PDCI presented a significantly lower HR at VT2, and peak exercise compared to PD non-CI and controls (p ≤ 0.001). VO2 was significantly lower in PDCI than PD non-CI and controls at VT2 (p = 0.003 and p = 0.036, respectively) and at peak exercise (p = 0.001 and p = 0.023, respectively). CONCLUSION Although poorly understood, the presence of CI in PD and its effect on HR and metabolic responses during incremental exercise is significant and important to consider when programming aerobic exercises.
Collapse
Affiliation(s)
| | - Sue Lord
- School of Clinical Sciences, Auckland University of Technology, 90 Akoranga Drive, Northcote, 0627, Auckland, New Zealand
| | - Usman Rashid
- Centre for Chiropractic Research, New Zealand College of Chiropractic, 6 Harrison Road, Mount Wellington, 1060, Auckland, New Zealand
| | - Denise Taylor
- School of Clinical Sciences, Auckland University of Technology, 90 Akoranga Drive, Northcote, 0627, Auckland, New Zealand
| | - Grant Mawston
- School of Clinical Sciences, Auckland University of Technology, 90 Akoranga Drive, Northcote, 0627, Auckland, New Zealand
| |
Collapse
|
2
|
Chen M, He X, Fan Y, Xia L, Dong Z. Sofalcone attenuates neurodegeneration in MPTP-induced mouse model of Parkinson's disease by inhibiting oxidative stress and neuroinflammation. Mol Biol Rep 2024; 51:908. [PMID: 39141244 DOI: 10.1007/s11033-024-09852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by oxidative stress and neuroinflammation. Sofalcone (SFC), a chalcone derivative known for its antioxidative and anti-inflammatory properties, is widely used clinically as a gastric mucosa protective agent. However, its therapeutic potential in PD remains to be fully explored. In this study, we investigated the neuroprotective effects of SFC in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. METHODS AND RESULTS We found that SFC ameliorated MPTP-induced motor impairments in mice, as assessed by the rotarod and wire tests. Moreover, SFC administration prevented the loss of dopaminergic neurons and striatal degeneration induced by MPTP. Subsequent investigations revealed that SFC reversed MPTP-induced downregulation of NRF2, reduced elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased total antioxidant capacity (TAOC). Furthermore, SFC suppressed MPTP-induced activation of microglia and astrocytes, downregulated the pro-inflammatory cytokine TNF-α, and upregulated the anti-inflammatory cytokine IL-4. Additionally, SFC ameliorated the MPTP-induced downregulation of phosphorylation of Akt at Ser473. CONCLUSIONS This study provides evidence for the neuroprotective effects of SFC, highlighting its antioxidative and anti-inflammatory properties and its role in Akt activation in the PD model. These findings underscore SFC's potential as a promising therapeutic candidate for PD, warranting further clinical investigation.
Collapse
Affiliation(s)
- Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin He
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yepeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lei Xia
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
3
|
Lv Y, Fan M, He J, Song X, Guo J, Gao B, Zhang J, Zhang C, Xie Y. Discovery of novel benzimidazole derivatives as selective and reversible monoamine oxidase B inhibitors for Parkinson's disease treatment. Eur J Med Chem 2024; 274:116566. [PMID: 38838545 DOI: 10.1016/j.ejmech.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - YuanYuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
4
|
Piña Méndez Á, Taitz A, Palacios Rodríguez O, Rodríguez Leyva I, Assaneo MF. Speech's syllabic rhythm and articulatory features produced under different auditory feedback conditions identify Parkinsonism. Sci Rep 2024; 14:15787. [PMID: 38982177 PMCID: PMC11233651 DOI: 10.1038/s41598-024-65974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Diagnostic tests for Parkinsonism based on speech samples have shown promising results. Although abnormal auditory feedback integration during speech production and impaired rhythmic organization of speech are known in Parkinsonism, these aspects have not been incorporated into diagnostic tests. This study aimed to identify Parkinsonism using a novel speech behavioral test that involved rhythmically repeating syllables under different auditory feedback conditions. The study included 30 individuals with Parkinson's disease (PD) and 30 healthy subjects. Participants were asked to rhythmically repeat the PA-TA-KA syllable sequence, both whispering and speaking aloud under various listening conditions. The results showed that individuals with PD had difficulties in whispering and articulating under altered auditory feedback conditions, exhibited delayed speech onset, and demonstrated inconsistent rhythmic structure across trials compared to controls. These parameters were then fed into a supervised machine-learning algorithm to differentiate between the two groups. The algorithm achieved an accuracy of 85.4%, a sensitivity of 86.5%, and a specificity of 84.3%. This pilot study highlights the potential of the proposed behavioral paradigm as an objective and accessible (both in cost and time) test for identifying individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Ángeles Piña Méndez
- Faculty of Psychology, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | | - M Florencia Assaneo
- Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico.
| |
Collapse
|
5
|
Oliveira LM, Severs L, Moreira TS, Ramirez JM, Takakura AC. Ampakine CX614 increases respiratory rate in a mouse model of Parkinson's disease. Brain Res 2023; 1815:148448. [PMID: 37301422 DOI: 10.1016/j.brainres.2023.148448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). In a mouse model of PD induced by the injection of 6-hydroxydopamine (6-OHDA) into the caudate putamen (CPu) dyspnea events are very common. Neuroanatomical and functional studies show that the number of glutamatergic neurons in the pre-Bötzinger Complex (preBötC) are reduced. We hypothesize that the neuronal loss, and consequently loss of glutamatergic connections in the respiratory network previously investigated, are responsible for the breathing impairment in PD. Here, we tested whether ampakines (CX614), a subgroup of AMPA receptor positive allosteric modulators, could stimulate the respiratory activity in PD-induced animals. CX614 (50 µM) injected intraperitoneally or directly into the preBötC region reduced the irregularity pattern and increased the respiratory rate by 37% or 82%, respectively, in PD-induced animals. CX614 also increased the respiratory frequency in healthy animals. These data suggest that ampakine CX614 could become a tool to restore breathing in PD.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Liza Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
6
|
Daghi M, Lakhdar A, Otmani HE. Parkinson's disease research in Morocco: a review. Neurodegener Dis Manag 2023; 13:129-139. [PMID: 36803100 DOI: 10.2217/nmt-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Aim: To quantify and provide an overview on the scientific productivity made by Moroccan academics in the research on Parkinson's disease (PD) and parkinsonism. Materials & methods: Scientific articles, in either English or French, were gathered from published literature in three recognized databases: PubMed, ScienceDirect and Scopus. Results: We identified 95 published papers from which 39 articles have been extracted after removing inadequate publications and duplications between databases. All articles were published between 2006 and 2021. The selected articles were subdivided into five categories. Conclusion: The Moroccan academia is presently facing a low productivity issues and a lack of research laboratories focusing on PD research. We anticipate that providing more budgetary funds will significantly improve the productivity of PD research.
