1
|
Li S, Li W, Miao Y, Gao M, Jia Y, Chen Z, Chen X, Pan T, Zhang S, Xing Z, Han S, Sun XL, Wei X, Liu Z, Zhou W, Wu W, Liu F, Han L, Zhu H, Ye H, Liu L, Li Y, Zhang P, Gong J, Tian Y, Ai Y, Cao P, Wu D, Qi X, Gui S, Wu QF. Modeling craniopharyngioma for drug screening reveals a neuronal mechanism for tumor growth. Sci Transl Med 2024; 16:eadn6763. [PMID: 39693408 DOI: 10.1126/scitranslmed.adn6763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/15/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Tumors occurring along the hypothalamus-pituitary axis receive axonal projection from neuroendocrine neurons, but it remains unclear whether neuroendocrine neuronal activity drives tumor expansion. Craniopharyngioma is a common suprasellar tumor with a propensity for invading the hypothalamus, leading to devastating endocrine and metabolic disorders. Here, we developed two autochthonous animal models that faithfully recapitulate the molecular pathology, clinical manifestations, and transcriptomic profiles of papillary craniopharyngioma. Using high-throughput drug screening, we identified 74 compounds with potent antitumor efficacy. The administration of (S)-amlodipine besylate achieved tumor regression in vivo, potentially by abrogating calcium transients and neuron-to-tumor chemical transmission. Chemogenetic manipulation of neuroendocrine neuronal activity bidirectionally regulated tumor cell growth in our mouse model, suggesting that craniopharyngioma hijacks hypothalamic neurons to promote tumor progression. These findings deepen our understanding of suprasellar tumor biology and offer promising avenues for clinical exploration of effective chemotherapies.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqi Miao
- Department of Endocrinology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | | | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Chen
- BGI Research, Beijing 102601, China
- BGI Research, Shenzhen 518083, China
| | | | - Shuangfeng Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhifang Xing
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shuping Han
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochan Wei
- BGI Research, Shenzhen 518083, China
- BGI Research, Hangzhou 310030, China
| | - Zhiming Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wentao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fangzheng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lei Han
- BGI Research, Hangzhou 310030, China
| | | | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | - Yinqing Li
- IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China
| | - Jian Gong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yongji Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Youwei Ai
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Di Wu
- Department of Endocrinology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
3
|
Yoshida K, Chambers JK, Uchida K. The relationships of platelet-derived growth factor, microvascular proliferation, and tumor cell proliferation in canine high-grade oligodendrogliomas: Immunohistochemistry of 45 tumors and an AFOB-01 xenograft mouse model. Vet Pathol 2024; 61:732-742. [PMID: 38577818 DOI: 10.1177/03009858241241793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
High-grade oligodendroglioma (HGOG) is the most common type of glioma in dogs and expresses platelet-derived growth factor receptor-α (PDGFR-α). Microvascular proliferation is often observed in HGOG. Therefore, the present study investigated the functional relationships between PDGFR-α, microvascular proliferation, and tumor cell proliferation in canine HGOG. The expression of PDGFR-α and PDGF-subunit A (PDGF-A) in tumor cells, as well as endothelial cells and pericytes of tumor-associated microvascular proliferations, in 45 canine HGOGs were examined immunohistochemically. Microvascular proliferation was observed in 24/45 cases (53%). PDGFR-α expression in tumor cells and microvascular proliferations was observed in 45/45 (100%) and 2/24 cases (8%), respectively. Furthermore, PDGF-A expression in tumor cells and microvascular proliferations was detected in 13/45 (29%) and 24/24 cases (100%), respectively. In vitro, stimulation of the canine HGOG cell line AOFB-01 with PDGF-A showed that the doubling time of AOFB-01 cells was significantly shorter with PDGF-A than without PDGF-A. Crenolanib (a PDGFR inhibitor) inhibited AOFB-01 cell proliferation. In vivo, the AOFB-01 xenograft mouse model was treated with crenolanib. Tumor xenografts were smaller in crenolanib-treated mice than in untreated control mice. PDGFR-α expression in tumor cells and PDGF-A expression in microvascular proliferations and tumor cells suggest autocrine and paracrine effects of PDGF-A in canine HGOG. The results of in vitro assays indicate that canine HGOG expresses functional PDGFR-α, which responds to PDGF-A. Therefore, PDGF-A produced by microvascular proliferations and tumor cells may promote the proliferation of PDGFR-α-expressing tumor cells in canine HGOG. PDGFR-α signaling has potential as a therapeutic target.
Collapse
|
4
|
Xu S, Zhang X, Li Z, Liu C, Liu Q, Chai H, Yao H, Luo Y, Li S, Li C. Characteristics of quiescent adult neural stem cells induced by the bFGF/BMP4 combination or BMP4 alone in vitro. Front Cell Neurosci 2024; 18:1391556. [PMID: 38841203 PMCID: PMC11151745 DOI: 10.3389/fncel.2024.1391556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Bone morphogenetic protein-4 (BMP4) is involved in regulation of neural stem cells (NSCs) proliferation, differentiation, migration and survival. It was previously thought that the treatment of NSCs with BMP4 alone induces astrocytes, whereas the treatment of NSCs with the bFGF/BMP4 combination induces quiescent neural stem cells (qNSCs). In this study, we performed bulk RNA sequencing (RNA-Seq) to compare the transcriptome profiles of BMP4-treated NSCs and bFGF/BMP4-treated NSCs, and found that both NSCs treated by these two methods were Sox2 positive qNSCs which were able to generate neurospheres. However, NSCs treated by those two methods exhibited different characteristics in state and the potential for neuronal differentiation based on transcriptome analysis and experimental results. We found that BMP4-treated NSCs tended to be in a deeper quiescent state than bFGF/BMP4-treated NSCs as the percentage of ki67-positive cells were lower in BMP4-treated NSCs. And after exposure to differentiated environment, bFGF/BMP4-treated NSCs generated more DCX-positive immature neurons and MAP2-positive neurons than BMP4-treated NSCs. Our study characterized qNSCs treated with BMP4 alone and bFGF/BMP4 combination, providing a reference for the scientific use of BMP4 and bFGF/BMP4-induced qNSCs models.
Collapse
Affiliation(s)
- Sutong Xu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhuoqun Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Liu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongkai Yao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Fu J, Feng Y, Sun Y, Yi R, Tian J, Zhao W, Sun D, Zhang C. A Multi-Drug Concentration Gradient Mixing Chip: A Novel Platform for High-Throughput Drug Combination Screening. BIOSENSORS 2024; 14:212. [PMID: 38785686 PMCID: PMC11117479 DOI: 10.3390/bios14050212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Combinatorial drug therapy has emerged as a critically important strategy in medical research and patient treatment and involves the use of multiple drugs in concert to achieve a synergistic effect. This approach can enhance therapeutic efficacy while simultaneously mitigating adverse side effects. However, the process of identifying optimal drug combinations, including their compositions and dosages, is often a complex, costly, and time-intensive endeavor. To surmount these hurdles, we propose a novel microfluidic device capable of simultaneously generating multiple drug concentration gradients across an interlinked array of culture chambers. This innovative setup allows for the real-time monitoring of live cell responses. With minimal effort, researchers can now explore the concentration-dependent effects of single-agent and combination drug therapies. Taking neural stem cells (NSCs) as a case study, we examined the impacts of various growth factors-epithelial growth factor (EGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF)-on the differentiation of NSCs. Our findings indicate that an overdose of any single growth factor leads to an upsurge in the proportion of differentiated NSCs. Interestingly, the regulatory effects of these growth factors can be modulated by the introduction of additional growth factors, whether singly or in combination. Notably, a reduced concentration of these additional factors resulted in a decreased number of differentiated NSCs. Our results affirm that the successful application of this microfluidic device for the generation of multi-drug concentration gradients has substantial potential to revolutionize drug combination screening. This advancement promises to streamline the process and accelerate the discovery of effective therapeutic drug combinations.
Collapse
Affiliation(s)
- Jiahao Fu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
| | - Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
| | - Yu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710127, China (R.Y.)
| | - Ruiya Yi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710127, China (R.Y.)
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710127, China (R.Y.)
