1
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
2
|
Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 2022; 23:666-682. [PMID: 36056211 DOI: 10.1038/s41583-022-00624-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/30/2022]
Abstract
Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Zhang H, Jiang X, Ma L, Wei W, Li Z, Chang S, Wen J, Sun J, Li H. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol 2022; 10:964075. [PMID: 36092715 PMCID: PMC9459380 DOI: 10.3389/fcell.2022.964075] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Synaptic dysfunction is closely related to Alzheimer’s disease (AD) which is also recognized as synaptic disorder. β-amyloid (Aβ) is one of the main pathogenic factors in AD, which disrupts synaptic plasticity and mediates the synaptic toxicity through different mechanisms. Aβ disrupts glutamate receptors, such as NMDA and AMPA receptors, which mediates calcium dyshomeostasis and damages synapse plasticity characterized by long-term potentiation (LTP) suppression and long-term depression (LTD) enhancement. As Aβ stimulates and Ca2+ influx, microglial cells and astrocyte can be activated and release cytokines, which reduces glutamate uptake and further impair synapse function. Besides, extracellular glutamate accumulation induced by Aβ mediates synapse toxicity resulting from reduced glutamate receptors and glutamate spillovers. Aβ also mediates synaptic dysfunction by acting on various signaling pathways and molecular targets, disrupting mitochondria and energy metabolism. In addition, Aβ overdeposition aggravates the toxic damage of hyperphosphorylated tau to synapses. Synaptic dysfunction plays a critical role in cognitive impairment of AD. The review addresses the possible mechanisms by which Aβ mediates AD-related synaptic impairment from distant perspectives.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehui Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Surui Chang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wen
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Li,
| |
Collapse
|
4
|
Krivinko JM, Erickson SL, MacDonald ML, Garver ME, Sweet RA. Fingolimod mitigates synaptic deficits and psychosis-like behavior in APP/PSEN1 mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12324. [PMID: 36016832 PMCID: PMC9395154 DOI: 10.1002/trc2.12324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 04/18/2023]
Abstract
Introduction Current treatments for psychosis in Alzheimer's disease (AD), a syndrome characterized by more rapid deterioration and reduced synaptic protein abundance relative to non-psychotic AD, are inadequate. Fingolimod, a currently US Food and Drug Administration (FDA)-approved pharmacotherapy for multiple sclerosis, alters synaptic protein expression and warrants preclinical appraisal as a candidate pharmacotherapy for psychosis in AD. Methods Presenilin and amyloid precursor protein transgenic mice (APPswe/PSEN1dE9) and wild-type mice were randomized to fingolimod or saline for 7 days. Psychosis-associated behaviors were quantified by open field testing, pre-pulse inhibition of the acoustic startle response testing, and habituation of the acoustic startle response testing. Synaptic proteins were quantified by liquid chromatography/mass spectrometry in homogenate and postsynaptic density fractions. Results Fingolimod treatment increased the synaptic protein abundance in cortical homogenates and normalized psychosis-associated behaviors in APPswe/PSEN1dE9 mice relative to saline. Mitochondrial-related proteins were preferentially altered by fingolimod treatment and correlated with improvements in psychosis-associated behaviors. Discussion Preclinical studies employing complementary psychosis-associated behavioral assessments and proteomic evaluations across multiple AD-related models are warranted to replicate the current study and further investigate fingolimod as a candidate treatment for psychosis in AD.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Susan L. Erickson
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Matthew L. MacDonald
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Megan E. Garver
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Robert A. Sweet
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
6
|
Small C, Dagra A, Martinez M, Williams E, Lucke-Wold B. Examining the role of astrogliosis and JNK signaling in post-traumatic epilepsy. EGYPTIAN JOURNAL OF NEUROSURGERY 2022; 37:1. [PMID: 35035475 PMCID: PMC8758075 DOI: 10.1186/s41984-021-00141-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Post-traumatic epilepsy is a devastating complication of traumatic brain injury that has no targeted pharmacological therapy. Previous literature has explored the role of the c-Jun N-terminal kinase (JNK) pathway in epilepsy and the creation of epileptogenic foci by reactive astrogliosis; however, the relationship between reactive astrogliosis and the c-Jun N-terminal kinase signaling pathway in the development of post-traumatic epilepsy has not been thoroughly examined. METHODS Four experimental groups, consisting of c57/b16 male mice, were examined: (1) control, (2) traumatic brain injury of graded severity (mild, moderate, severe), (3) sub-convulsive kainic acid alone without traumatic brain injury (15 mg/kg i.p.), and (4) sub-convulsive kainic acid administered 72 h after moderate traumatic brain injury. Modified Racine scale from 1 to 72 h and total beam breaks at 72 h were used to assess seizure activity. Immunohistochemistry and western blot were utilized to examine astrogliosis (GFAP), microglia activation (IBA-1), and phosphorylated JNK in prefrontal cortex samples collected from the contracoup side at 72 h post-injury. RESULTS Astrogliosis, measured by GFAP, was increased after traumatic brain injury and increased commensurately based on the degree of injury. Mice with traumatic brain injury demonstrated a four-fold increase in phosphorylated JNK: p < 0.001. Sub-convulsive kainic acid administration did not increase seizure activity nor phosphorylation of JNK in mice without traumatic brain injury; however, sub-convulsive kainic acid administration in mice with moderate traumatic brain injury did increase phosphorylated JNK. Seizure activity was worse in mice, with traumatic brain injury, administered kainic acid than mice administered kainic acid. CONCLUSIONS Reactive astrocytes may have dysfunctional glutamate regulation causing an increase in phosphorylated JNK after kainic acid administration. Future studies exploring the effects of JNK inhibition on post-traumatic epilepsy are recommended.