Collapse
Affiliation(s)
- Mohamed Daghi
- Research Laboratory of Nervous System Diseases, Neurosensory Disorders & Disability, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Abdelhakim Lakhdar
- Research Laboratory of Nervous System Diseases, Neurosensory Disorders & Disability, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco.,Department of Neurosurgery, Ibn Rochd University Hospital, Casablanca, 20360, Morocco
| | - Hicham El Otmani
- Laboratory of Medical Genetics & Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco.,Department of Neurology, Ibn Rochd University Hospital, Casablanca, 20360, Morocco
| |
Collapse
|
7
|
Ausderau KK, Colman RJ, Kabakov S, Schultz-Darken N, Emborg ME. Evaluating depression- and anxiety-like behaviors in non-human primates. Front Behav Neurosci 2023; 16:1006065. [PMID: 36744101 PMCID: PMC9892652 DOI: 10.3389/fnbeh.2022.1006065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Depression and anxiety are some of the most prevalent and debilitating mental health conditions in humans. They can present on their own or as co-morbidities with other disorders. Like humans, non-human primates (NHPs) can develop depression- and anxiety-like signs. Here, we first define human depression and anxiety, examine equivalent species-specific behaviors in NHPs, and consider models and current methods to identify and evaluate these behaviors. We also discuss knowledge gaps, as well as the importance of evaluating the co-occurrence of depression- and anxiety-like behaviors in animal models of human disease. Lastly, we consider ethical challenges in depression and anxiety research on NHPs in order to ultimately advance the understanding and the personalized treatment of these disorders.
Collapse
Affiliation(s)
- Karla K. Ausderau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sabrina Kabakov
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
8
|
Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022; 15:pharmaceutics15010013. [PMID: 36678642 PMCID: PMC9866990 DOI: 10.3390/pharmaceutics15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.
Collapse
Affiliation(s)
- Nicola Paccione
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
9
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Terriza M, Navarro J, Retuerta I, Alfageme N, San-Segundo R, Kontaxakis G, Garcia-Martin E, Marijuan PC, Panetsos F. Use of Laughter for the Detection of Parkinson's Disease: Feasibility Study for Clinical Decision Support Systems, Based on Speech Recognition and Automatic Classification Techniques. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10884. [PMID: 36078600 PMCID: PMC9518165 DOI: 10.3390/ijerph191710884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder which affects over 10 million people worldwide. Early detection and correct evaluation of the disease is critical for appropriate medication and to slow the advance of the symptoms. In this scenario, it is critical to develop clinical decision support systems contributing to an early, efficient, and reliable diagnosis of this illness. In this paper we present a feasibility study for a clinical decision support system for the diagnosis of PD based on the acoustic characteristics of laughter. Our decision support system is based on laugh analysis with speech recognition methods and automatic classification techniques. We evaluated different cepstral coefficients to identify laugh characteristics of healthy and ill subjects combined with machine learning classification models. The decision support system reached 83% accuracy rate with an AUC value of 0.86 for PD-healthy laughs classification in a database of 20,000 samples randomly generated from a pool of 120 laughs from healthy and PD subjects. Laughter could be employed for the efficient and reliable detection of PD; such a detection system can be achieved using speech recognition and automatic classification techniques; a clinical decision support system can be built using the above techniques. Significance: PD clinical decision support systems for the early detection of the disease will help to improve the efficiency of available and upcoming therapeutic treatments which, in turn, would improve life conditions of the affected people and would decrease costs and efforts in public and private healthcare systems.
Collapse
Affiliation(s)
- Miguel Terriza
- Neuro-Computing & Neuro-Robotics Research Group, Complutense University of Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Jorge Navarro
- Department of Economic Structure, CASETEM Research Group, Faculty of Economy, University of Zaragoza, 50009 Zaragoza, Spain
| | - Irene Retuerta
- Independent Researchers, Affiliated to Bioinformation and Systems Biology Group, Aragon Health Sciences Institute (IACS-IIS Aragon), 50009 Zaragoza, Spain
| | - Nuria Alfageme
- Neuro-Computing & Neuro-Robotics Research Group, Complutense University of Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Ruben San-Segundo
- Speech Technology Group, Information Processing and Telecommunications Center, 28040 Madrid, Spain
| | - George Kontaxakis
- Biomedical Image Technologies Group, Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, 50009 Zaragoza, Spain
| | - Pedro C. Marijuan
- Independent Researchers, Affiliated to Bioinformation and Systems Biology Group, Aragon Health Sciences Institute (IACS-IIS Aragon), 50009 Zaragoza, Spain
| | - Fivos Panetsos
- Neuro-Computing & Neuro-Robotics Research Group, Complutense University of Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
11
|
Brak IV, Filimonova E, Zakhariya O, Khasanov R, Stepanyan I. Transcranial Current Stimulation as a Tool of Neuromodulation of Cognitive Functions in Parkinson’s Disease. Front Neurosci 2022; 16:781488. [PMID: 35903808 PMCID: PMC9314857 DOI: 10.3389/fnins.2022.781488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Decrease in cognitive function is one of the most common causes of poor life quality and early disability in patients with Parkinson’s disease (PD). Existing methods of treatment are aimed at both correction of motor and non-motor symptoms. Methods of adjuvant therapy (or complementary therapy) for maintaining cognitive functions in patients with PD are of interest. A promising subject of research in this regard is the method of transcranial electric current stimulation (tES). Here we reviewed the current understanding of the pathogenesis of cognitive impairment in PD and of the effects of transcranial direct current stimulation and transcranial alternating current stimulation on the cognitive function of patients with PD-MCI (Parkinson’s Disease–Mild Cognitive Impairment).