- Huaxin Microfish Biotechnology Co., Ltd., Taicang 215400, China
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi’an 710127, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
- Huaxin Microfish Biotechnology Co., Ltd., Taicang 215400, China
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi’an 710127, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
- Huaxin Microfish Biotechnology Co., Ltd., Taicang 215400, China
| |
Collapse
|
6
|
Miller CR, Hjelmeland AB. Breaking the feed forward inflammatory cytokine loop in the tumor microenvironment of PDGFB-driven glioblastomas. J Clin Invest 2023; 133:e175127. [PMID: 37966120 PMCID: PMC10645375 DOI: 10.1172/jci175127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Glioblastoma (GBM) tumor-associated macrophages (TAMs) provide a major immune cell population contributing to growth and immunosuppression via the production of proinflammatory factors, including IL-1. In this issue of the JCI, Chen, Giotti, and colleagues investigated loss of ll1b in the immune tumor microenvironment (TME) in GBM models driven by PDGFB expression and Nf1 knockdown. Survival was only improved in PDGFB-driven GBM models, suggesting that tumor cell genotype influenced the immune TME. IL-1β in the TME increased PDGFB-driven GBM growth by increasing tumor-derived NF-κB, expression of monocyte chemoattractants, and increased infiltration of bone marrow-derived myeloid cells (BMDMs). In contrast, no requirement for IL-1β was evident in Nf1-silenced tumors due to high basal levels of NF-κB and monocyte chemoattractants and increased infiltration of BMDM and TAMs. Notably, treatment of mice bearing PDGFB-driven GBM with anti-IL-1β or an IL1R1 antagonist extended survival. These findings suggest that effective clinical immunotherapy may require differential targeting strategies.
Collapse
Affiliation(s)
- C. Ryan Miller
- Department of Pathology, Division of Neuropathology and O’Neal Comprehensive Cancer Center, and
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Murnan KM, Horbinski C, Stegh AH. Redox Homeostasis and Beyond: The Role of Wild-Type Isocitrate Dehydrogenases for the Pathogenesis of Glioblastoma. Antioxid Redox Signal 2023; 39:923-941. [PMID: 37132598 PMCID: PMC10654994 DOI: 10.1089/ars.2023.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Significance: Glioblastoma is an aggressive and devastating brain tumor characterized by a dismal prognosis and resistance to therapeutic intervention. To support catabolic processes critical for unabated cellular growth and defend against harmful reactive oxygen species, glioblastoma tumors upregulate the expression of wild-type isocitrate dehydrogenases (IDHs). IDH enzymes catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), NAD(P)H, and CO2. On molecular levels, IDHs epigenetically control gene expression through effects on α-KG-dependent dioxygenases, maintain redox balance, and promote anaplerosis by providing cells with NADPH and precursor substrates for macromolecular synthesis. Recent Advances: While gain-of-function mutations in IDH1 and IDH2 represent one of the most comprehensively studied mechanisms of IDH pathogenic effects, recent studies identified wild-type IDHs as critical regulators of normal organ physiology and, when transcriptionally induced or down regulated, as contributing to glioblastoma progression. Critical Issues: Here, we will discuss molecular mechanisms of how wild-type IDHs control glioma pathogenesis, including the regulation of oxidative stress and de novo lipid biosynthesis, and provide an overview of current and future research directives that aim to fully characterize wild-type IDH-driven metabolic reprogramming and its contribution to the pathogenesis of glioblastoma. Future Directions: Future studies are required to further dissect mechanisms of metabolic and epigenomic reprogramming in tumors and the tumor microenvironment, and to develop pharmacological approaches to inhibit wild-type IDH function. Antioxid. Redox Signal. 39, 923-941.
Collapse
Affiliation(s)
- Kevin M. Murnan
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Malnati Brain Tumor Institute, Northwestern University, Chicago, Illinois, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Alexander H. Stegh
- Department of Neurological Surgery, The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Sun MA, Yang R, Liu H, Wang W, Song X, Hu B, Reynolds N, Roso K, Chen LH, Greer PK, Keir ST, McLendon RE, Cheng SY, Bigner DD, Ashley DM, Pirozzi CJ, He Y. Repurposing Clemastine to Target Glioblastoma Cell Stemness. Cancers (Basel) 2023; 15:4619. [PMID: 37760589 PMCID: PMC10526458 DOI: 10.3390/cancers15184619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Brain tumor-initiating cells (BTICs) and tumor cell plasticity promote glioblastoma (GBM) progression. Here, we demonstrate that clemastine, an over-the-counter drug for treating hay fever and allergy symptoms, effectively attenuated the stemness and suppressed the propagation of primary BTIC cultures bearing PDGFRA amplification. These effects on BTICs were accompanied by altered gene expression profiling indicative of their more differentiated states, resonating with the activity of clemastine in promoting the differentiation of normal oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes. Functional assays for pharmacological targets of clemastine revealed that the Emopamil Binding Protein (EBP), an enzyme in the cholesterol biosynthesis pathway, is essential for BTIC propagation and a target that mediates the suppressive effects of clemastine. Finally, we showed that a neural stem cell-derived mouse glioma model displaying predominantly proneural features was similarly susceptible to clemastine treatment. Collectively, these results identify pathways essential for maintaining the stemness and progenitor features of GBMs, uncover BTIC dependency on EBP, and suggest that non-oncology, low-toxicity drugs with OPC differentiation-promoting activity can be repurposed to target GBM stemness and aid in their treatment.
Collapse
Affiliation(s)
- Michael A. Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Pathology Graduate Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Heng Liu
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Pathology Graduate Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Wenzhe Wang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Nathan Reynolds
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lee H. Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paula K. Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen T. Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Roger E. McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Darell D. Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David M. Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher J. Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Imitola J, Hollingsworth EW, Watanabe F, Olah M, Elyaman W, Starossom S, Kivisäkk P, Khoury SJ. Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation. Front Cell Neurosci 2023; 17:1156802. [PMID: 37663126 PMCID: PMC10469489 DOI: 10.3389/fncel.2023.1156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1-/- NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS.
Collapse
Affiliation(s)
- Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ethan W. Hollingsworth
- Medical Scientist Training Program, University of California, Irvine, Irvine, CA, United States
| | - Fumihiro Watanabe
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Marta Olah
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Wassim Elyaman
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Sarah Starossom
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Pia Kivisäkk
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Alzheimer’s Clinical and Translational Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Samia J. Khoury
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
10
|
Wei H, Wu X, Withrow J, Cuevas-Diaz Duran R, Singh S, Chaboub LS, Rakshit J, Mejia J, Rolfe A, Herrera JJ, Horner PJ, Wu JQ. Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury. Cell Rep 2023; 42:112486. [PMID: 37149868 PMCID: PMC10511029 DOI: 10.1016/j.celrep.2023.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/12/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have revealed the heterogeneous nature of astrocytes; however, how diverse constituents of astrocyte-lineage cells are regulated in adult spinal cord after injury and contribute to regeneration remains elusive. We perform single-cell RNA sequencing of GFAP-expressing cells from sub-chronic spinal cord injury models and identify and compare with the subpopulations in acute-stage data. We find subpopulations with distinct functional enrichment and their identities defined by subpopulation-specific transcription factors and regulons. Immunohistochemistry, RNAscope experiments, and quantification by stereology verify the molecular signature, location, and morphology of potential resident neural progenitors or neural stem cells in the adult spinal cord before and after injury and uncover the populations of the intermediate cells enriched in neuronal genes that could potentially transition into other subpopulations. This study has expanded the knowledge of the heterogeneity and cell state transition of glial progenitors in adult spinal cord before and after injury.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, Mexico
| | - Simranjit Singh
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Julio Mejia
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Andrew Rolfe
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Nakagomi T, Nakano-Doi A, Kubo S, Sawano T, Kuramoto Y, Yamahara K, Matsuyama T, Takagi T, Doe N, Yoshimura S. Transplantation of Human Brain-Derived Ischemia-Induced Multipotent Stem Cells Ameliorates Neurological Dysfunction in Mice After Stroke. Stem Cells Transl Med 2023:7177376. [PMID: 37221140 DOI: 10.1093/stcltm/szad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
We recently demonstrated that injury/ischemia-induced multipotent stem cells (iSCs) develop within post-stroke human brains. Because iSCs are stem cells induced under pathological conditions, such as ischemic stroke, the use of human brain-derived iSCs (h-iSCs) may represent a novel therapy for stroke patients. We performed a preclinical study by transplanting h-iSCs transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion (MCAO). Compared with PBS-treated controls, h-iSC transplantation significantly improved neurological function. To identify the underlying mechanism, green fluorescent protein (GFP)-labeled h-iSCs were transplanted into post-stroke mouse brains. Immunohistochemistry revealed that GFP+ h-iSCs survived around the ischemic areas and some differentiated into mature neuronal cells. To determine the effect on endogenous neural stem/progenitor cells (NSPCs) by h-iSC transplantation, mCherry-labeled h-iSCs were administered to Nestin-GFP transgenic mice which were subjected to MCAO. As a result, many GFP+ NSPCs were observed around the injured sites compared with controls, indicating that mCherry+ h-iSCs activate GFP+ endogenous NSPCs. In support of these findings, coculture studies revealed that the presence of h-iSCs promotes the proliferation of endogenous NSPCs and increases neurogenesis. In addition, coculture experiments indicated neuronal network formation between h-iSC- and NSPC-derived neurons. These results suggest that h-iSCs exert positive effects on neural regeneration through not only neural replacement by grafted cells but also neurogenesis by activated endogenous NSPCs. Thus, h-iSCs have the potential to be a novel source of cell therapy for stroke patients.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Kenichi Yamahara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), Chuo-ku, Kobe, Hyogo, Japan
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| |
Collapse
|
12
|
Cruz-Mendoza F, Luquin S, García-Estrada J, Fernández-Quezada D, Jauregui-Huerta F. Acoustic Stress Induces Opposite Proliferative/Transformative Effects in Hippocampal Glia. Int J Mol Sci 2023; 24:ijms24065520. [PMID: 36982594 PMCID: PMC10058072 DOI: 10.3390/ijms24065520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The hippocampus is a brain region crucially involved in regulating stress responses and highly sensitive to environmental changes, with elevated proliferative and adaptive activity of neurons and glial cells. Despite the prevalence of environmental noise as a stressor, its effects on hippocampal cytoarchitecture remain largely unknown. In this study, we aimed to investigate the impact of acoustic stress on hippocampal proliferation and glial cytoarchitecture in adult male rats, using environmental noise as a stress model. After 21 days of noise exposure, our results showed abnormal cellular proliferation in the hippocampus, with an inverse effect on the proliferation ratios of astrocytes and microglia. Both cell lineages also displayed atrophic morphologies with fewer processes and lower densities in the noise-stressed animals. Our findings suggest that, stress not only affects neurogenesis and neuronal death in the hippocampus, but also the proliferation ratio, cell density, and morphology of glial cells, potentially triggering an inflammatory-like response that compromises their homeostatic and repair functions.