Collapse
Affiliation(s)
- Coulter Small
- College of Medicine, University of Florida, 1104 Newell Drive, Gainesville, FL 32610, USA
- Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Abeer Dagra
- Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Melanie Martinez
- Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Eric Williams
- Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Busquets O, Parcerisas A, Verdaguer E, Ettcheto M, Camins A, Beas-Zarate C, Castro-Torres RD, Auladell C. c-Jun N-Terminal Kinases in Alzheimer's Disease: A Possible Target for the Modulation of the Earliest Alterations. J Alzheimers Dis 2021; 82:S127-S139. [PMID: 33216036 DOI: 10.3233/jad-201053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given the highly multifactorial origin of Alzheimer's disease (AD) neuropathology, disentangling and orderly knowing mechanisms involved in sporadic onset are arduous. Nevertheless, when the elements involved are dissected into smaller pieces, the task becomes more accessible. This review aimed to describe the link between c-Jun N-terminal Kinases (JNKs), master regulators of many cellular functions, and the early alterations of AD: synaptic loss and dysregulation of neuronal transport. Both processes have a role in the posterior cognitive decline observed in AD. The manuscript focuses on the molecular mechanisms of glutamatergic, GABA, and cholinergic synapses altered by the presence of amyloid-β aggregates and hyperphosphorylated tau, as well as on several consequences of the disruption of cellular processes linked to neuronal transport that is controlled by the JNK-JIP (c-jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) complex, including the transport of AβPP or autophagosomes.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, Universitat Rovira i Virgili, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, NY, USA
| | - Antoni Parcerisas
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neural Regeneration, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Rubén Darío Castro-Torres
- Department of Cell and Molecular Biology, Laboratory of Biology of Neurotransmission, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Carme Auladell
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Li Y, Lu YX, Chi HL, Xiao T, Chen YM, Fu LY, Zibrila AI, Qi J, Li HB, Su Q, Gao HL, Zhang Y, Shi XL, Yu XJ, Kang YM. Chronic Blockade of NMDAR Subunit 2A in the Hypothalamic Paraventricular Nucleus Alleviates Hypertension Through Suppression of MEK/ERK/CREB Pathway. Am J Hypertens 2021; 34:840-850. [PMID: 33856436 DOI: 10.1093/ajh/hpab047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND N-Methyl-d-aspartate receptor (NMDAR) in the hypothalamic paraventricular nucleus (PVN) plays critical roles in regulating sympathetic outflow. Studies showed that acute application of the antagonists of NMDAR or its subunits would reduce sympathetic nerve discharges. However, little is known about the effect of long-term management of NMDAR in hypertensive animals. METHODS PEAQX, the specific antagonist of NMDAR subunit 2A (GluN2A) was injected into both sides of the PVN of two-kidney, one-clip (2K1C) renal hypertensive rats and control (normotensive rats) for 3 weeks. RESULTS Three weeks of PEAQX infusion significantly reduced the blood pressure of the 2K1C rats. It managed to resume the balance between excitatory and inhibitory neural transmitters, reduce the level of proinflammatory cytokines and reactive oxygen species in the PVN, and reduce the level of norepinephrine in plasma of the 2K1C rats. PEAQX administration also largely reduced the transcription and translation levels of GluN2A and changed the expression levels of NMDAR subunits 1 and 2B (GluN1 and GluN2B). In addition, NMDAR was known to function through activating the extracellular regulated protein kinases (ERK) or phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways. In our study, we found that in the PVN of 2K1C rats treated with PEAQX, the phosphorylation levels of mitogen-activated protein kinase kinase (MEK), ERK1/2, and cAMP-response element-binding protein (CREB) significantly reduced, while the phosphorylation level of PI3K did not change significantly. CONCLUSIONS Chronic blockade of GluN2A alleviates hypertension through suppression of MEK/ERK/CREB pathway.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yu-Xin Lu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Hong-Li Chi
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Tong Xiao
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Xiao-Lian Shi
- Department of Pharmacology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| |
Collapse
|
9
|
RGS14 Regulation of Post-Synaptic Signaling and Spine Plasticity in Brain. Int J Mol Sci 2021; 22:ijms22136823. [PMID: 34201943 PMCID: PMC8268017 DOI: 10.3390/ijms22136823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.
Collapse
|
10
|
Transcriptomic expression of AMPA receptor subunits and their auxiliary proteins in the human brain. Neurosci Lett 2021; 755:135938. [PMID: 33915226 DOI: 10.1016/j.neulet.2021.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.
Collapse
|
11
|
Tadjalli A, Seven YB, Perim RR, Mitchell GS. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity. J Neuroinflammation 2021; 18:28. [PMID: 33468163 PMCID: PMC7816383 DOI: 10.1186/s12974-021-02074-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation undermines multiple forms of neuroplasticity. Although inflammation and its influence on plasticity in multiple neural systems has been extensively studied, its effects on plasticity of neural networks controlling vital life functions, such as breathing, are less understood. In this study, we investigated the signaling mechanisms whereby lipopolysaccharide (LPS)-induced systemic inflammation impairs plasticity within the phrenic motor system—a major spinal respiratory motor pool that drives contractions of the diaphragm muscle. Here, we tested the hypotheses that lipopolysaccharide-induced systemic inflammation (1) blocks phrenic motor plasticity by a mechanism that requires cervical spinal okadaic acid-sensitive serine/threonine protein phosphatase (PP) 1/2A activity and (2) prevents phosphorylation/activation of extracellular signal-regulated kinase 1/2 mitogen activated protein kinase (ERK1/2 MAPK)—a key enzyme necessary for the expression of phrenic motor plasticity. Methods To study phrenic motor plasticity, we utilized a well-characterized model for spinal respiratory plasticity called phrenic long-term facilitation (pLTF). pLTF is characterized by a long-lasting, progressive enhancement of inspiratory phrenic nerve motor drive following exposures to moderate acute intermittent hypoxia (mAIH). In anesthetized, vagotomized and mechanically ventilated adult Sprague Dawley rats, we examined the effect of inhibiting cervical spinal serine/threonine PP 1/2A activity on pLTF expression in sham-vehicle and LPS-treated rats. Using immunofluorescence optical density analysis, we compared mAIH-induced phosphorylation/activation of ERK 1/2 MAPK with and without LPS-induced inflammation in identified phrenic motor neurons. Results We confirmed that mAIH-induced pLTF is abolished 24 h following low-dose systemic LPS (100 μg/kg, i.p.). Cervical spinal delivery of the PP 1/2A inhibitor, okadaic acid, restored pLTF in LPS-treated rats. LPS also prevented mAIH-induced enhancement in phrenic motor neuron ERK1/2 MAPK phosphorylation. Thus, a likely target for the relevant okadaic acid-sensitive protein phosphatases is ERK1/2 MAPK or its upstream activators. Conclusions This study increases our understanding of fundamental mechanisms whereby inflammation disrupts neuroplasticity in a critical population of motor neurons necessary for breathing, and highlights key roles for serine/threonine protein phosphatases and ERK1/2 MAPK kinase in the plasticity of mammalian spinal respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Jang YN, Jang H, Kim GH, Noh JE, Chang KA, Lee KJ. RAPGEF2 mediates oligomeric Aβ-induced synaptic loss and cognitive dysfunction in the 3xTg-AD mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 47:625-639. [PMID: 33345400 PMCID: PMC8359155 DOI: 10.1111/nan.12686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
AIMS Amyloid-β (Aβ) oligomers trigger synaptic degeneration that precedes plaque and tangle pathology. However, the signalling molecules that link Aβ oligomers to synaptic pathology remain unclear. Here, we addressed the potential role of RAPGEF2 as a novel signalling molecule in Aβ oligomer-induced synaptic and cognitive impairments in human-mutant amyloid precursor protein (APP) mouse models of Alzheimer's disease (AD). METHODS To investigate the role of RAPGEF2 in Aβ oligomer-induced synaptic and cognitive impairments, we utilised a combination of approaches including biochemistry, molecular cell biology, light and electron microscopy, behavioural tests with primary neuron cultures, multiple AD mouse models and post-mortem human AD brain tissue. RESULTS We found significantly elevated RAPGEF2 levels in the post-mortem human AD hippocampus. RAPGEF2 levels also increased in the transgenic AD mouse models, generating high levels of Aβ oligomers before exhibiting synaptic and cognitive impairment. RAPGEF2 upregulation activated the downstream effectors Rap2 and JNK. In cultured hippocampal neurons, oligomeric Aβ treatment increased the fluorescence intensity of RAPGEF2 and reduced the number of dendritic spines and the intensities of synaptic marker proteins, while silencing RAPGEF2 expression blocked Aβ oligomer-induced synapse loss. Additionally, the in vivo knockdown of RAPGEF2 expression in the AD hippocampus prevented cognitive deficits and the loss of excitatory synapses. CONCLUSIONS These findings demonstrate that the upregulation of RAPGEF2 levels mediates Aβ oligomer-induced synaptic and cognitive disturbances in the AD hippocampus. We propose that an early intervention regarding RAPGEF2 expression may have beneficial effects on early synaptic pathology and memory loss in AD.