Collapse
Affiliation(s)
- Ivan V. Brak
- Laboratory of Comprehensive Problems of Risk Assessment to Population and Workers’ Health, Federal State Budgetary Scientific Institution “Izmerov Research Institute of Occupational Health”, Moscow, Russia
- “Engiwiki” Scientific and Engineering Projects Laboratory, Department of Information Technologies, Novosibirsk State University, Novosibirsk, Russia
- *Correspondence: Ivan V. Brak,
| | | | - Oleg Zakhariya
- Faculty of Philosophy, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam Khasanov
- Faculty of Philosophy, Lomonosov Moscow State University, Moscow, Russia
- Independent Researcher, Novosibirsk, Russia
| | - Ivan Stepanyan
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Yu Z, Qin G, Ge Z, Li W. Beneficial effect of transient desflurane inhalation on relieving inflammation and reducing signaling induced by MPTP in mice. J Int Med Res 2022; 50:3000605221115388. [PMID: 35915871 PMCID: PMC9350528 DOI: 10.1177/03000605221115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective To determine if the beneficial effects of transient desflurane application
mitigates inflammation and decrease associated signaling induced by
1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in mice. Methods Mice were induced to develop Parkinson’s disease (PD) by intraperitoneal
injection with MPTP for 20 consecutive days, and validated mice were
randomly allocated to four groups. Collected samples from euthanized mice
were designated for the following analyses: 1) immunohistochemical staining
for positive dopaminergic neurons in the substantia nigra and striatum, 2)
immunofluorescence staining for ionized calcium binding adaptor molecule-1
(Iba1) and glial fibrillary acid protein (GFAP), and 3) western blotting for
p38, p-p38, toll-like receptor 4, and tumor necrosis factor (TNF)-α. Results The inhalation of desflurane for 1 hour ameliorated locomotory dysfunctions
of PD mice by recovering the loss of Iba1- and GFAP-positive dopaminergic
neurons, deactivating microglial cells and astrocytes, and decreasing the
amounts of inflammatory cytokines (TNF-α). Conclusions These findings suggest that transient desflurane inhalation may provide some
benefits for PD through ameliorating inflammation and enhancing locomotor
activity.
Collapse
Affiliation(s)
- Zhiyang Yu
- Department of Anesthesiology, Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Guowei Qin
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P.R. China
| | - Zhenzhong Ge
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P.R. China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
13
|
Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys. Cells 2022; 11:cells11040691. [PMID: 35203338 PMCID: PMC8870609 DOI: 10.3390/cells11040691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Proinflammatory markers were found in brains of Parkinson’s disease (PD) patients. After years of L-Dopa symptomatic treatment, most PD patients develop dyskinesias. The relationship between inflammation and L-Dopa-induced dyskinesias (LID) is still unclear. We previously reported that MPEP (a metabotropic glutamate receptor 5 antagonist) reduced the development of LID in de novo MPTP-lesioned monkeys. We thus investigated if MPEP reduced the brain inflammatory response in these MPTP-lesioned monkeys and the relationship to LID. The panmacrophage/microglia marker Iba1, the phagocytosis-related receptor CD68, and the astroglial protein GFAP were measured by Western blots. The L-Dopa-treated dyskinetic MPTP monkeys had increased Iba1 content in the putamen, substantia nigra, and globus pallidus, which was prevented by MPEP cotreatment; similar findings were observed for CD68 contents in the putamen and globus pallidus. There was a strong positive correlation between dyskinesia scores and microglial markers in these regions. GFAP contents were elevated in MPTP + L-Dopa-treated monkeys among these brain regions and prevented by MPEP in the putamen and subthalamic nucleus. In conclusion, these results showed increased inflammatory markers in the basal ganglia associated with LID and revealed that MPEP inhibition of glutamate activity reduced LID and levels of inflammatory markers.
Collapse
|
14
|
Rudroff T, Fietsam AC, Deters JR, Workman CD, Boles Ponto LL. On the Effects of Transcranial Direct Current Stimulation on Cerebral Glucose Uptake During Walking: A Report of Three Patients With Multiple Sclerosis. Front Hum Neurosci 2022; 16:833619. [PMID: 35145388 PMCID: PMC8824586 DOI: 10.3389/fnhum.2022.833619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Common symptoms of multiple sclerosis (MS) include motor impairments of the lower extremities, particularly gait disturbances. Loss of balance and muscle weakness, representing some peripheral effects, have been shown to influence these symptoms, however, the individual role of cortical and subcortical structures in the central nervous system is still to be understood. Assessing [18F]fluorodeoxyglucose (FDG) uptake in the CNS can assess brain activity and is directly associated with regional neuronal activity. One potential modality to increase cortical excitability and improve motor function in patients with MS (PwMS) is transcranial direct current stimulation (tDCS). However, tDCS group outcomes may not mirror individual subject responses, which impedes our knowledge of the pathophysiology and management of diseases like MS. Three PwMS randomly received both 3 mA tDCS and SHAM targeting the motor cortex (M1) that controls the more-affected leg for 20 min on separate days before walking on a treadmill. The radiotracer, FDG, was injected at minute two of the 20 min walk and the subjects underwent a Positron emission tomography (PET) scan immediately after the task. Differences in relative regional metabolism of areas under the tDCS anode and the basal ganglia were calculated and investigated. The results indicated diverse and individualized responses in regions under the anode and consistent increases in some basal ganglia areas (e.g., caudate nucleus). Thus, anodal tDCS targeting the M1 that controls the more-affected leg of PwMS might be capable of affecting remote subcortical regions and modulating the activity (motor, cognitive, and behavioral functions) of the circuitry connected to these regions.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa Health Clinics, Iowa City, IA, United States
- *Correspondence: Thorsten Rudroff,
| | - Alexandra C. Fietsam
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| | - Justin R. Deters
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| | - Laura L. Boles Ponto
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
15
|
Naha A, Banerjee S, Debroy R, Basu S, Ashok G, Priyamvada P, Kumar H, Preethi A, Singh H, Anbarasu A, Ramaiah S. Network metrics, structural dynamics and density functional theory calculations identified a novel Ursodeoxycholic Acid derivative against therapeutic target Parkin for Parkinson's disease. Comput Struct Biotechnol J 2022; 20:4271-4287. [PMID: 36051887 PMCID: PMC9399899 DOI: 10.1016/j.csbj.2022.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
GIN analysis revealed PARK2, LRRK2, PARK7, PINK1 and SNCA as hub-genes. Topologically favoured Parkin was considered as a therapeutic target. ADMET screening identified a novel UDCA derivative as potential lead candidate. Chemical reactivity and ligand stability were analysed through DFT simulation. Docking and MDS established novel lead as potential Parkin inhibitor.