Collapse
|
13
|
Molinari YA, Byrne AJ, Pérez MJ, Silvestroff L, Franco PG. The Effects of Cuprizone on Murine Subventricular Zone-Derived Neural Stem Cells and Progenitor Cells Grown as Neurospheres. Mol Neurobiol 2023; 60:1195-1213. [PMID: 36424468 DOI: 10.1007/s12035-022-03096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
Despite the extensive use of the cuprizone (CPZ) demyelination animal model, there is little evidence regarding the effects of CPZ on a cellular level. Initial studies have suggested that oligodendrocytes (OL) are the main cell targets for CPZ toxicity. However, recent data have revealed additional effects on neural stem cells and progenitor cells (NSC/NPC), which constitute a reservoir for OL regeneration during brain remyelination. We cultured NSC/NPC as neurospheres to investigate CPZ effects on cell mechanisms which are thought to be involved in demyelination and remyelination processes in vivo. Proliferating NSC/NPC cultures exposed to CPZ showed overproduction of intracellular reactive oxygen species and increased progenitor migration at the expense of a significant inhibition of cell proliferation. Although NSC/NPC survival was not affected by CPZ in proliferative conditions, we found that CPZ-treated cultures undergoing cell differentiation were more prone to cell death than controls. The commitment and cell differentiation towards neural lineages did not seem to be affected by CPZ, as shown by the conserved proportions of OL, astrocytes, and neurons. Nevertheless, when CPZ treatment was performed after cell differentiation, we detected a significant reduction in the number and the morphological complexity of OL, astrogliosis, and neuronal damage. We conclude that, in addition to damaging mature OL, CPZ also reduces NSC/NPC proliferation and activates progenitor migration. These results shed light on CPZ direct effects on NSC proliferation and the progression of in vitro differentiation.
Collapse
Affiliation(s)
- Yamila Azul Molinari
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Agustín Jesús Byrne
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - María Julia Pérez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Lucas Silvestroff
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Paula Gabriela Franco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Mitchell K, Sprowls SA, Arora S, Shakya S, Silver DJ, Goins CM, Wallace L, Roversi G, Schafer RE, Kay K, Miller TE, Lauko A, Bassett J, Kashyap A, D'Amato Kass J, Mulkearns-Hubert EE, Johnson S, Alvarado J, Rich JN, Holland EC, Paddison PJ, Patel AP, Stauffer SR, Hubert CG, Lathia JD. WDR5 represents a therapeutically exploitable target for cancer stem cells in glioblastoma. Genes Dev 2023; 37:86-102. [PMID: 36732025 PMCID: PMC10069451 DOI: 10.1101/gad.349803.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
| | - Samuel A Sprowls
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sajina Shakya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Christopher M Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA;
| | - Lisa Wallace
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Gustavo Roversi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rachel E Schafer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kristen Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Adam Lauko
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - John Bassett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anjali Kashyap
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Jonathan D'Amato Kass
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Erin E Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Sadie Johnson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Joseph Alvarado
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anoop P Patel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Christopher G Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA;
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio 44106, USA
| |
Collapse
|
15
|
Stem Cells and Targeted Gene Therapy in Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:137-152. [PMID: 36587386 DOI: 10.1007/978-3-031-14732-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The CNS tumors, in particular those with malignant characteristics, are prominent burdens around the world with high mortality and low cure rate. Given that, researchers were curious about novel treatments with promising effectiveness which resulted in shifting the dogmatism era of neurogenesis to the current concept of postnatal neurogenesis. Considering all existing stem cells, various strategies are available for treating CNS cancers, including hematopoietic stem cells transplantation, mesenchymal stem cells transplantation, neural stem cells (NSCs) transplantation, and using stem cells as genetic carriers called "suicide gene therapy". Despite some complications, this ongoing therapeutic method has succeeded in decreasing tumor volume, inhibiting tumor progression, and enhancing patients' survival. These approaches could lead to acceptable results, relatively better safety, and tolerable side effects compared to conventional chemo and radiotherapy. Accordingly, this treatment will be applicable to a wide range of CNS tumors in the near future. Furthermore, tumor genomic analysis and understanding of the underlying molecular mechanisms will help researchers determine patient selection criteria for targeted gene therapy.
Collapse
|
16
|
Miki S, Koga T, Mckinney AM, Parisian AD, Tadokoro T, Vadla R, Marsala M, Hevner RF, Costello JF, Furnari F. TERT promoter C228T mutation in neural progenitors confers growth advantage following telomere shortening in vivo. Neuro Oncol 2022; 24:2063-2075. [PMID: 35325218 PMCID: PMC9713509 DOI: 10.1093/neuonc/noac080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Heterozygous TERT (telomerase reverse transcriptase) promoter mutations (TPMs) facilitate TERT expression and are the most frequent mutation in glioblastoma (GBM). A recent analysis revealed this mutation is one of the earliest events in gliomagenesis. However, no appropriate human models have been engineered to study the role of this mutation in the initiation of these tumors. METHOD We established GBM models by introducing the heterozygous TPM in human induced pluripotent stem cells (hiPSCs) using a two-step targeting approach in the context of GBM genetic alterations, CDKN2A/B and PTEN deletion, and EGFRvIII overexpression. The impact of the mutation was evaluated through the in vivo passage and in vitro experiment and analysis. RESULTS Orthotopic injection of neuronal precursor cells (NPCs) derived from hiPSCs with the TPM into immunodeficient mice did not enhance tumorigenesis compared to TERT promoter wild type NPCs at initial in vivo passage presumably due to relatively long telomeres. However, the mutation recruited GA-Binding Protein and engendered low-level TERT expression resulting in enhanced tumorigenesis and maintenance of short telomeres upon secondary passage as observed in human GBM. These results provide the first insights regarding increased tumorigenesis upon introducing a TPM compared to isogenic controls without TPMs. CONCLUSION Our novel GBM models presented the growth advantage of heterozygous TPMs for the first time in the context of GBM driver mutations relative to isogenic controls, thereby allowing for the identification and validation of TERT promoter-specific vulnerabilities in a genetically accurate background.