Collapse
Affiliation(s)
- You-Na Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - HoChung Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeong-Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
13
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
14
|
RAGE signaling is required for AMPA receptor dysfunction in the hippocampus of hyperglycemic mice. Physiol Behav 2020; 229:113255. [PMID: 33221393 DOI: 10.1016/j.physbeh.2020.113255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Diabetes in humans has been associated for a long time with cognitive dysfunction. In rodent animal models, cognitive dysfunction can manifest as impaired hippocampal synaptic plasticity. Particular attention has been concentrated on the receptor for advanced glycation end products (RAGE), which is implicated in multiple diabetic complications involving the development of vascular and peripheral nerve abnormalities. In this study, we hypothesize that RAGE signaling alters glutamate receptor function and expression, impairing synaptic transmission in the hippocampus. Using preparations of hippocampal slices from male mice, we show a RAGE-dependent decrease in long-term potentiation (LTP) and an increase in paired-pulse facilitation (PPF) following streptozotocin (STZ)-induced diabetes. Consistently, in hippocampal cultures from male and female neonatal mice, high glucose caused a RAGE-dependent reduction of AMPA- but not NMDA-evoked currents, and an increase in cytosolic reactive oxygen species (ROS). Consistently, when cultures were co-treated with high glucose and the RAGE antagonist FPS-ZM1, AMPA-evoked currents were unchanged. Hippocampi from STZ-induced hyperglycemic wild type (WT) mice showed increased RAGE expression concomitant with a decrease of both expression and phosphorylation (Ser 831 and 845) of the AMPA GluA1 subunit. We found these changes correlated to activation of the MAPK pathway, consistent with decreased pJNK/JNK ratio and the JNK kinase, pMEK7. As no changes in expression or phosphorylation of regulatory proteins were observed in hippocampi from STZ-induced hyperglycemic RAGE-KO mice, we report a RAGE-dependent impairment in the hippocampi of hyperglycemic WT mice, with reduced AMPA receptor expression/function and LTP deficits.
Collapse
|
15
|
Song S, Kim J, Park K, Lee J, Park S, Lee S, Kim J, Hong I, Song B, Choi S. GSK-3β activation is required for ZIP-induced disruption of learned fear. Sci Rep 2020; 10:18227. [PMID: 33106552 PMCID: PMC7588416 DOI: 10.1038/s41598-020-75130-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022] Open
Abstract
The myristoylated zeta inhibitory peptide (ZIP), which was originally developed as a protein kinase C/Mζ (PKCζ/PKMζ) inhibitor, is known to produce the loss of different forms of memories. However, ZIP induces memory loss even in the absence of PKMζ, and its mechanism of action, therefore, remains elusive. Here, through a kinome-wide screen, we found that glycogen synthase kinase 3 beta (GSK-3β) was robustly activated by ZIP in vitro. ZIP induced depotentiation (a cellular substrate of memory erasure) of conditioning-induced potentiation at LA synapses, and the ZIP-induced depotentiation was prevented by a GSK-3β inhibitor, 6-bromoindirubin-3-acetoxime (BIO-acetoxime). Consistently, GSK-3β inhibition by BIO-acetoxime infusion or GSK-3β knockdown by GSK-3β shRNA in the LA attenuated ZIP-induced disruption of learned fear. Furthermore, conditioned fear was decreased by expression of a non-inhibitable form of GSK-3β in the LA. Our findings suggest that GSK-3β activation is a critical step for ZIP-induced disruption of memory.
Collapse
Affiliation(s)
- Sukwoon Song
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jihye Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungjoon Park
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Junghwa Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sewon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sukwon Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020. [DOI: 10.3390/ijms21176312
expr 858053618 + 832508766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
|
17
|
Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, Lacerda HM, Lucia A, Llavero F, Zugaza JL. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6312. [PMID: 32878220 PMCID: PMC7504559 DOI: 10.3390/ijms21176312] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
Affiliation(s)
- Alazne Arrazola Sastre
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - Miriam Luque Montoro
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain;
- R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain
| | | | - Alejandro Lucia
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
- Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Dhuriya YK, Sharma D. Neuronal Plasticity: Neuronal Organization is Associated with Neurological Disorders. J Mol Neurosci 2020; 70:1684-1701. [PMID: 32504405 DOI: 10.1007/s12031-020-01555-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Stimuli from stressful events, attention in the classroom, and many other experiences affect the functionality of the brain by changing the structure or reorganizing the connections between neurons and their communication. Modification of the synaptic transmission is a vital mechanism for generating neural activity via internal or external stimuli. Neuronal plasticity is an important driving force in neuroscience research, as it is the basic process underlying learning and memory and is involved in many other functions including brain development and homeostasis, sensorial training, and recovery from brain injury. Indeed, neuronal plasticity has been explored in numerous studies, but it is still not clear how neuronal plasticity affects the physiology and morphology of the brain. Thus, unraveling the molecular mechanisms of neuronal plasticity is essential for understanding the operation of brain functions. In this timeline review, we discuss the molecular mechanisms underlying different forms of synaptic plasticity and their association with neurodegenerative/neurological disorders as a consequence of alterations in neuronal plasticity.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India. .,CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, 110016, India.