Parkinson's disease (PD) has been designated as one of the priority neurodegenerative disorders worldwide. Although diagnostic biomarkers have been identified, early onset detection and targeted therapy are still limited. An integrated systems and structural biology approach were adopted to identify therapeutic targets for PD. From a set of 49 PD associated genes, a densely connected interactome was constructed. Based on centrality indices, degree of interaction and functional enrichments, LRRK2, PARK2, PARK7, PINK1 and SNCA were identified as the hub-genes. PARK2 (Parkin) was finalized as a potent theranostic candidate marker due to its strong association (score > 0.99) with α-synuclein (SNCA), which directly regulates PD progression. Besides, modeling and validation of Parkin structure, an extensive virtual-screening revealed small (commercially available) inhibitors against Parkin. Molecule-258 (ZINC5022267) was selected as a potent candidate based on pharmacokinetic profiles, Density Functional Theory (DFT) energy calculations (ΔE = 6.93 eV) and high binding affinity (Binding energy = -6.57 ± 0.1 kcal/mol; Inhibition constant = 15.35 µM) against Parkin. Molecular dynamics simulation of protein-inhibitor complexes further strengthened the therapeutic propositions with stable trajectories (low structural fluctuations), hydrogen bonding patterns and interactive energies (>0kJ/mol). Our study encourages experimental validations of the novel drug candidate to prevent the auto-inhibition of Parkin mediated ubiquitination in PD.
Collapse
|
16
|
Isenbrandt A, Morissette M, Bourque M, Lamontagne-Proulx J, Coulombe K, Soulet D, Di Paolo T. Effect of sex and gonadectomy on brain MPTP toxicity and response to dutasteride treatment in mice. Neuropharmacology 2021; 201:108784. [PMID: 34555366 DOI: 10.1016/j.neuropharm.2021.108784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023]
Abstract
The main neuropathological feature of Parkinson's disease (PD) is degeneration of dopamine (DA) neurons in the substantia nigra (SN); PD prevalence is higher in men, suggesting a role of sex hormones in neuroprotection. This study sought the effects of sex hormones in the brain in a mouse model of PD and modulation of steroid metabolism/synthesis with the 5α-reductase inhibitor dutasteride shown to protect 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) male mice. Male and female mice were gonadectomized (GDX) or SHAM operated. They were treated with vehicle or dutasteride (5 mg/kg) for 10 days and administered a low dose of MPTP (5.5 mg/kg) or saline on the 5th day to model early PD; brains were collected thereafter. Striatal measures of the active metabolite 1-methyl-4-phenylpyridinium (MPP+) contents showed no difference supporting an effect of the experimental conditions investigated. In SHAM MPTP male mice loss of striatal DA and metabolites, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding in the striatum and SN was prevented by dutasteride treatment; these changes were inversely correlated with glial fibrillary acidic protein (GFAP, an astrogliosis marker) levels. In SHAM female mice MPTP treatment had little or no effect on striatal and SN DA markers and GFAP levels whereas GDX male and female mice showed a similar loss of striatal DA markers and increase of GFAP. No effect of dutasteride treatment was observed in GDX male and female mice. In conclusion, sex differences in mice MPTP toxicity and response to dutasteride were observed that were lost upon gonadectomy implicating neuroinflammation.
Collapse
Affiliation(s)
- Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Jérôme Lamontagne-Proulx
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada.
| |
Collapse
|
17
|
Pinho TS, Cunha CB, Lanceros-Méndez S, Salgado AJ. Electroactive Smart Materials for Neural Tissue Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:6604-6618. [PMID: 35006964 DOI: 10.1021/acsabm.1c00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Repair in the human nervous system is a complex and intertwined process that offers significant challenges to its study and comprehension. Taking advantage of the progress in fields such as tissue engineering and regenerative medicine, the scientific community has witnessed a strong increase of biomaterial-based approaches for neural tissue regenerative therapies. Electroactive materials, increasingly being used as sensors and actuators, also find application in neurosciences due to their ability to deliver electrical signals to the cells and tissues. The use of electrical signals for repairing impaired neural tissue therefore presents an interesting and innovative approach to bridge the gap between fundamental research and clinical applications in the next few years. In this review, first a general overview of electroactive materials, their historical origin, and characteristics are presented. Then a comprehensive view of the applications of electroactive smart materials for neural tissue regeneration is presented, with particular focus on the context of spinal cord injury and brain repair. Finally, the major challenges of the field are discussed and the main challenges for the near future presented. Overall, it is concluded that electroactive smart materials play an ever-increasing role in neural tissue regeneration, appearing as potentially valuable biomaterials for regenerative purposes.