Collapse
Affiliation(s)
- Shunichiro Miki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew M Mckinney
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alison D Parisian
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Raghavendra Vadla
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Frank Furnari
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Laboratory of Tumor Biology, Ludwig Cancer Research, San Diego Branch, La Jolla, California, USA
| |
Collapse
|
17
|
Liu LL, van Rijn RM, Zheng W. Copper Modulates Adult Neurogenesis in Brain Subventricular Zone. Int J Mol Sci 2022; 23:ijms23179888. [PMID: 36077284 PMCID: PMC9456150 DOI: 10.3390/ijms23179888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The subventricular zone (SVZ) in lateral ventricles is the largest neurogenic region in adult brain containing high amounts of copper (Cu). This study aims to define the role of Cu in adult neurogenesis by chelating labile Cu ions using a well-established Cu chelator D-Penicillamine (D-Pen). A neurosphere model derived from adult mouse SVZ tissues was established and characterized for its functionality with regards to neural stem/progenitor cells (NSPCs). Applying D-Pen in cultured neurospheres significantly reduced intracellular Cu levels and reversed the Cu-induced suppression of NSPC’s differentiation and migration. An in vivo intracerebroventricular (ICV) infusion model was subsequently established to infuse D-Pen directly into the lateral ventricle. Metal analyses revealed a selective reduction of Cu in SVZ by 13.1% (p = 0.19) and 21.4% (p < 0.05) following D-Pen infusions at low (0.075 μg/h) and high (0.75 μg/h) doses for 28 days, respectively, compared to saline-infused controls. Immunohistochemical studies revealed that the 7-day, low-dose D-Pen infusion significantly increased Ki67(+)/Nestin(+) cell counts in SVZ by 28% (p < 0.05). Quantification of BrdU(+)/doublecortin (DCX)(+) newborn neuroblasts in the rostral migration stream (RMS) and olfactory bulb (OB) further revealed that the short-term, low-dose D-Pen infusion, as compared with saline-infused controls, resulted in more newborn neuroblasts in OB, while the high-dose D-Pen infusion showed fewer newborn neuroblasts in OB but with more arrested in the RMS. Long-term (28-day) infusion revealed similar outcomes. The qPCR data from neurosphere experiments revealed altered expressions of mRNAs encoding key proteins known to regulate SVZ adult neurogenesis, including, but not limited to, Shh, Dlx2, and Slit1, in response to the changed Cu level in neurospheres. Further immunohistochemical data indicated that Cu chelation also altered the expression of high-affinity copper uptake protein 1 (CTR1) and metallothionein-3 (MT3) in the SVZ as well as CTR1 in the choroid plexus, a tissue regulating brain Cu homeostasis. Taken together, this study provides first-hand evidence that a high Cu level in SVZ appears likely to maintain the stability of adult neurogenesis in this neurogenic zone.
Collapse
Affiliation(s)
- Luke L. Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
18
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
19
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
20
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
21
|
Hiramoto T, Sumiyoshi A, Yamauchi T, Tanigaki K, Shi Q, Kang G, Ryoke R, Nonaka H, Enomoto S, Izumi T, Bhat MA, Kawashima R, Hiroi N. Tbx1, a gene encoded in 22q11.2 copy number variant, is a link between alterations in fimbria myelination and cognitive speed in mice. Mol Psychiatry 2022; 27:929-938. [PMID: 34737458 PMCID: PMC9054676 DOI: 10.1038/s41380-021-01318-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Copy number variants (CNVs) have provided a reliable entry point to identify the structural correlates of atypical cognitive development. Hemizygous deletion of human chromosome 22q11.2 is associated with impaired cognitive function; however, the mechanisms by which the CNVs contribute to cognitive deficits via diverse structural alterations in the brain remain unclear. This study aimed to determine the cellular basis of the link between alterations in brain structure and cognitive functions in mice with a heterozygous deletion of Tbx1, one of the 22q11.2-encoded genes. Ex vivo whole-brain diffusion-tensor imaging (DTI)-magnetic resonance imaging (MRI) in Tbx1 heterozygous mice indicated that the fimbria was the only region with significant myelin alteration. Electron microscopic and histological analyses showed that Tbx1 heterozygous mice exhibited an apparent absence of large myelinated axons and thicker myelin in medium axons in the fimbria, resulting in an overall decrease in myelin. The fimbria of Tbx1 heterozygous mice showed reduced mRNA levels of Ng2, a gene required to produce oligodendrocyte precursor cells. Moreover, postnatal progenitor cells derived from the subventricular zone, a source of oligodendrocytes in the fimbria, produced fewer oligodendrocytes in vitro. Behavioral analyses of these mice showed selectively slower acquisition of spatial memory and cognitive flexibility with no effects on their accuracy or sensory or motor capacities. Our findings provide a genetic and cellular basis for the compromised cognitive speed in patients with 22q11.2 hemizygous deletion.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, 5-4-30 Moriyama, Moriyama-shi, Shiga, Japan
| | - Qian Shi
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Shingo Enomoto
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takeshi Izumi
- Department of Pharmacology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ryuta Kawashima
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
22
|
Budiariati V, Rinendyaputri R, Noviantari A, Haq NMD, Budiono D, Pristihadi DN, Juliandi B, Fahrudin M, Boediono A. Conditioned medium of E17 rat brain cells induced differentiation of primary colony of mice blastocyst into neuron-like cells. J Vet Sci 2021; 22:e86. [PMID: 34854268 PMCID: PMC8636651 DOI: 10.4142/jvs.2021.22.e86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background Conditioned medium is the medium obtained from certain cultured cells and contained secretome from the cells. The secretome, which can be in the form of growth factors, cytokines, exosomes, or other proteins secreted by the cells, can induce the differentiation of cells that still have pluripotent or multipotent properties. Objectives This study examined the effects of conditioned medium derived from E17 rat brain cells on cells with pluripotent properties. Methods The conditioned medium used in this study originated from E17 rat brain cells. The CM was used to induce the differentiation of primary colonies of mice blastocysts. Primary colonies were stained with alkaline phosphatase to analyze the pluripotency. The morphological changes in the colonies were examined, and the colonies were stained with GFAP and Neu-N markers on days two and seven after adding the conditioned medium. Results The conditioned medium could differentiate the primary colony, beginning with the formation of embryoid-body-like structure; round GFAP positive cells were identified. Finally, neuron-like cells testing positive for Neu-N were observed on the seventh day after adding the conditioned medium. Conclusions Conditioned medium from different species, in this case, E17 rat brain cells, induced and promoted the differentiation of the primary colony from mice blastocysts into neuron-like cells. The addition of CM mediated neurite growth in the differentiation process.
Collapse
Affiliation(s)
- Vista Budiariati
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ratih Rinendyaputri
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health Republic of Indonesia, Jakarta 10560, Indonesia
| | - Ariyani Noviantari
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health Republic of Indonesia, Jakarta 10560, Indonesia
| | - Noer Muhammad Dliyaul Haq
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Dwi Budiono
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Diah Nugrahani Pristihadi
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Berry Juliandi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Mokhamad Fahrudin
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Arief Boediono
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
23
|
Hongjin W, Han C, Baoxiang J, Shiqi Y, Xiaoyu X. Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Rev Neurosci 2021; 31:143-159. [PMID: 31539363 DOI: 10.1515/revneuro-2019-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
The discovery of neural stem cells (NSCs) and their microenvironment, the NSC niche, brought new therapeutic strategies through neurogenesis and angiogenesis for stroke and most neurodegenerative diseases, including Alzheimer's disease. Based on the close links between NSCs and endothelial cells, the integration of neurogenesis and angiogenesis of the NSC niche is also a promising area to the neurovascular unit (NVU) modeling and is now offering a powerful tool to advance our understanding of the brain. In this review, critical aspects of the NVU and model systems are discussed. First, we briefly describe the interaction of each part in the NSC niche. Second, we introduce the co-culture system, microfluidic platforms, and stem cell-derived 3D reconstitution used in NVU modeling based on the close relations between NSCs and endothelial cells, and various characteristics of cell interactions in these systems are also described. Finally, we address the challenges in modeling the NVU that can potentially be overcome by employing strategies for advanced biomaterials and stem cell co-culture use. Based on these approaches, researchers will continue to develop predictable technologies to control the fate of stem cells, achieve accurate screening of drugs for the nervous system, and advance the clinical application of NVU models.