| |
Collapse
|
19
|
Chen LF, Lyons MR, Liu F, Green MV, Hedrick NG, Williams AB, Narayanan A, Yasuda R, West AE. The NMDA receptor subunit GluN3A regulates synaptic activity-induced and myocyte enhancer factor 2C (MEF2C)-dependent transcription. J Biol Chem 2020; 295:8613-8627. [PMID: 32393578 DOI: 10.1074/jbc.ra119.010266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 05/01/2020] [Indexed: 11/06/2022] Open
Abstract
N-Methyl-d-aspartate type glutamate receptors (NMDARs) are key mediators of synaptic activity-regulated gene transcription in neurons, both during development and in the adult brain. Developmental differences in the glutamate receptor ionotropic NMDA 2 (GluN2) subunit composition of NMDARs determines whether they activate the transcription factor cAMP-responsive element-binding protein 1 (CREB). However, whether the developmentally regulated GluN3A subunit also modulates NMDAR-induced transcription is unknown. Here, using an array of techniques, including quantitative real-time PCR, immunostaining, reporter gene assays, RNA-Seq, and two-photon glutamate uncaging with calcium imaging, we show that knocking down GluN3A in rat hippocampal neurons promotes the inducible transcription of a subset of NMDAR-sensitive genes. We found that this enhancement is mediated by the accumulation of phosphorylated p38 mitogen-activated protein kinase in the nucleus, which drives the activation of the transcription factor myocyte enhancer factor 2C (MEF2C) and promotes the transcription of a subset of synaptic activity-induced genes, including brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton-associated protein (Arc). Our evidence that GluN3A regulates MEF2C-dependent transcription reveals a novel mechanism by which NMDAR subunit composition confers specificity to the program of synaptic activity-regulated gene transcription in developing neurons.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Fang Liu
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew V Green
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathan G Hedrick
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley B Williams
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Arthy Narayanan
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Memory Susceptibility to Retroactive Interference Is Developmentally Regulated by NMDA Receptors. Cell Rep 2020; 26:2052-2063.e4. [PMID: 30784588 DOI: 10.1016/j.celrep.2019.01.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
Retroactive interference (RI) occurs when new incoming information impairs an existing memory, which is one of the primary sources of forgetting. Although long-term potentiation (LTP) reversal shows promise as the underlying neural correlate, the key molecules that control the sensitivity of memory circuits to RI are unknown, and the developmental trajectory of RI effects is unclear. Here we found that depotentiation in the hippocampal dentate gyrus (DG) depends on GluN2A-containing NMDA receptors (NMDARs). The susceptibility of LTP to disruption progressively increases with the rise in the GluN2A/GluN2B ratio during development. The vulnerability of hippocampus-dependent memory to interference from post-learning novelty exploration is subject to similar developmental regulation by NMDARs. Both GluN2A overexpression and GluN2B downregulation in the DG promote RI-induced forgetting. Altogether, our results suggest that a switch in GluN2 subunit predominance may confer age-related differences to depotentiation and underlie the developmental decline in memory resistance to RI.
Collapse
|
21
|
Mayanagi T, Sobue K. Social Stress-Induced Postsynaptic Hyporesponsiveness in Glutamatergic Synapses Is Mediated by PSD-Zip70-Rap2 Pathway and Relates to Anxiety-Like Behaviors. Front Cell Neurosci 2020; 13:564. [PMID: 31969804 PMCID: PMC6960224 DOI: 10.3389/fncel.2019.00564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022] Open
Abstract
PSD-Zip70 is a postsynaptic protein that regulates glutamatergic synapse formation and maturation by modulation of Rap2 activity. PSD-Zip70 knockout (PSD-Zip70KO) mice exhibit defective glutamatergic synaptic transmission in the prefrontal cortex (PFC) with aberrant Rap2 activation. As prefrontal dysfunction is implicated in the pathophysiology of stress-induced psychiatric diseases, we examined PSD-Zip70KO mice in a social defeat (SD) stress-induced mouse model of depression to investigate stress-induced alterations in synaptic function. Compared with wild-type (WT) mice, PSD-Zip70KO mice exhibited almost normal responses to SD stress in depression-related behaviors such as social activity, anhedonia, and depressive behavior. However, PSD-Zip70KO mice showed enhanced anxiety-like behavior irrespective of stress conditions. The density and size of dendritic spines of pyramidal neurons were reduced in the medial PFC (mPFC) in mice exposed to SD stress. Phosphorylation levels of the AMPA–type glutamate receptor (AMPA-R) GluA2 subunit at Ser880 were prominently elevated in mice exposed to SD stress, indicating internalization of surface-expressed AMPA-Rs and decreased postsynaptic responsiveness. Structural and functional impairments in postsynaptic responsiveness were associated with Rap2 GTPase activation in response to SD stress. Social stress-induced Rap2 activation was regulated by a PSD-Zip70-dependent pathway via interaction with SPAR/PDZ-GEF1. Notably, features such as Rap2 activation, dendritic spine shrinkage, and increased GluA2 phosphorylation were observed in the mPFC of PSD-Zip70KO mice even without SD stress. Together with our previous results, the present findings suggest that SD stress-induced postsynaptic hyporesponsiveness in glutamatergic synapses is mediated by PSD-Zip70-Rap2 signaling pathway and closely relates to anxiety-like behaviors.
Collapse
Affiliation(s)
- Taira Mayanagi
- Department of Neuroscience, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| | - Kenji Sobue
- Department of Neuroscience, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
22
|
Faldini E, Ahmed T, Bueé L, Blum D, Balschun D. Tau- but not Aß -pathology enhances NMDAR-dependent depotentiation in AD-mouse models. Acta Neuropathol Commun 2019; 7:202. [PMID: 31815648 PMCID: PMC6902514 DOI: 10.1186/s40478-019-0813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 11/10/2022] Open
Abstract
Many mouse models of Alzheimer's disease (AD) exhibit impairments in hippocampal long-term-potentiation (LTP), seemingly corroborating the strong correlation between synaptic loss and cognitive decline reported in human studies. In other AD mouse models LTP is unaffected, but other defects in synaptic plasticity may still be present. We recently reported that THY-Tau22 transgenic mice, that overexpress human Tau protein carrying P301S and G272 V mutations and show normal LTP upon high-frequency-stimulation (HFS), develop severe changes in NMDAR mediated long-term-depression (LTD), the physiological counterpart of LTP. In the present study, we focused on putative effects of AD-related pathologies on depotentiation (DP), another form of synaptic plasticity. Using a novel protocol to induce DP in the CA1-region, we found in 11-15 months old male THY-Tau22 and APPPS1-21 transgenic mice that DP was not deteriorated by Aß pathology while significantly compromised by Tau pathology. Our findings advocate DP as a complementary form of synaptic plasticity that may help in elucidating synaptic pathomechanisms associated with different types of dementia.
Collapse
|
23
|
Tao X, Sun N, Mu Y. Development of Depotentiation in Adult-Born Dentate Granule Cells. Front Cell Dev Biol 2019; 7:236. [PMID: 31681768 PMCID: PMC6805727 DOI: 10.3389/fcell.2019.00236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Activity-dependent synaptic plasticity, i.e., long-term potentiation (LTP), long-term depression (LTD) and LTP reversal, is generally thought to make up the cellular mechanism underlying learning and memory in the mature brain, in which N-methyl-D-aspartate subtype of glutamate (NMDA) receptors and neurogenesis play important roles. LTP reversal may be the mechanism of forgetting and may mediate many psychiatric disorders, such as schizophrenia, but the specific mechanisms underlying these disorders remain unclear. In addition, LTP reversal during the development of adult-born dentate granule cells (DGCs) remains unknown. We found that the expression of the NMDA receptor subunits NR2A and NR2B displayed dynamic changes during the development of postnatal individuals and the maturation of adult-born neurons and was coupled with the change in LTP reversal. The susceptibility of LTP reversal progressively increases with the rise in the expression of NR2A during the development of postnatal individual and adult-born neurons. In addition, NMDA receptor subunits NR2A, but not NR2B, mediated LTP reversal in the DGCs of the mouse hippocampus.