Collapse
Affiliation(s)
- Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal.,Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Cristiana B Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Senentxu Lanceros-Méndez
- Center of Physics, University of Minho, 4710-058 Braga, Portugal.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
19
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
20
|
Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson's disease. Neural Regen Res 2021; 16:1383-1391. [PMID: 33318422 PMCID: PMC8284265 DOI: 10.4103/1673-5374.300980] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is the second most common cause of neurodegeneration. Over the last two decades, various hypotheses have been proposed to explain the etiology of PD. Among these is the oxidant-antioxidant theory, which asserts that local and systemic oxidative damage triggered by reactive oxygen species and other free radicals may promote dopaminergic neuron degeneration. Excessive reactive oxygen species formation, one of the underlying causes of pathology in the course of PD has been evidenced by various studies showing that oxidized macromolecules including lipids, proteins, and nucleic acids accumulate in brain tissues of PD patients. DNA oxidation may produce various lesions in the course of PD. Mutations incurred as a result of DNA oxidation may further enhance reactive oxygen species production in the brains of PD patients, exacerbating neuronal loss due to defects in the mitochondrial electron transport chain, antioxidant depletion, and exposure to toxic oxidized dopamine. The protein products of SNCA, PRKN, PINK1, DJ1, and LRRK2 genes are associated with disrupted oxidoreductive homeostasis in PD. SNCA is the first gene linked with familial PD and is currently known to be affected by six mutations correlated with the disorder: A53T, A30P, E46K, G51D, H50Q and A53E. PRKN encodes Parkin, an E3 ubiquitin ligase which mediates the proteasome degradation of redundant and disordered proteins such as glycosylated α-synuclein. Over 100 mutations have been found among the 12 exons of PRKN. PINK1, a mitochondrial kinase highly expressed in the brain, may undergo loss of function mutations which constitute approximately 1-8% of early onset PD cases. More than 50 PD-promoting mutations have been found in PINK1. Mutations in DJ-1, a neuroprotective protein, are a rare cause of early onset PD and constitute only 1% of cases. Around 20 mutations have been found in DJ1 among PD patients thus far. Mutations in the LRRK2 gene are the most common known cause of familial autosomal dominant PD and sporadic PD. Treatment of PD patients, especially in the advanced stages of the disease, is very difficult. The first step in managing progressive PD is to optimize dopaminergic therapy by increasing the doses of dopamine agonists and L-dopa. The next step is the introduction of advanced therapies, such as deep brain stimulation. Genetic factors may influence the response to L-dopa and deep brain stimulation therapy and the regulation of oxidative stress. Consequently, research into minimally invasive surgical interventions, as well as therapies that target the underlying etiology of PD is warranted.
Collapse
Affiliation(s)
- Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Kozłowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2021; 11:767. [PMID: 34065606 PMCID: PMC8160836 DOI: 10.3390/biom11050767] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aβ), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; (P.B.G.); (A.C.R.S.)
| |
Collapse
|
22
|
Li KP, Zhou ZL, Zhou RZ, Zhu Y, Zhang ZQ. Improvement of freezing of gait in patients with Parkinson's disease by music exercise therapy: a study protocol for a randomized controlled trial. Trials 2021; 22:335. [PMID: 33971928 PMCID: PMC8112051 DOI: 10.1186/s13063-021-05258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Progression of freezing of gait, a common pathological gait in Parkinson’s disease, is an important risk factor for diagnosing the disease and has been shown to predispose patients to easy falls, loss of independent living ability, and reduced quality of life. Treating Parkinson’s disease with freezing of gait is very difficult, while the use of medicine and operation has been ineffective. Music exercise therapy, which entails listening to music as you exercise, has been proposed as a treatment technology that can change patients’ behavior, emotions, and physiological activity. In recent years, music exercise therapy has been widely used in treatment of motor disorders and neurological diseases and achieved remarkable results. Results from our earlier pilot study revealed that music exercise therapy can improve the freezing of gait of Parkinson’s patients and improve their quality of life. Therefore, we aim to validate clinical efficacy of this therapy on freezing of gait of Parkinson’s patients using a larger sample size. Methods/design This three-arm randomized controlled trial will evaluate clinical efficacy of music exercise therapy in improving the freezing of gait in Parkinson’s patients. We will recruit a total of 81 inpatients with Parkinson’s disease, who meet the trial criteria. The patients will randomly receive music exercise with and without music as well as routine rehabilitation therapies, followed by analysis of changes in their gait and limb motor function after 4 weeks of intervention. We will first use a three-dimensional gait analysis system to evaluate changes in patients’ gait, followed by assessment of their limb function, activity of daily living and fall risk. Discussion The findings of this trial are expected to affirm the clinical application of this therapy for future management of the disease. Trial registration Chinese Clinical Trial Registry ChiCTR1900026063. Registered on September 20, 2019
Collapse
Affiliation(s)
- Kun-Peng Li
- Department of Neurological Rehabilitation, Shanghai Second Rehabilitation Hospital, No. 25, Lane 860, Changjiang Road, Baoshan District, Shanghai, 200441, China
| | - Zong-Lei Zhou
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Ru-Zhen Zhou
- Department of Neurological Rehabilitation, Shanghai Second Rehabilitation Hospital, No. 25, Lane 860, Changjiang Road, Baoshan District, Shanghai, 200441, China
| | - Yan Zhu
- Department of Neurological Rehabilitation, Shanghai Second Rehabilitation Hospital, No. 25, Lane 860, Changjiang Road, Baoshan District, Shanghai, 200441, China.
| | - Zeng-Qiao Zhang
- Department of Neurological Rehabilitation, Shanghai Second Rehabilitation Hospital, No. 25, Lane 860, Changjiang Road, Baoshan District, Shanghai, 200441, China. .,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, China.