Collapse
Affiliation(s)
- Wang Hongjin
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Chen Han
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Jiang Baoxiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Yu Shiqi
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Xu Xiaoyu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| |
Collapse
|
24
|
Peng G, Wang Y, Ge P, Bailey C, Zhang P, Zhang D, Meng Z, Qi C, Chen Q, Chen J, Niu J, Zheng P, Liu Y, Liu Y. The HIF1α-PDGFD-PDGFRα axis controls glioblastoma growth at normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:278. [PMID: 34470658 PMCID: PMC8411541 DOI: 10.1186/s13046-021-02082-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
Background Glioblastoma multiforme (GBM), a lethal brain tumor, remains the most daunting challenge in cancer therapy. Overexpression and constitutive activation of PDGFs and PDGFRα are observed in most GBM; however, available inhibitors targeting isolated signaling pathways are minimally effective. Therefore, better understanding of crucial mechanisms underlying GBM is needed for developing more effective targeted therapies. Methods Target genes controlled by HIF1α in GBM were identified by analysis of TCGA database and by RNA-sequencing of GBM cells with HIF1α knockout by sgRNA-Cas9 method. Functional roles of HIF1α, PDGFs and PDGFRs were elucidated by loss- or gain-of-function assays or chemical inhibitors, and compared in response to oxygen tension. Pharmacological efficacy and gene expression in mice with intracranial xenografts of primary GBM were analyzed by bioluminescence imaging and immunofluorescence. Results HIF1α binds the PDGFD proximal promoter and PDGFRA intron enhancers in GBM cells under normoxia or mild-hypoxia to induce their expression and maintain constitutive activation of AKT signaling, which in turn increases HIF1α protein level and activity. Paradoxically, severe hypoxia abrogates PDGFRα expression despite enhancing HIF1α accumulation and corresponding PDGF-D expression. Knockout of HIF1A, PDGFD or PDGFRA in U251 cells inhibits cell growth and invasion in vitro and eradicates tumor growth in vivo. HIF1A knockdown in primary GBM extends survival of xenograft mice, whereas PDGFD overexpression in GL261 shortens survival. HIF1α inhibitor Echinomycin induces GBM cell apoptosis and effectively inhibits growth of GBM in vivo by simultaneously targeting HIF1α-PDGFD/PDGFRα-AKT feedforward pathway. Conclusions HIF1α orchestrates expression of PDGF-D and PDGFRα for constitutive activation of AKT pathway and is crucial for GBM malignancy. Therefore, therapies targeting HIF1α should provide an effective treatment for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02082-7.
Collapse
Affiliation(s)
- Gong Peng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yin Wang
- Division of Immunotherapy, Department of Surgery and Comprehensive Cancer Center, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Pengfei Ge
- Department of Neurosurgery, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Christopher Bailey
- Division of Immunotherapy, Department of Surgery and Comprehensive Cancer Center, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Cancer for Children's Health, Beijing, China
| | - Di Zhang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Cancer for Children's Health, Beijing, China
| | - Zhaoli Meng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Chong Qi
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Qian Chen
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingtao Chen
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Junqi Niu
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Pan Zheng
- Division of Immunotherapy, Department of Surgery and Comprehensive Cancer Center, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.,OncoC4, Inc., Rockville, MD, USA
| | - Yang Liu
- Division of Immunotherapy, Department of Surgery and Comprehensive Cancer Center, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA. .,OncoC4, Inc., Rockville, MD, USA.
| | - Yan Liu
- Division of Immunotherapy, Department of Surgery and Comprehensive Cancer Center, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
25
|
Lan YL, Zhu Y, Chen G, Zhang J. The Promoting Effect of Traumatic Brain Injury on the Incidence and Progression of Glioma: A Review of Clinical and Experimental Research. J Inflamm Res 2021; 14:3707-3720. [PMID: 34377008 PMCID: PMC8350857 DOI: 10.2147/jir.s325678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The role of traumatic brain injury in the development of glioma is highly controversial since first presented. This is not unexpected because traumatic brain injuries are overwhelmingly more common than glioma. However, the causes of post-traumatic glioma have been long discussed and still warrant further research. In this review, we have presented an overview of previous cohort studies and case–control studies. We have summarized the roles of microglial cells, macrophages, astrocytes, and stem cells in post-traumatic glioma formation and development, and reviewed various carcinogenic factors involved during traumatic brain injury, especially those reported in experimental studies indicating a relationship with glioma progression. Besides, traumatic brain injury and glioma share several common pathways, including inflammation and oxidative stress; however, the exact mechanism underlying this co-occurrence is yet to be discovered. In this review, we have summarized current epidemiological studies, clinical reports, pathophysiological research, as well as investigations evaluating the probable causes of co-occurrence and treatment possibilities. More efforts should be directed toward elucidating the relationship between traumatic brain injury and glioma, which could likely lead to promising pharmacological interventions towards designing therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
26
|
Tang X, Zuo C, Fang P, Liu G, Qiu Y, Huang Y, Tang R. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front Oncol 2021; 11:701291. [PMID: 34307170 PMCID: PMC8297686 DOI: 10.3389/fonc.2021.701291] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) remains the most lethal and common primary brain tumor, even after treatment with multiple therapies, such as surgical resection, chemotherapy, and radiation. Although great advances in medical development and improvements in therapeutic methods of GBM have led to a certain extension of the median survival time of patients, prognosis remains poor. The primary cause of its dismal outcomes is the high rate of tumor recurrence, which is closely related to its resistance to standard therapies. During the last decade, glioblastoma stem cells (GSCs) have been successfully isolated from GBM, and it has been demonstrated that these cells are likely to play an indispensable role in the formation, maintenance, and recurrence of GBM tumors, indicating that GSCs are a crucial target for treatment. Herein, we summarize the current knowledge regarding GSCs, their related signaling pathways, resistance mechanisms, crosstalk linking mechanisms, and microenvironment or niche. Subsequently, we present a framework of targeted therapy for GSCs based on direct strategies, including blockade of the pathways necessary to overcome resistance or prevent their function, promotion of GSC differentiation, virotherapy, and indirect strategies, including targeting the perivascular, hypoxic, and immune niches of the GSCs. In summary, targeting GSCs provides a tremendous opportunity for revolutionary approaches to improve the prognosis and therapy of GBM, despite a variety of challenges.
Collapse
Affiliation(s)
- Xuejia Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China.,Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chenghai Zuo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guojing Liu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Qiu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Department of Neurosurgery, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Ripari LB, Norton ES, Bodoque-Villar R, Jeanneret S, Lara-Velazquez M, Carrano A, Zarco N, Vazquez-Ramos CA, Quiñones-Hinojosa A, de la Rosa-Prieto C, Guerrero-Cázares H. Glioblastoma Proximity to the Lateral Ventricle Alters Neurogenic Cell Populations of the Subventricular Zone. Front Oncol 2021; 11:650316. [PMID: 34268110 PMCID: PMC8277421 DOI: 10.3389/fonc.2021.650316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022] Open
Abstract
Despite current strategies combining surgery, radiation, and chemotherapy, glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Tumor location plays a key role in the prognosis of patients, with GBM tumors located in close proximity to the lateral ventricles (LVs) resulting in worse survival expectancy and higher incidence of distal recurrence. Though the reason for worse prognosis in these patients remains unknown, it may be due to proximity to the subventricular zone (SVZ) neurogenic niche contained within the lateral wall of the LVs. We present a novel rodent model to analyze the bidirectional signaling between GBM tumors and cells contained within the SVZ. Patient-derived GBM cells expressing GFP and luciferase were engrafted at locations proximal, intermediate, and distal to the LVs in immunosuppressed mice. Mice were either sacrificed after 4 weeks for immunohistochemical analysis of the tumor and SVZ or maintained for survival analysis. Analysis of the GFP+ tumor bulk revealed that GBM tumors proximal to the LV show increased levels of proliferation and tumor growth than LV-distal counterparts and is accompanied by decreased median survival. Conversely, numbers of innate proliferative cells, neural stem cells (NSCs), migratory cells and progenitors contained within the SVZ are decreased as a result of GBM proximity to the LV. These results indicate that our rodent model is able to accurately recapitulate several of the clinical aspects of LV-associated GBM, including increased tumor growth and decreased median survival. Additionally, we have found the neurogenic and cell division process of the SVZ in these adult mice is negatively influenced according to the presence and proximity of the tumor mass. This model will be invaluable for further investigation into the bidirectional signaling between GBM and the neurogenic cell populations of the SVZ.