Collapse
Affiliation(s)
- Xiaoqing Tao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yangling Mu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
25
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Yousef M, Babür E, Delibaş S, Tan B, Çimen A, Dursun N, Süer C. Adult-Onset Hypothyroidism Alters the Metaplastic Properties of Dentate Granule Cells by Decreasing Akt Phosphorylation. J Mol Neurosci 2019; 68:647-657. [PMID: 31069661 DOI: 10.1007/s12031-019-01323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
The expression of homosynaptic long-term depression (LTD) governs the subsequent induction of long-term potentiation (LTP) at hippocampal synapses. This process, called metaplasticity, is associated with a transient increase in the levels of several kinases, such as extracellular signal-regulated protein kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and Akt kinase. It has been increasingly realized that the chemical changes in the hippocampus caused by hypothyroidism may be the key underlying causes of the learning deficits, memory loss, and impaired LTP associated with this disease. However, the functional role of thyroid hormones in the "plasticity of synaptic plasticity" has only begun to be elucidated. To address this issue, we sought to determine whether the administration of 6-n-propyl-2-thiouracil (PTU) alters the relationship between priming and the induction of subsequent LTP and related signaling molecules. The activation of ERK1/2, JNK, and Akt was measured in the hippocampus at least 95 min after priming onset. We found that priming stimulation at 5 Hz for 3 s negatively impacted the induction of LTP by subsequent tetanic stimulation in hypothyroid animals, as manifested by a more rapid decrease in the fEPSP slope and population spike amplitude. This phenomenon was accompanied by lower levels of phosphorylated Akt in the surgically removed hippocampus of the hypothyroid rats compared to the euthyroid rats. The metaplastic response and the expression of these proteins in the 1-Hz-primed hippocampus were not different between the two groups. These observations suggest that decreased PI3K/Akt signaling may be involved in the compromised metaplastic regulation of LTP observed in hypothyroidism, which may account for the learning difficulties/cognitive impairments associated with this condition.
Collapse
Affiliation(s)
- Marwa Yousef
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Ercan Babür
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Sumeyra Delibaş
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Burak Tan
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Ayşenur Çimen
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Nurcan Dursun
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Cem Süer
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey.
| |
Collapse
|
27
|
Porto RR, de Oliveira Alvares L. Role of HSP70 in Plasticity and Memory. HEAT SHOCK PROTEINS IN NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-24285-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Depotentiation of Long-Term Potentiation Is Associated with Epitope-Specific Tau Hyper-/Hypophosphorylation in the Hippocampus of Adult Rats. J Mol Neurosci 2018; 67:193-203. [PMID: 30498986 DOI: 10.1007/s12031-018-1224-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/18/2018] [Indexed: 01/19/2023]
Abstract
It is well-known that some kinases which are involved in the induction of synaptic plasticity probably modulate tau phosphorylation. However, how depression of potentiated synaptic strength contributes to tau phosphorylation is unclear because of the lack of experiments in which depotentiation of LTP was induced. Field excitatory postsynaptic potential (fEPSP) and population spike (PS) were recorded from the dentate gyrus in response to the perforant pathway stimulation. To induce LTP, high-frequency stimulation (HFS) was used, while, for depotentiation of LTP, low-frequency stimulation (LFS) consisting of 900 pulses at 1 Hz was applied 5 min after tetanization. In some experiments, a neutral protocol at 0.033 Hz was applied throughout the experiment without any induction of synaptic plasticity. One-hertz depotentiation protocol was able to decrease fEPSP slope which was previously increased by HFS, whereas no significant change in fEPSP slope and PS amplitude was observed in neutral protocol experiments. Relative to saline infusion, LTP was lower in magnitude and was more reversed by subsequent LFS in the presence of ERK1/2 inhibitor. Western blot experiments indicated that tau protein was hyperphosphorylated at ser416 epitope but rather hypophosphorylated at thr231 epitope in the whole hippocampus upon depotentiation of LTP. These changes concomitantly occurred with a notable increase in the levels of total tau and in the levels of phosphorylated form of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). ERK1/2 inhibition resulted in a decrease in phosphorylation of tau at p416Tau when ERK1/2 was inhibited. These findings indicate that some forms of long-term plastic changes might be related with epitope-specific tau phosphorylation and ERK1/2 activation in the hippocampus. Therefore, we emphasize that tau may be crucial for physiological learning as well as Alzheimer's disease pathology.
Collapse
|
29
|
Jacobi E, von Engelhardt J. AMPA receptor complex constituents: Control of receptor assembly, membrane trafficking and subcellular localization. Mol Cell Neurosci 2018; 91:67-75. [DOI: 10.1016/j.mcn.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 11/29/2022] Open
|
30
|
Chen X, Shibata AC, Hendi A, Kurashina M, Fortes E, Weilinger NL, MacVicar BA, Murakoshi H, Mizumoto K. Rap2 and TNIK control Plexin-dependent tiled synaptic innervation in C. elegans. eLife 2018; 7:38801. [PMID: 30063210 PMCID: PMC6067881 DOI: 10.7554/elife.38801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo. Genes do more than just direct the color of our hair or eyes. They produce proteins that are involved in almost every process in the body. In humans, the majority of active genes can be found in the brain, where they help it to develop and work properly – effectively controlling how we move and behave. The brain’s functional units, the nerve cells or neurons, communicate with each other by releasing messenger molecules in the gap between them, the synapse. These molecules are then picked up from specific receptor proteins of the receiving neuron. In the nervous system, neurons only form synapses with the cells they need to connect with, even though they are surrounded by many more cells. This implies that they use specific mechanisms to stop neurons from forming synapses with incorrect target cells. This is important, because if too many synapses were present or if synapses formed with incorrect target cells, it would compromise the information flow in the nervous system. This would ultimately lead to various neurological conditions, including Autism Spectrum Disorder. In 2013, researchers found that in the roundworm Caenorhabditis elegans, a receptor protein called Plexin, is located at the surface of the neurons and can inhibit the formation of nearby synapses. Now, Chen et al. – including one author involved in the previous research – wanted to find out what genes Plexin manipulates when it stops synapses from growing. Knowing what each of those genes does can help us understand how neurons can inhibit synapses. The results revealed that Plexin appears to regulate two genes, Rap2 and TNIK. Plexin reduced the activity of Rap2 in the neuron that released the messenger, which hindered the formation of synapses. The gene TNIK and its protein on the other hand, have the ability to modify other proteins and could so inhibit the growth of synapses. When TNIK was experimentally removed, the number of synapses increased, but when its activity was increased, the number of synapses was strongly reduced. These findings could help scientists understand how mutations in Rap2 or TNIK can lead to various neurological conditions. A next step will be to test if these genes also affect the formation of synapses in other species such as mice, which have a more complex nervous system that is structurally and functionally more similar to that of humans.