| |
Collapse
|
23
|
Arruri VK, Gundu C, Khan I, Khatri DK, Singh SB. PARP overactivation in neurological disorders. Mol Biol Rep 2021; 48:2833-2841. [PMID: 33768369 DOI: 10.1007/s11033-021-06285-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute a family of enzymes associated with divergent cellular processes that are not limited to DNA repair, chromatin organization, genome integrity, and apoptosis but also found to play a crucial role in inflammation. PARPs mediate poly (ADP-ribosylation) of DNA binding proteins that is often responsible for chromatin remodeling thereby ensure effective repairing of DNA stand breaks although during the conditions of severe genotoxic stress PARPs direct the cell fate towards apoptotic events. Recent discoveries have pushed PARPs into the spotlight as targets for treating cancer, metabolic, inflammatory and neurological disorders. Of note, PARP-1 is the most abundant isoform of PARPs (18 member super family) which executes more than 90% of PARPs functions. Since oxidative/nitrosative stress actuated PARP-1 is linked to vigorous DNA damage and wide spread provocative inflammatory response that underlie the aetiopathogenesis of different neurological disorders, possibility of developing PARP-1 inhibitors as plausible neurotherapeutic agents attracts considerable research interest. This review outlines the recent advances in PARP-1 biology and examines the capability of PARP-1 inhibitors as treatment modalities in intense and interminable diseases of neuronal origin.
Collapse
Affiliation(s)
- Vijay Kumar Arruri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chayanika Gundu
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
24
|
Augustine A, Winstanley CA, Krishnan V. Impulse Control Disorders in Parkinson's Disease: From Bench to Bedside. Front Neurosci 2021; 15:654238. [PMID: 33790738 PMCID: PMC8006437 DOI: 10.3389/fnins.2021.654238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by symptoms that impact both motor and non-motor domains. Outside of motor impairments, PD patients are at risk for impulse control disorders (ICDs), which include excessively disabling impulsive and compulsive behaviors. ICD symptoms in PD (PD + ICD) can be broadly conceptualized as a synergistic interaction between dopamine agonist therapy and the many molecular and circuit-level changes intrinsic to PD. Aside from discontinuing dopamine agonist treatment, there remains a lack of consensus on how to best address ICD symptoms in PD. In this review, we explore recent advances in the molecular and neuroanatomical mechanisms underlying ICD symptoms in PD by summarizing a rapidly accumulating body of clinical and preclinical studies, with a special focus on the utility of rodent models in gaining new insights into the neurochemical basis of PD + ICD. We also discuss the relevance of these findings to the broader problem of impulsive and compulsive behaviors that impact a range of neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Andrea Augustine
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Vaishnav Krishnan
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
25
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|
26
|
Laíns I, Wang JC, Cui Y, Katz R, Vingopoulos F, Staurenghi G, Vavvas DG, Miller JW, Miller JB. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog Retin Eye Res 2021; 84:100951. [PMID: 33516833 DOI: 10.1016/j.preteyeres.2021.100951] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
The advent of optical coherence tomography (OCT) revolutionized both clinical assessment and research of vitreoretinal conditions. Since then, extraordinary advances have been made in this imaging technology, including the relatively recent development of swept-source OCT (SS-OCT). SS-OCT enables a fast scan rate and utilizes a tunable swept laser, thus enabling the incorporation of longer wavelengths than conventional spectral-domain devices. These features enable imaging of larger areas with reduced motion artifact, and a better visualization of the choroidal vasculature, respectively. Building on the principles of OCT, swept-source OCT has also been applied to OCT angiography (SS-OCTA), thus enabling a non-invasive in depth-resolved imaging of the retinal and choroidal microvasculature. Despite their advantages, the widespread use of SS-OCT and SS-OCTA remains relatively limited. In this review, we summarize the technical details, advantages and limitations of SS-OCT and SS-OCTA, with a particular emphasis on their relevance for the study of retinal conditions. Additionally, we comprehensively review relevant studies performed to date to the study of retinal health and disease, and highlight current gaps in knowledge and opportunities to take advantage of swept source technology to improve our current understanding of many medical and surgical chorioretinal conditions. We anticipate that SS-OCT and SS-OCTA will continue to evolve rapidly, contributing to a paradigm shift to more widespread adoption of new imaging technology to clinical practice.
Collapse
Affiliation(s)
- Inês Laíns
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Retinal Imaging Lab, Boston, MA, USA
| | - Jay C Wang
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Retinal Imaging Lab, Boston, MA, USA
| | - Ying Cui
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Retinal Imaging Lab, Boston, MA, USA; Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Raviv Katz
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Retinal Imaging Lab, Boston, MA, USA
| | - Filippos Vingopoulos
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Retinal Imaging Lab, Boston, MA, USA
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science "Luigi Sacco", University of Milan, Italy
| | - Demetrios G Vavvas
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - John B Miller
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Retinal Imaging Lab, Boston, MA, USA.
| |
Collapse
|
27
|
Yang C, Kang F, Meng W, Dong M, Huang X, Wang S, Zuo Z, Li J. Minimum Alveolar Concentration-Awake of Sevoflurane is Decreased in Patients with Parkinson's Disease: An Up-and-Down Sequential Allocation Trial. Clin Interv Aging 2021; 16:129-137. [PMID: 33488069 PMCID: PMC7815075 DOI: 10.2147/cia.s291656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Background An increasing number of patients with Parkinson’s disease (PD) will have surgery under general anesthesia. A previous study demonstrated that propofol requirement for inducing unconsciousness in PD patients was lower than that in non-PD (NPD) patients. However, the requirement of inhaled anesthetics in PD patients has not been clarified. The aim of this study was to investigate the minimum alveolar concentration-awake (MACawake) of sevoflurane in patients with PD compared to NPD patients. Patients and Methods The current study is an up-and-down sequential allocation trial. The initial end-tidal concentration of sevoflurane (CETsevo) was estimated by the response of the previous patient to verbal command using the Dixon’s up-and-down method. The first patient in each group received CETsevo at 1%, and the step size between patients was 0.2%. Results Forty-one patients including 20 PD patients and 21 NPD patients were enrolled. Patients’ characteristics and arterial blood gas parameters (except blood sodium) were comparable between two groups. The MACawake of sevoflurane estimated by the Dixon’s up-and-down method in PD patients (0.47% ± 0.08% [Mean ± S.D.]) was significantly lower than that in NDP patients (0.64% ± 0.10%) (P=0.003). The estimated difference in means was 0.17% (95% CI, 0.10–0.24%). Probit analysis showed that the MACawake of sevoflurane in PD and NPD patients was 0.49% (95% CI, 0.42–0.57%) and 0.67% (95% CI, 0.59–0.76%), respectively. The relative median potency was 0.73 (95% CI, 0.38–0.94). Conclusion Patients with PD exhibit a significantly lower MACawake of sevoflurane compared with NPD patients. Clinicians should avoid an overdose of sevoflurane in patients with PD. Trial Registration Registered at ChiCTR1900026956.