Collapse
Affiliation(s)
- Luisina B. Ripari
- Department of Medical Sciences, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Emily S. Norton
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, United States
- Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Raquel Bodoque-Villar
- Translational Research Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Stephanie Jeanneret
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
- Faculty of Psychology and Sciences of Education, University of Geneva, Geneva, Switzerland
| | | | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | | | | | - Carlos de la Rosa-Prieto
- Department of Medical Sciences, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|
28
|
Micali N, Kim SK, Diaz-Bustamante M, Stein-O'Brien G, Seo S, Shin JH, Rash BG, Ma S, Wang Y, Olivares NA, Arellano JI, Maynard KR, Fertig EJ, Cross AJ, Bürli RW, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Rakic P, Colantuoni C, McKay RD. Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates. Cell Rep 2021; 31:107599. [PMID: 32375049 PMCID: PMC7357345 DOI: 10.1016/j.celrep.2020.107599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/22/2019] [Accepted: 04/10/2020] [Indexed: 11/06/2022] Open
Abstract
Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon. Micali et al. report that human telencephalic NSCs in vitro transition through the organizer states that pattern the neocortex. Human pluripotent lines vary in organizer formation, generating divergent neuronal differentiation trajectories biased toward dorsal or ventral telencephalic fates and opening further analysis of the earliest cortical specification events.
Collapse
Affiliation(s)
- Nicola Micali
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Suel-Kee Kim
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Genevieve Stein-O'Brien
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Brian G Rash
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shaojie Ma
- Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Nicolas A Olivares
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Jon I Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Roland W Bürli
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Astellas Research Institute of America, 3565 General Atomics Ct., Ste. 200, San Diego, CA 92121, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ronald D McKay
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Guo M, Goudarzi KM, Abedi S, Pieber M, Sjöberg E, Behnan J, Zhang XM, Harris RA, Bartek J, Lindström MS, Nistér M, Hägerstrand D. SFRP2 induces a mesenchymal subtype transition by suppression of SOX2 in glioblastoma. Oncogene 2021; 40:5066-5080. [PMID: 34021259 PMCID: PMC8363098 DOI: 10.1038/s41388-021-01825-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Intratumoral heterogeneity is a characteristic of glioblastomas that contain an intermixture of cell populations displaying different glioblastoma subtype gene expression signatures. Proportions of these populations change during tumor evolution, but the occurrence and regulation of glioblastoma subtype transition is not well described. To identify regulators of glioblastoma subtypes we utilized a combination of in vitro experiments and in silico analyses, using experimentally generated as well as publicly available data. Through this combined approach SOX2 was identified to confer a proneural glioblastoma subtype gene expression signature. SFRP2 was subsequently identified as a SOX2-antagonist, able to induce a mesenchymal glioblastoma subtype signature. A subset of patient glioblastoma samples with high SFRP2 and low SOX2 expression was particularly enriched with mesenchymal subtype samples. Phenotypically, SFRP2 decreased tumor sphere formation, stemness as assessed by limiting dilution assay, and overall cell proliferation but increased cell motility, whereas SOX2 induced the opposite effects. Furthermore, an SFRP2/non-canonical-WNT/KLF4/PDGFR/phospho-AKT/SOX2 signaling axis was found to be involved in the mesenchymal transition. Analysis of human tumor tissue spatial gene expression patterns showed distinct expression of SFRP2- and SOX2-correlated genes in vascular and cellular areas, respectively. Finally, conditioned media from SFRP2 overexpressing cells increased CD206 on macrophages. Together, these findings present SFRP2 as a SOX2-antagonist with the capacity to induce a mesenchymal subtype transition in glioma cells located in vascular tumor areas, highlighting its role in glioblastoma tumor evolution and intratumoral heterogeneity.
Collapse
Affiliation(s)
- Min Guo
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden. .,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Shiva Abedi
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Melanie Pieber
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jinan Behnan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Department of Neurosurgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xing-Mei Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Mikael S Lindström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Daniel Hägerstrand
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum, Solna, Sweden.
| |
Collapse
|
30
|
Galichet C, Clayton RW, Lovell-Badge R. Novel Tools and Investigative Approaches for the Study of Oligodendrocyte Precursor Cells (NG2-Glia) in CNS Development and Disease. Front Cell Neurosci 2021; 15:673132. [PMID: 33994951 PMCID: PMC8116629 DOI: 10.3389/fncel.2021.673132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs), also referred to as NG2-glia, are the most proliferative cell type in the adult central nervous system. While the primary role of OPCs is to serve as progenitors for oligodendrocytes, in recent years, it has become increasingly clear that OPCs fulfil a number of other functions. Indeed, independent of their role as stem cells, it is evident that OPCs can regulate the metabolic environment, directly interact with and modulate neuronal function, maintain the blood brain barrier (BBB) and regulate inflammation. In this review article, we discuss the state-of-the-art tools and investigative approaches being used to characterize the biology and function of OPCs. From functional genetic investigation to single cell sequencing and from lineage tracing to functional imaging, we discuss the important discoveries uncovered by these techniques, such as functional and spatial OPC heterogeneity, novel OPC marker genes, the interaction of OPCs with other cells types, and how OPCs integrate and respond to signals from neighboring cells. Finally, we review the use of in vitro assay to assess OPC functions. These methodologies promise to lead to ever greater understanding of this enigmatic cell type, which in turn will shed light on the pathogenesis and potential treatment strategies for a number of diseases, such as multiple sclerosis (MS) and gliomas.
Collapse
Affiliation(s)
- Christophe Galichet
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
31
|
Mitchell K, Troike K, Silver DJ, Lathia JD. The evolution of the cancer stem cell state in glioblastoma: emerging insights into the next generation of functional interactions. Neuro Oncol 2021; 23:199-213. [PMID: 33173943 DOI: 10.1093/neuonc/noaa259] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular heterogeneity is a hallmark of advanced cancers and has been ascribed in part to a population of self-renewing, therapeutically resistant cancer stem cells (CSCs). Glioblastoma (GBM), the most common primary malignant brain tumor, has served as a platform for the study of CSCs. In addition to illustrating the complexities of CSC biology, these investigations have led to a deeper understanding of GBM pathogenesis, revealed novel therapeutic targets, and driven innovation towards the development of next-generation therapies. While there continues to be an expansion in our knowledge of how CSCs contribute to GBM progression, opportunities have emerged to revisit this conceptual framework. In this review, we will summarize the current state of CSCs in GBM using key concepts of evolution as a paradigm (variation, inheritance, selection, and time) to describe how the CSC state is subject to alterations of cell intrinsic and extrinsic interactions that shape their evolutionarily trajectory. We identify emerging areas for future consideration, including appreciating CSCs as a cell state that is subject to plasticity, as opposed to a discrete population. These future considerations will not only have an impact on our understanding of this ever-expanding field but will also provide an opportunity to inform future therapies to effectively treat this complex and devastating disease.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Katie Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
32
|
Carrano A, Zarco N, Phillipps J, Lara-Velazquez M, Suarez-Meade P, Norton ES, Chaichana KL, Quiñones-Hinojosa A, Asmann YW, Guerrero-Cázares H. Human Cerebrospinal Fluid Modulates Pathways Promoting Glioblastoma Malignancy. Front Oncol 2021; 11:624145. [PMID: 33747938 PMCID: PMC7969659 DOI: 10.3389/fonc.2021.624145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary cancer of the central nervous system in adults. High grade gliomas are able to modify and respond to the brain microenvironment. When GBM tumors infiltrate the Subventricular zone (SVZ) they have a more aggressive clinical presentation than SVZ-distal tumors. We suggest that cerebrospinal fluid (CSF) contact contributes to enhance GBM malignant characteristics in these tumors. We evaluated the impact of human CSF on GBM, performing a transcriptome analysis on human primary GBM cells exposed to CSF to measure changes in gene expression profile and their clinical relevance on disease outcome. In addition we evaluated the proliferation and migration changes of CSF-exposed GBM cells in vitro and in vivo. CSF induced transcriptomic changes in pathways promoting cell malignancy, such as apoptosis, survival, cell motility, angiogenesis, inflammation, and glucose metabolism. A genetic signature extracted from the identified transcriptional changes in response to CSF proved to be predictive of GBM patient survival using the TCGA database. Furthermore, CSF induced an increase in viability, proliferation rate, and self-renewing capacity, as well as the migratory capabilities of GBM cells in vitro. In vivo, GBM cells co-injected with human CSF generated larger and more proliferative tumors compared to controls. Taken together, these results provide direct evidence that CSF is a key player in determining tumor growth and invasion through the activation of complex gene expression patterns characteristic of a malignant phenotype. These findings have diagnostic and therapeutic implications for GBM patients. The changes induced by CSF contact might play a role in the increased malignancy of SVZ-proximal GBM.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Phillipps
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paola Suarez-Meade
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Emily S Norton
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biochemical Sciences, Mayo Clinic, Jacksonville, FL, United States.,Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yan W Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
| | | |
Collapse
|
33
|
Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK. The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Front Oncol 2021; 10:603738. [PMID: 33489908 PMCID: PMC7820896 DOI: 10.3389/fonc.2020.603738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, radial glial precursor cells give rise to neural lineages, and a small proportion persist in the adult mammalian brain to contribute to long-term neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed with the defining stem cell properties of self-renewal and multipotent differentiation, which are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like properties. While there is an extensive overlap between NSCs and GSCs in function, distinct genetic profiles, transcriptional programs, and external environmental cues influence their divergent behavior. This review highlights the similarities and differences between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular pathways, niche organization, metabolic programs, and current therapies designed to exploit these differences.