Collapse
Affiliation(s)
- Xi Chen
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Akihiro Ce Shibata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ardalan Hendi
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Ethan Fortes
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | | | - Brian A MacVicar
- Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
31
|
Phosphorylation of synaptic GTPase-activating protein (synGAP) by polo-like kinase (Plk2) alters the ratio of its GAP activity toward HRas, Rap1 and Rap2 GTPases. Biochem Biophys Res Commun 2018; 503:1599-1604. [PMID: 30049443 DOI: 10.1016/j.bbrc.2018.07.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022]
Abstract
SynGAP is a Ras and Rap GTPase-activating protein (GAP) found in high concentration in the postsynaptic density (PSD) fraction from mammalian forebrain where it binds to PDZ domains of PSD-95. Phosphorylation of pure recombinant synGAP by Ca2+/calmodulin-dependent protein kinase II (CaMKII) shifts the balance of synGAP's GAP activity toward inactivation of Rap1; whereas phosphorylation by cyclin-dependent kinase 5 (CDK5) has the opposite effect, shifting the balance toward inactivation of HRas. These shifts in balance contribute to regulation of the numbers of surface AMPA receptors, which rise during synaptic potentiation (CaMKII) and fall during synaptic scaling (CDK5). Polo-like kinase 2 (Plk2/SNK), like CDK5, contributes to synaptic scaling. These two kinases act in concert to reduce the number of surface AMPA receptors following elevated neuronal activity by tagging spine-associated RapGAP protein (SPAR) for degradation, thus raising the level of activated Rap. Here we show that Plk2 also phosphorylates and regulates synGAP. Phosphorylation of synGAP by Plk2 stimulates its GAP activity toward HRas by 65%, and toward Rap1 by 16%. Simultaneous phosphorylation of synGAP by Plk2 and CDK5 at distinct sites produces an additive increase in GAP activity toward HRas (∼230%) and a smaller, non-additive increase in activity toward Rap1 (∼15%). Dual phosphorylation also produces an increase in GAP activity toward Rap2 (∼40-50%), an effect not produced by either kinase alone. As we previously observed for CDK5, addition of Ca2+/CaM causes a substrate-directed doubling of the rate and stoichiometry of phosphorylation of synGAP by Plk2, targeting residues also phosphorylated by CaMKII. In summary, phosphorylation by Plk2, like CDK5, shifts the ratio of GAP activity of synGAP to produce a greater decrease in active Ras than in active Rap, which would produce a shift toward a decrease in the number of surface AMPA receptors in neuronal dendrites.
Collapse
|
32
|
Chen Q, Ren L, Min S, Hao X, Chen H, Deng J. Changes in synaptic plasticity are associated with electroconvulsive shock-induced learning and memory impairment in rats with depression-like behavior. Neuropsychiatr Dis Treat 2018; 14:1737-1746. [PMID: 29997435 PMCID: PMC6033087 DOI: 10.2147/ndt.s163756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Accompanied with the effective antidepressant effect, electroconvulsive shock (ECS) can induce cognitive impairment, but the mechanism is unclear. Synaptic plasticity is the fundamental mechanism of learning and memory. This study aimed to investigate the effect of ECS on synaptic plasticity changes in rats with depression-like behavior. METHODS Chronic unpredictable mild stress procedure was conducted to establish a model of depression-like behavior. Rats were randomly divided into the following three groups: control group with healthy rats (group C), rats with depression-like behavior (group D), and rats with depression-like behavior undergoing ECS (group DE). Depression-like behavior and spatial learning and memory function were assessed by sucrose preference test and Morris water test, respectively. Synaptic plasticity changes in long-term potentiation (LTP), long-term depression (LTD), depotentiation, and post-tetanic potentiation (PTP) were tested by electrophysiological experiment. RESULTS ECS could exert antidepressant effect and also induced spatial learning and memory impairment in rats with depression-like behavior. And, data on electrophysiological experiment showed that ECS induced lower magnitude of LTP, higher magnitude of LTD, higher magnitude of depotentiation, and lower magnitude of PTP. CONCLUSION ECS-induced learning and memory impairment may be attributed to postsynaptic mechanism of LTP impairment, LTD and depotentiation enhancement, and presynaptic mechanism of PTP impairment.
Collapse
Affiliation(s)
- Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jie Deng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| |
Collapse
|
33
|
Zhang L, Zhang P, Wang G, Zhang H, Zhang Y, Yu Y, Zhang M, Xiao J, Crespo P, Hell JW, Lin L, Huganir RL, Zhu JJ. Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains. Neuron 2018; 98:783-800.e4. [PMID: 29706584 PMCID: PMC6192044 DOI: 10.1016/j.neuron.2018.03.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/12/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
How signaling molecules achieve signal diversity and specificity is a long-standing cell biology question. Here we report the development of a targeted delivery method that permits specific expression of homologous Ras-family small GTPases (i.e., Ras, Rap2, and Rap1) in different subcellular microdomains, including the endoplasmic reticulum, lipid rafts, bulk membrane, lysosomes, and Golgi complex, in rodent hippocampal CA1 neurons. The microdomain-targeted delivery, combined with multicolor fluorescence protein tagging and high-resolution dual-quintuple simultaneous patch-clamp recordings, allows systematic analysis of microdomain-specific signaling. The analysis shows that Ras signals long-term potentiation via endoplasmic reticulum PI3K and lipid raft ERK, whereas Rap2 and Rap1 signal depotentiation and long-term depression via bulk membrane JNK and lysosome p38MAPK, respectively. These results establish an effective subcellular microdomain-specific targeted delivery method and unveil subcellular microdomain-specific signaling as the mechanism for homologous Ras and Rap to achieve signal diversity and specificity to control multiple forms of synaptic plasticity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Guangfu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Huaye Zhang
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Yajun Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yilin Yu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxu Zhang
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabriaand CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Johannes W Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; School of Medicine, Ningbo University, Ningbo 315010, China; Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 EN, Nijmegen, the Netherlands
| |
Collapse
|
34
|
Maeta K, Hattori S, Ikutomo J, Edamatsu H, Bilasy SE, Miyakawa T, Kataoka T. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain. Mol Brain 2018; 11:27. [PMID: 29747665 PMCID: PMC5946393 DOI: 10.1186/s13041-018-0370-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.
Collapse
Affiliation(s)
- Kazuhiro Maeta
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Present address: Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Junji Ikutomo
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Hironori Edamatsu
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Shymaa E. Bilasy
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Present address: Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, El-shikh Zayed, Ismailia, 41522 Egypt
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
35
|
Sun Y, Xu Y, Cheng X, Chen X, Xie Y, Zhang L, Wang L, Hu J, Gao Z. The differences between GluN2A and GluN2B signaling in the brain. J Neurosci Res 2018; 96:1430-1443. [PMID: 29682799 DOI: 10.1002/jnr.24251] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/24/2022]
Abstract
The N-methyl-d-aspartate (NMDA) receptor, a typical ionotropic glutamate receptor, is a crucial protein for maintaining brain function. GluN2A and GluN2B are the main types of NMDA receptor subunit in the adult forebrain. Studies have demonstrated that they play different roles in a number of pathophysiological processes. Although the underlying mechanism for this has not been clarified, the most fundamental reason may be the differences between the signaling pathways associated with GluN2A and GluN2B. With the aim of elucidating the reasons behind the diverse roles of these two subunits, we described the signaling differences between GluN2A and GluN2B from the aspects of C-terminus-associated molecules, effects on typical downstream signaling proteins, and metabotropic signaling. Because there are several factors interfering with the determination of subunit-specific signaling, there is still a long way to go toward clarifying the signaling differences between these two subunits. Developing better pharmacology tools, such as highly selective antagonists for triheteromeric GluN2A- and GluN2B-containing NMDA receptors, and establishing new molecular biological methods, for example, engineering photoswitchable NMDA receptors, may be useful for clarifying the signaling differences between GluN2A and GluN2B.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yingge Xu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Xiaokun Cheng
- Department of Physical and Chemical Analysis, North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, People's Republic of China
| | - Xi Chen
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, College of Basic Medical Science, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, California
| | - Jie Hu
- Nursing Research Center, School of Nursing, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,State Key Laboratory Breeding Base, Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| |
Collapse
|
36
|
Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment. Pharmacol Rep 2018; 70:322-330. [DOI: 10.1016/j.pharep.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
37
|
Abstract
The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.