Collapse
Affiliation(s)
- Chengwei Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Wenjun Meng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Meirong Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiang Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Juan Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
28
|
Currim F, Singh J, Shinde A, Gohel D, Roy M, Singh K, Shukla S, Mane M, Vasiyani H, Singh R. Exosome Release Is Modulated by the Mitochondrial-Lysosomal Crosstalk in Parkinson's Disease Stress Conditions. Mol Neurobiol 2021; 58:1819-1833. [PMID: 33404982 DOI: 10.1007/s12035-020-02243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta region of the brain. The main pathological hallmark involves cytoplasmic inclusions of α-synuclein and mitochondrial dysfunction, which is observed in other part of the central nervous system other than SN suggesting the spread of pathogenesis to bystander neurons. The inter-neuronal communication through exosomes may play an important role in the spread of the disease; however, the mechanisms are not well elucidated. Mitochondria and its role in inter-organellar crosstalk with multivesicular body (MVB) and lysosome and its role in modulation of exosome release in PD is not well understood. In the current study, we investigated the mitochondria-lysosome crosstalk modulating the exosome release in neuronal and glial cells. We observed that PD stress showed enhanced release of exosomes in dopaminergic neurons and glial cells. The PD stress condition in these cells showed fragmented network and mitochondrial dysfunction which further leads to functional deficit of lysosomes and hence inhibition of autophagy flux. Neuronal and glial cells treated with rapamycin showed enhanced autophagy and inhibited the exosomal release. The results here suggest that maintenance of mitochondrial function is important for the lysosomal function and hence exosomal release which is important for the pathogenesis of PD.
Collapse
Affiliation(s)
- Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
29
|
Jian C, Yan J, Zhang H, Zhu J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo. Mol Cell Probes 2020; 55:101686. [PMID: 33279529 DOI: 10.1016/j.mcp.2020.101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are the two flavin adenine dinucleotide (FAD) enzymes that play an important role in neurotransmitter homeostasis and in protection against biogenic amines. The two MAO enzymes are related to various diseases such as neurological disorders, cancer or other systemic diseases. It is crucial to distinguish these two subtypes in order to explore the pathogenesis and pathophysiology of different diseases. In this review, the relationship between MAOs and related diseases is briefly introduced. Additionally, we summarize the recent advances in small molecule fluorescent probes for specific detection of MAO-A and MAO-B.
Collapse
Affiliation(s)
- Chang'e Jian
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Jiaxu Yan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
| | - Jianwei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China; College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
30
|
Louvois M, Ferrero S, Barnetche T, Roux CH, Breuil V. High risk of osteoporotic fracture in Parkinson's disease: Meta-analysis, pathophysiology and management. Rev Neurol (Paris) 2020; 177:660-669. [PMID: 33019997 DOI: 10.1016/j.neurol.2020.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/19/2022]
Affiliation(s)
- M Louvois
- Université Côte d'Azur (UCA), Service de Rhumatologie, CHU de Nice, hôpital pasteur 2, 30, voie Romaine, CS 51069, 06001 Nice Cedex 1, France
| | - S Ferrero
- Université Côte d'Azur (UCA), Service de Rhumatologie, CHU de Nice, hôpital pasteur 2, 30, voie Romaine, CS 51069, 06001 Nice Cedex 1, France
| | - T Barnetche
- Department of Rheumatology, FHU ACRONIM, CHU Pellegrin, Bordeaux, France
| | - C H Roux
- Université Côte d'Azur (UCA), Service de Rhumatologie, CHU de Nice, hôpital pasteur 2, 30, voie Romaine, CS 51069, 06001 Nice Cedex 1, France
| | - V Breuil
- Université Côte d'Azur (UCA), Service de Rhumatologie, CHU de Nice, hôpital pasteur 2, 30, voie Romaine, CS 51069, 06001 Nice Cedex 1, France; UMR E-4320 MATOs CEA/iBEB/SBTN, Université Nice Sophia Antipolis, Faculté de Médecine, 28, avenue de Valombrose, 06107 Nice Cedex 2, France.