Collapse
Affiliation(s)
- David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
34
|
Glioblastoma with a primitive neuroectodermal component: two cases with implications for glioblastoma cell-of-origin. Clin Imaging 2020; 73:139-145. [PMID: 33406475 DOI: 10.1016/j.clinimag.2020.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary brain malignancy, but much remains unknown about the histogenesis of these tumors. In the great majority of cases, GBM is a purely glial tumor but in rare cases the classic-appearing high-grade glioma component is admixed with regions of small round blue cells with neuronal immunophenotype, and these tumors have been defined in the WHO 2016 Classification as "glioblastoma with a primitive neuronal component." METHODS In this paper, we present two cases of GBM-PNC with highly divergent clinical courses, and review current theories for the GBM cell-of-origin. RESULTS AND CONCLUSIONS GBM-PNC likely arises from a cell type competent to give rise to glial or neuronal lineages. The thesis that GBM recapitulates to some extent normal neurodevelopmental cellular pathways is supported by molecular and clinical features of our two cases of GBM-PNC, but more work is needed to determine which cellular precursor gives rise to specific cases of GBM. GBM-PNC may have a dramatically altered clinical course compared to standard GBM and may benefit from specific lines of treatment.
Collapse
|
35
|
Communication of Glioma cells with neuronal plasticity: What is the underlying mechanism? Neurochem Int 2020; 141:104879. [PMID: 33068685 DOI: 10.1016/j.neuint.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
There has been a significantly rising discussion on how neuronal plasticity communicates with the glioma growth and invasion. This literature review aims to determine which neurotransmitters, ion channels and signaling pathways are involved in this context, how information is transferred from synaptic sites to the glioma cells and how glioma cells apply established mechanics of synaptic plasticity for their own increment. This work is a compilation of some outstanding findings related to the influence of the glutamate, calcium, potassium, chloride and sodium channels and other important brain plasticity molecules over the glioma progression. These topics also include the relevant molecular signaling data which could prove to be helpful for an effective clinical management of brain tumors in the future.
Collapse
|
36
|
de Sonnaville SFAM, van Strien ME, Middeldorp J, Sluijs JA, van den Berge SA, Moeton M, Donega V, van Berkel A, Deering T, De Filippis L, Vescovi AL, Aronica E, Glass R, van de Berg WDJ, Swaab DF, Robe PA, Hol EM. The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Commun 2020; 2:fcaa150. [PMID: 33376983 PMCID: PMC7750937 DOI: 10.1093/braincomms/fcaa150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.
Collapse
Affiliation(s)
- Sophia F A M de Sonnaville
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Simone A van den Berge
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martina Moeton
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vanessa Donega
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Annemiek van Berkel
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Tasmin Deering
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Lidia De Filippis
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo L Vescovi
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rainer Glass
- Department of Neurosurgical Research, Clinic for Neurosurgery, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam University Medical Centre, Location VU, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Sabelström H, Petri R, Shchors K, Jandial R, Schmidt C, Sacheva R, Masic S, Yuan E, Fenster T, Martinez M, Saxena S, Nicolaides TP, Ilkhanizadeh S, Berger MS, Snyder EY, Weiss WA, Jakobsson J, Persson AI. Driving Neuronal Differentiation through Reversal of an ERK1/2-miR-124-SOX9 Axis Abrogates Glioblastoma Aggressiveness. Cell Rep 2020; 28:2064-2079.e11. [PMID: 31433983 DOI: 10.1016/j.celrep.2019.07.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Identifying cellular programs that drive cancers to be stem-like and treatment resistant is critical to improving outcomes in patients. Here, we demonstrate that constitutive extracellular signal-regulated kinase 1/2 (ERK1/2) activation sustains a stem-like state in glioblastoma (GBM), the most common primary malignant brain tumor. Pharmacological inhibition of ERK1/2 activation restores neurogenesis during murine astrocytoma formation, inducing neuronal differentiation in tumorspheres. Constitutive ERK1/2 activation globally regulates miRNA expression in murine and human GBMs, while neuronal differentiation of GBM tumorspheres following the inhibition of ERK1/2 activation requires the functional expression of miR-124 and the depletion of its target gene SOX9. Overexpression of miR124 depletes SOX9 in vivo and promotes a stem-like-to-neuronal transition, with reduced tumorigenicity and increased radiation sensitivity. Providing a rationale for reports demonstrating miR-124-induced abrogation of GBM aggressiveness, we conclude that reversal of an ERK1/2-miR-124-SOX9 axis induces a neuronal phenotype and that enforcing neuronal differentiation represents a therapeutic strategy to improve outcomes in GBM.
Collapse
Affiliation(s)
- Hanna Sabelström
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rebecca Petri
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Ksenya Shchors
- ORD-Rinat, Pfizer, Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Rahul Jandial
- Division of Neurosurgery, City of Hope, Duarte, CA 91010, USA
| | - Christin Schmidt
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rohit Sacheva
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Selma Masic
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Edith Yuan
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trenten Fenster
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Martinez
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Supna Saxena
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Theodore P Nicolaides
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mitchel S Berger
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan Y Snyder
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, and Department of Pediatrics, University of California, San Diego, San Diego, CA 92037, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johan Jakobsson
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Noorani I, de la Rosa J, Choi YH, Strong A, Ponstingl H, Vijayabaskar MS, Lee J, Lee E, Richard-Londt A, Friedrich M, Furlanetto F, Fuente R, Banerjee R, Yang F, Law F, Watts C, Rad R, Vassiliou G, Kim JK, Santarius T, Brandner S, Bradley A. PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biol 2020; 21:181. [PMID: 32727536 PMCID: PMC7392733 DOI: 10.1186/s13059-020-02092-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. Results We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients’ gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. Conclusion Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.
Collapse
Affiliation(s)
- Imran Noorani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. .,Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yoon Ha Choi
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - M S Vijayabaskar
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jusung Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Angela Richard-Londt
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Mathias Friedrich
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Federica Furlanetto
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Rocio Fuente
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Frances Law
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Colin Watts
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.,Birmingham Brain Cancer Program, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Rad
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - George Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
39
|
Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ, Mehta G. Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers (Basel) 2020; 12:cancers12082063. [PMID: 32726910 PMCID: PMC7464970 DOI: 10.3390/cancers12082063] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Anni Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Karen McLean
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitriy Zamarin
- Department of Gynecologic Medical Oncology and Immunotherapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ronald J. Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957; Fax: +1-734-763-4788
| |
Collapse
|
40
|
Frankel BM, Cachia D, Patel SJ, Das A. Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Glioblastoma : A Report of Two Cases. ACTA ACUST UNITED AC 2020; 2:836-843. [PMID: 32704621 DOI: 10.1007/s42399-020-00322-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Current treatments for glioblastoma (GB), the most common and malignant primary brain tumor are inadequate and as such, the median survival for most patients with GB is on the order of months, even after cytoreductive surgery, radiation and chemotherapy. Case Description Current study reports two cases of glioblastoma (GB) with subventricular zone (SVZ) involvement. SVZ biopsies demonstrated the presence of hypercellularity, nestin immunoreactivity, and a Ki-67 labeling index (LI) of 1-2%. Interestingly, tumor morphology and proliferative indices are different in the SVZ specimens than the hemispheric recurrences, which displayed similar nestin immunoreactivity, but a greater LI of 10%. Biopsy specimens demonstrated both intense nestin immunoreactivity and GFAP immunoreactivity in and around the GB recurrence. Nestin positive cells were more abundant closer to the SVZ nearest to the dorsolateral horn of the left lateral ventricle, while GFAP immunoreactivity was more intense closer to the center of the tumor recurrence. Additionally, co-labeling of cells with Ki67 and several different progenitor markers (CD133, CD140, TUJ-1, and nestin) demonstrated that these cells found in and around the GB recurrence were actively dividing. Having failed standard therapy with evidence of bi-hemispheric spread and progression to GB, we report a novel approach of using intraventricular liposomal encapsulated cytarabine (DepoCyt) for the treatment for GB by suppressing glial progenitor cells that surround the ventricular system in patients with GB. Conclusions MRI and immunohistochemistry demonstrated that the SVZ is the incubator for future recurrences of GB and propose targeting SVZ progenitor cells with intraventricular liposomal encapsulated Ara-C. Two patients treated using this novel regimen have demonstrated partial radiographic responses warranting further studies looking at targeting the subventricular zone.