Collapse
|
38
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
39
|
Porto RR, Dutra FD, Crestani AP, Holsinger RMD, Quillfeldt JA, Homem de Bittencourt PI, de Oliveira Alvares L. HSP70 Facilitates Memory Consolidation of Fear Conditioning through MAPK Pathway in the Hippocampus. Neuroscience 2018; 375:108-118. [PMID: 29374537 DOI: 10.1016/j.neuroscience.2018.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
Heat shock proteins of the 70-kDa (HSP70) family are cytoprotective molecular chaperones that are present in neuronal cells and can be induced by a variety of homeostatically stressful situations (not only proteostatic insults), but also by synaptic activity, including learning tasks. Physiological stimuli that induce long-term memory formation are also capable of stimulating the synthesis of HSP70 through the activation of heat shock transcription factor-1 (HSF1). In this study, we investigated the influence of HSP70 on fear memory consolidation and MAPK activity. Male rats were trained in contextual fear conditioning task and HSP70 content was analyzed by western blot in the hippocampus at different time points. We observed rapid and transient elevations in HSP70 60 min following training. Double immunofluorescence with GFAP and HSP72 revealed that astrocytes were not the site for HSP72 induction by CFC training. HSP72 distribution markedly surrounded synapses between Shaffer collateral and CA1 pyramidal cells. Infusion of recombinant HSP70 (hspa1a) into the dorsal hippocampus immediately after training facilitated memory consolidation and enhanced ERK activity while decreasing the activated forms of JNK and p38 in the hippocampus. Blocking endogenous extracellular HSP70 through the administration of specific antibody did not produce any further effect on memory consolidation when applied immediately after training, suggesting that it is indeed acting intracellularly. Induction of HSP70 after fear conditioning is fast and can act as a signaling molecule, modulating MAPK downstream signaling during memory consolidation in the hippocampus, which is crucial for fear memory formation.
Collapse
Affiliation(s)
- Rossana R Porto
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Fabrício D Dutra
- Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Ana Paula Crestani
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - R M Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jorge A Quillfeldt
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil.
| |
Collapse
|
40
|
Laguesse S, Morisot N, Shin JH, Liu F, Adrover MF, Sakhai SA, Lopez MF, Phamluong K, Griffin WC, Becker HC, Bender KJ, Alvarez VA, Ron D. Prosapip1-Dependent Synaptic Adaptations in the Nucleus Accumbens Drive Alcohol Intake, Seeking, and Reward. Neuron 2017; 96:145-159.e8. [PMID: 28890345 PMCID: PMC6014831 DOI: 10.1016/j.neuron.2017.08.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/13/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1), a transducer of local dendritic translation, participates in learning and memory processes as well as in mechanisms underlying alcohol-drinking behaviors. Using an unbiased RNA-seq approach, we identified Prosapip1 as a novel downstream target of mTORC1 whose translation and consequent synaptic protein expression are increased in the nucleus accumbens (NAc) of mice excessively consuming alcohol. We demonstrate that alcohol-dependent increases in Prosapip1 levels promote the formation of actin filaments, leading to changes in dendritic spine morphology of NAc medium spiny neurons (MSNs). We further demonstrate that Prosapip1 is required for alcohol-dependent synaptic localization of GluA2 lacking AMPA receptors in NAc shell MSNs. Finally, we present data implicating Prosapip1 in mechanisms underlying alcohol self-administration and reward. Together, these data suggest that Prosapip1 in the NAc is a molecular transducer of structural and synaptic alterations that drive and/or maintain excessive alcohol use.
Collapse
Affiliation(s)
- Sophie Laguesse
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Nadege Morisot
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Jung Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute of Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, MD, USA
| | - Feng Liu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Martin F Adrover
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute of Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Sakhai
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute of Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, MD, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
41
|
Regulator of G protein signaling 14 (RGS14) is expressed pre- and postsynaptically in neurons of hippocampus, basal ganglia, and amygdala of monkey and human brain. Brain Struct Funct 2017; 223:233-253. [PMID: 28776200 DOI: 10.1007/s00429-017-1487-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional signaling protein primarily expressed in mouse pyramidal neurons of hippocampal area CA2 where it regulates synaptic plasticity important for learning and memory. However, very little is known about RGS14 protein expression in the primate brain. Here, we validate the specificity of a new polyclonal RGS14 antibody that recognizes not only full-length RGS14 protein in primate, but also lower molecular weight forms of RGS14 protein matching previously predicted human splice variants. These putative RGS14 variants along with full-length RGS14 are expressed in the primate striatum. By contrast, only full-length RGS14 is expressed in hippocampus, and shorter variants are completely absent in rodent brain. We report that RGS14 protein immunoreactivity is found both pre- and postsynaptically in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra, and amygdala in adult rhesus monkeys. A similar cellular expression pattern of RGS14 in the monkey striatum and hippocampus was further confirmed in humans. Our electron microscopy data show for the first time that RGS14 immunostaining localizes within nuclei of striatal neurons in monkeys. Taken together, these findings suggest new pre- and postsynaptic regulatory functions of RGS14 and RGS14 variants, specific to the primate brain, and provide evidence for unconventional roles of RGS14 in the nuclei of striatal neurons potentially important for human neurophysiology and disease.
Collapse
|
42
|
Diversity in AMPA receptor complexes in the brain. Curr Opin Neurobiol 2017; 45:32-38. [DOI: 10.1016/j.conb.2017.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/23/2022]
|
43
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
44
|
|
45
|
Lim CS, Kang X, Mirabella V, Zhang H, Bu Q, Araki Y, Hoang ET, Wang S, Shen Y, Choi S, Kaang BK, Chang Q, Pang ZP, Huganir RL, Zhu JJ. BRaf signaling principles unveiled by large-scale human mutation analysis with a rapid lentivirus-based gene replacement method. Genes Dev 2017; 31:537-552. [PMID: 28404629 PMCID: PMC5393050 DOI: 10.1101/gad.294413.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
Rapid advances in genetics are linking mutations on genes to diseases at an exponential rate, yet characterizing the gene-mutation-cell-behavior relationships essential for precision medicine remains a daunting task. More than 350 mutations on small GTPase BRaf are associated with various tumors, and ∼40 mutations are associated with the neurodevelopmental disorder cardio-facio-cutaneous syndrome (CFC). We developed a fast cost-effective lentivirus-based rapid gene replacement method to interrogate the physiopathology of BRaf and ∼50 disease-linked BRaf mutants, including all CFC-linked mutants. Analysis of simultaneous multiple patch-clamp recordings from 6068 pairs of rat neurons with validation in additional mouse and human neurons and multiple learning tests from 1486 rats identified BRaf as the key missing signaling effector in the common synaptic NMDA-R-CaMKII-SynGap-Ras-BRaf-MEK-ERK transduction cascade. Moreover, the analysis creates the original big data unveiling three general features of BRaf signaling. This study establishes the first efficient procedure that permits large-scale functional analysis of human disease-linked mutations essential for precision medicine.