| |
Collapse
|
31
|
Gooßes M, Saliger J, Folkerts AK, Nielsen J, Zierer J, Schmoll P, Niepold A, Colbach L, Leemhuis J, Engels L, van Krüchten M, Ophey A, Allert N, Karbe H, Kalbe E. Feasibility of Music-Assisted Treadmill Training in Parkinson's Disease Patients With and Without Deep Brain Stimulation: Insights From an Ongoing Pilot Randomized Controlled Trial. Front Neurol 2020; 11:790. [PMID: 33013612 PMCID: PMC7498575 DOI: 10.3389/fneur.2020.00790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Background: Music-assisted treadmill training (MATT) is a new therapeutic approach for Parkinson's disease (PD) patients, combining treadmill training with rhythmic auditory cueing and visual feedback. PD studies have shown larger positive effects on motor outcomes than usual treadmill training. However, effects on cognition, in contrast, are less clear. Existing studies provided intensive training protocols and included only stable medicated patients. Thus, a pilot randomized controlled trial was designed to analyze the feasibility of a shorter training protocol as well as preliminary effects on cognition, motor function, and patient-centered outcomes in a rehabilitation setting where PD patients with and without deep brain stimulation (DBS) undergo adaptation of medication and DBS settings. Here, we present the results from the feasibility analysis of the still ongoing trial. Methods: Non-demented PD patients with and without DBS were recruited during their inpatient rehabilitation and randomized to an experimental group (EG; 20 min MATT) or an active control group (CG; 20 min bike ergometer training). The trainings took place for 8 consecutive days and were added to the usual rehabilitation. Feasibility was assessed with the following parameters: patients' study protocol acceptance, study protocol transferability into clinical routine, training-induced adverse events, and patients' training perception. Results: Thirty-two patients (EG: n = 15; CG: n = 17; 72% DBS) were included. The study protocol was well-accepted (inclusion rate: 84%). It was transferable into clinical routines; dropout rates of 40% (EG) and 18% (CG) were observed. However, an in-depth analysis of the dropout cohort did not reveal intervention-related dropout reasons. The MATT and the standard ergometer training showed no adverse events and were positively perceived by PD patients with and without DBS. Conclusion: MATT was shown to be a feasible, safe, and enjoyable treatment option in PD patients with and without DBS. Furthermore, the dropout cohort analysis revealed some exciting first insights into possible dropout reasons that go beyond the form of intervention. Therefore, research would benefit from a common practice of dropout analyses, as this would enhance our understanding of patients' therapy adherence and expectations.
Collapse
Affiliation(s)
- Mareike Gooßes
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Jochen Saliger
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Ann-Kristin Folkerts
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörn Nielsen
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Jürgen Zierer
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Paula Schmoll
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Annika Niepold
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Liz Colbach
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Janna Leemhuis
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lea Engels
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria van Krüchten
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Anja Ophey
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niels Allert
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Hans Karbe
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Elke Kalbe
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Paul A, Yadav KS. Parkinson's disease: Current drug therapy and unraveling the prospects of nanoparticles. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Antunes MS, Cattelan Souza L, Ladd FVL, Ladd AABL, Moreira AL, Bortolotto VC, Silva MRP, Araújo SM, Prigol M, Nogueira CW, Boeira SP. Hesperidin Ameliorates Anxiety-Depressive-Like Behavior in 6-OHDA Model of Parkinson's Disease by Regulating Striatal Cytokine and Neurotrophic Factors Levels and Dopaminergic Innervation Loss in the Striatum of Mice. Mol Neurobiol 2020; 57:3027-3041. [PMID: 32458386 DOI: 10.1007/s12035-020-01940-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the neuroprotective effects of hesperidin in a murine model of PD are not fully elucidated. The current study was carried out to investigate the ability of hesperidin in modulating proinflammatory cytokines, neurotrophic factors, and neuronal recovery in 6-hydroxydopamine (6-OHDA)-induced nigral dopaminergic neuronal loss. Adult male C57BL/6 mice were randomly assigned into four groups: (I) sham/vehicle, (II) sham/hesperidin, (III) 6-OHDA/vehicle, and (IV) 6-OHDA/hesperidin. Mice received a unilateral intrastriatal injection of 6-OHDA and treated with hesperidin (50 mg/kg; per oral) for 28 days. After hesperidin treatment, mice were submitted to behavioral tests and had the striatum removed for neurochemical assays. Our results demonstrated that oral treatment with hesperidin ameliorated the anxiety-related and depressive-like behaviors in 6-OHDA-lesioned mice (p < 0.05). It also attenuated the striatal levels of proinflammatory cytokines tumor necrosis factor-α, interferon-gamma, interleukin-1β, interleukin-2, and interleukin-6 and increased the levels of neurotrophic factors, including neurotrophin-3, brain-derived neurotrophic factor, and nerve growth factor in the striatum of 6-OHDA mice (p < 0.05). Hesperidin treatment was also capable to increase striatal levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid and protects against the impairment of dopaminergic neurons in the substantia nigra pars compacta (SNpc) (p < 0.05). In conclusion, this study indicated that hesperidin exerts anxiolytic-like and antidepressant-like effect against 6-OHDA-induced neurotoxicity through the modulation of cytokine production, neurotrophic factors levels, and dopaminergic innervation in the striatum.
Collapse
Affiliation(s)
- Michelle S Antunes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil. .,Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Fernando Vagner Lobo Ladd
- Department of Morphology/Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Aliny Antunes Barbosa Lobo Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amanda Lopez Moreira
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Márcia Rósula Poetini Silva
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Stífani Machado Araújo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| |
Collapse
|
34
|
Łażewska D, Olejarz-Maciej A, Reiner D, Kaleta M, Latacz G, Zygmunt M, Doroz-Płonka A, Karcz T, Frank A, Stark H, Kieć-Kononowicz K. Dual Target Ligands with 4- tert-Butylphenoxy Scaffold as Histamine H 3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. Int J Mol Sci 2020; 21:ijms21103411. [PMID: 32408504 PMCID: PMC7279487 DOI: 10.3390/ijms21103411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023] Open
Abstract
Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H3 receptor (H3R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4-tert-butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4-tert-butylphenoxy)propyl)piperidine (DL76). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H3R (hH3R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH3R affinities with Ki values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC50 values below 50 nM. However, the most balanced activity against both biological targets showed DL76 (hH3R: Ki = 38 nM and hMAO B: IC50 = 48 nM). Thus, DL76 was chosen for further studies, revealing the nontoxic nature of DL76 in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for DL76 in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of DL76 in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 MedycznaStr, 30-688 Kraków, Poland;
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| |
Collapse
|
35
|
Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, Cereda C. Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21093243. [PMID: 32375302 PMCID: PMC7247337 DOI: 10.3390/ijms21093243] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Eveljn Scarian
- Department of Brain and Behavioural Sciences, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy;
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milan, Via Grassi, 74, 20157 Milan, Italy
| | - Stella Gagliardi
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milan, Via Grassi, 74, 20157 Milan, Italy
| | - Orietta Pansarasa
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
- Correspondence: ; Tel.: +39-0382-380-248
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| |
Collapse
|