Collapse
Affiliation(s)
- Chae-Seok Lim
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.,Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Xi Kang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Vincent Mirabella
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.,Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Qian Bu
- Waisman Center, University of Wisconsin School of Medicine, Madison, Wisconsin 53705, USA.,Department of Medical Genetics, University of Wisconsin School of Medicine, Madison, Wisconsin 53705, USA
| | - Yoichi Araki
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Elizabeth T Hoang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.,Undergraduate Class of 2014, Department of Psychology, University of Virginia College of Arts and Sciences, Charlottesville, Virginia 22908, USA
| | - Shiqiang Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sukwoo Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Qiang Chang
- Waisman Center, University of Wisconsin School of Medicine, Madison, Wisconsin 53705, USA.,Department of Medical Genetics, University of Wisconsin School of Medicine, Madison, Wisconsin 53705, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Richard L Huganir
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
46
|
Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, Missale C, Spano P. Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 2016; 42:77-94. [PMID: 26613567 DOI: 10.1111/nan.12297] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with prominent loss of nigro-striatal dopaminergic neurons. The resultant dopamine (DA) deficiency underlies the onset of typical motor symptoms (MS). Nonetheless, individuals affected by PD usually show a plethora of nonmotor symptoms (NMS), part of which may precede the onset of motor signs. Besides DA neuron degeneration, a key neuropathological alteration in the PD brain is Lewy pathology. This is characterized by abnormal intraneuronal (Lewy bodies) and intraneuritic (Lewy neurites) deposits of fibrillary aggregates mainly composed of α-synuclein. Lewy pathology has been hypothesized to progress in a stereotypical pattern over the course of PD and α-synuclein mutations and multiplications have been found to cause monogenic forms of the disease, thus raising the question as to whether this protein is pathogenic in this disorder. Findings showing that the majority of α-synuclein aggregates in PD are located at presynapses and this underlies the onset of synaptic and axonal degeneration, coupled to the fact that functional connectivity changes correlate with disease progression, strengthen this idea. Indeed, by altering the proper action of key molecules involved in the control of neurotransmitter release and re-cycling as well as synaptic and structural plasticity, α-synuclein deposition may crucially impair axonal trafficking, resulting in a series of noxious events, whose pressure may inevitably degenerate into neuronal damage and death. Here, we provide a timely overview of the molecular features of synaptic loss in PD and disclose their possible translation into clinical symptoms through functional disconnection.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Annalena Venneri
- IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| |
Collapse
|
47
|
Liu A, Zhou Z, Dang R, Zhu Y, Qi J, He G, Leung C, Pak D, Jia Z, Xie W. Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization. J Cell Biol 2016; 212:449-63. [PMID: 26880202 PMCID: PMC4754719 DOI: 10.1083/jcb.201509023] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The C-terminal domain of NLG1 is sufficient to enhance spine and synapse number and to modulate synaptic plasticity, and it exerts these effects via its interaction with SPAR and the subsequent activation of LIMK1/cofilin-mediated actin reorganization. Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase–activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin–mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function.
Collapse
Affiliation(s)
- An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Zikai Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| | - Rui Dang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Yuehua Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Junxia Qi
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Guiqin He
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Celeste Leung
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Zhengping Jia
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| |
Collapse
|
48
|
Sheng Y, Zhang L, Su SC, Tsai LH, Julius Zhu J. Cdk5 is a New Rapid Synaptic Homeostasis Regulator Capable of Initiating the Early Alzheimer-Like Pathology. Cereb Cortex 2016; 26:2937-51. [PMID: 26088971 PMCID: PMC4898661 DOI: 10.1093/cercor/bhv032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase implicated in synaptic plasticity, behavior, and cognition, yet its synaptic function remains poorly understood. Here, we report that physiological Cdk5 signaling in rat hippocampal CA1 neurons regulates homeostatic synaptic transmission using an unexpectedly rapid mechanism that is different from all known slow homeostatic regulators, such as beta amyloid (Aβ) and activity-regulated cytoskeleton-associated protein (Arc, aka Arg3.1). Interestingly, overproduction of the potent Cdk5 activator p25 reduces synapse density, and dynamically regulates synaptic size by suppressing or enhancing Aβ/Arc production. Moreover, chronic overproduction of p25, seen in Alzheimer's patients, induces initially concurrent reduction in synapse density and increase in synaptic size characteristic of the early Alzheimer-like pathology, and later persistent synapse elimination in intact brains. These results identify Cdk5 as the regulator of a novel rapid form of homeostasis at central synapses and p25 as the first molecule capable of initiating the early Alzheimer's synaptic pathology.
Collapse
Affiliation(s)
- Yanghui Sheng
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Undergraduate Class of 2011, Yuanpei Honors College, Peking University, Beijing100871, China
- Current address: Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lei Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Susan C. Su
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
49
|
Xue Q, Yu C, Wang Y, Liu L, Zhang K, Fang C, Liu F, Bian G, Song B, Yang A, Ju G, Wang J. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci Rep 2016; 6:26781. [PMID: 27221778 PMCID: PMC4879704 DOI: 10.1038/srep26781] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
A single microRNA (miRNA) can regulate expression of multiple proteins, and expression of an individual protein may be controlled by numerous miRNAs. This regulatory pattern strongly suggests that synergistic effects of miRNAs play critical roles in regulating biological processes. miR-9 and miR-124, two of the most abundant miRNAs in the mammalian nervous system, have important functions in neuronal development. In this study, we identified the small GTP-binding protein Rap2a as a common target of both miR-9 and miR-124. miR-9 and miR-124 together, but neither miRNA alone, strongly suppressed Rap2a, thereby promoting neuronal differentiation of neural stem cells (NSCs) and dendritic branching of differentiated neurons. Rap2a also diminished the dendritic complexity of mature neurons by decreasing the levels of pAKT and pGSK3β. Our results reveal a novel pathway in which miR-9 and miR-124 synergistically repress expression of Rap2a to sustain homeostatic dendritic complexity during neuronal development and maturation.
Collapse
Affiliation(s)
- Qian Xue
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Oral and maxillofacial surgery, Stomatology Hospital of Xi'an Jiaotong University, 710004, China
| | - Ling Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Chao Fang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Fangfang Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Ganlan Bian
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Bing Song
- Cardiff Institute of Tissue Engineering &Repair, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - Angang Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Gong Ju
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Jian Wang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
50
|
Zhu Z, Di J, Lu Z, Gao K, Zheng J. Rap2B GTPase: structure, functions, and regulation. Tumour Biol 2016; 37:7085-93. [PMID: 27012552 DOI: 10.1007/s13277-016-5033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.
Collapse
Affiliation(s)
- Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|