Collapse
Affiliation(s)
- Bruce M Frankel
- Department of Neurosurgery, Medical University of South Carolina
| | - David Cachia
- Department of Neurosurgery, Medical University of South Carolina
| | - Sunil J Patel
- Department of Neurosurgery, Medical University of South Carolina
| | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina
| |
Collapse
|
41
|
Ghassemi S, Martinez-Becerra FJ, Master AM, Richman SA, Heo D, Leferovich J, Tu Y, García-Cañaveras JC, Ayari A, Lu Y, Wang A, Rabinowitz JD, Milone MC, June CH, O'Connor RS. Enhancing Chimeric Antigen Receptor T Cell Anti-tumor Function through Advanced Media Design. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:595-606. [PMID: 32775494 PMCID: PMC7397397 DOI: 10.1016/j.omtm.2020.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Effective chimeric antigen receptor (CAR)-T cell therapy is dependent on optimal cell culture methods conducive to the activation and expansion of T cells ex vivo, as well as infection with CAR. Media formulations used in CAR-T cell manufacturing have not been optimized for gene delivery, cell expansion, and overall potency. Bioactive components and derivatives that support the generation of functionally-competent T cell progeny with long-lasting persistence are largely undefined. Current media formulations rely on fetal bovine serum (FBS) or human serum (HS), which suffer from a lack of consistency or supply issues. We recognize that components of blood cellular fractions that are absent in serum may have therapeutic value. Here we investigate whether a concentrated growth factor extract, purified from human transfusion grade whole blood fractions, and marketed as PhysiologixTM xeno-free (XF) hGFC (Phx), supports CAR-T cell expansion and function. We show that Phx supports T cell proliferation in clinical and research-grade media. We also show that Phx treatment enhances lentiviral-mediated gene expression across a wide range of multiplicity of infections (MOIs). We compared the ability of anti-GD-2 CAR-T cells expanded ex vivo in medium conditioned with either Phx or HS to clear tumor burden in a human xenograft model of neuroblastoma. We show that T cells expanded in Phx have superior engraftment and potency in vivo, as well as CAR-induced cytolytic activity in vitro. Metabolomic profiling revealed several factors unique to Phx that may have relevance for CAR-T cell preclinical discovery, process development, and manufacturing. In particular, we show that carnosine, a biogenic amine modestly enriched in Phx relative to HS, enhances lentiviral gene delivery in activated T cells. By limiting extracellular acidification, carnosine enhances the metabolic fitness of T cells, shifting their metabolic profile from an acidic, stressed state toward an oxidative, energetic state. These findings are very informative regarding potential derivatives to include in medium customized for gene delivery and overall potency for T cell adoptive immunotherapies.
Collapse
Affiliation(s)
- Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sarah A Richman
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Heo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yitao Tu
- Department of Biological Physics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Asma Ayari
- Nucleus Biologics, LLC, San Diego, CA, USA
| | - Yinan Lu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ai Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Singer Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Reddy RG, Bhat UA, Chakravarty S, Kumar A. Advances in histone deacetylase inhibitors in targeting glioblastoma stem cells. Cancer Chemother Pharmacol 2020; 86:165-179. [PMID: 32638092 DOI: 10.1007/s00280-020-04109-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is a lethal grade IV glioma (WHO classification) and widely prevalent primary brain tumor in adults. GBM tumors harbor cellular heterogeneity with the presence of a small subpopulation of tumor cells, described as GBM cancer stem cells (CSCs) that pose resistance to standard anticancer regimens and eventually mediate aggressive relapse or intractable progressive GBM. Existing conventional anticancer therapies for GBM do not target GBM stem cells and are mostly palliative; therefore, exploration of new strategies to target stem cells of GBM has to be prioritized for the development of effective GBM therapy. Recent developments in the understanding of GBM pathophysiology demonstrated dysregulation of epigenetic mechanisms along with the genetic changes in GBM CSCs. Altered expression/activity of key epigenetic regulators, especially histone deacetylases (HDACs) in GBM stem cells has been associated with poor prognosis; inhibiting the activity of HDACs using histone deacetylase inhibitors (HDACi) has been promising as mono-therapeutic in targeting GBM and in sensitizing GBM stem cells to an existing anticancer regimen. Here, we review the development of pan/selective HDACi as potential anticancer agents in targeting the stem cells of glioblastoma as a mono or combination therapy.
Collapse
Affiliation(s)
- R Gajendra Reddy
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Unis Ahmad Bhat
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
43
|
Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet 2020; 16:e1008653. [PMID: 32324743 PMCID: PMC7179833 DOI: 10.1371/journal.pgen.1008653] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the nervous system. Most NSCs in mammalian adult brains are quiescent, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new neurons. The delicate balance between NSC quiescence and activation is important for adult neurogenesis and NSC maintenance. However, how NSCs transit between quiescence and activation remains largely elusive. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent advances on signaling pathways originated from the NSC niche and their crosstalk in regulating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactivation in Drosophila and mammalian systems. We also discuss emerging evidence on modeling human neurodevelopmental disorders using NSCs.
Collapse
|
44
|
Bacigaluppi M, Sferruzza G, Butti E, Ottoboni L, Martino G. Endogenous neural precursor cells in health and disease. Brain Res 2019; 1730:146619. [PMID: 31874148 DOI: 10.1016/j.brainres.2019.146619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Neurogenesis persists in the adult brain of mammals in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG). The complex interactions between intrinsic and extrinsic signals provided by cells in the niche but also from distant sources regulate the fate of neural stem/progenitor cells (NPCs) in these sites. This fine regulation is perturbed in aging and in pathological conditions leading to a different NPC behavior, tailored to the specific physio-pathological features. Indeed, NPCs exert in physiological and pathological conditions important neurogenic and non-neurogenic regulatory functions and participate in maintaining and protecting brain tissue homeostasis. In this review, we discuss intrinsic and extrinsic signals that regulate NPC activation and NPC functional role in various homeostatic and non-homeostatic conditions.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
| | - Giacomo Sferruzza
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Erica Butti
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
45
|
Leiss L, Mega A, Olsson Bontell T, Nistér M, Smits A, Corvigno S, Rahman MA, Enger PØ, Miletic H, Östman A. Platelet-derived growth factor receptor α/glial fibrillary acidic protein expressing peritumoral astrocytes associate with shorter median overall survival in glioblastoma patients. Glia 2019; 68:979-988. [PMID: 31769546 DOI: 10.1002/glia.23756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/10/2022]
Abstract
The microenvironment and architecture of peritumoral tissue have been suggested to affect permissiveness for infiltration of malignant cells. Astrocytes constitute a heterogeneous population of cells and have been linked to proliferation, migration, and drug sensitivity of glioblastoma (GBM) cells. Through double-immunohistochemical staining for platelet-derived growth factor receptor α (PDGFRα) and glial fibrillary acidic protein (GFAP), this study explored the intercase variability among 45 human GBM samples regarding density of GFAP+ peritumoral astrocytes and a subset of GFAP+ peritumoral astrocyte-like cells also expressing PDGFRα. Large intercase variability regarding the total peritumoral astrocyte density and the density of PDGFRα+/GFAP+ peritumoral astrocyte-like cells was detected. DNA fluorescence in situ hybridization analyses for commonly altered genetic tumor markers supported the interpretation that these cells represented a genetically unaffected host cell subset referred to as PDGFRα+/GFAP+ peritumoral astrocytes. The presence of PDGFRα+/GFAP+ peritumoral astrocytes was significantly positively correlated to older patient age and peritumoral astrocyte density, but not to other established prognostic factors. Notably, presence of PDGFRα+/GFAP+ peritumoral astrocytes, but not peritumoral astrocyte density, was associated with significantly shorter patient overall survival. The prognostic association of PDGFRα+/GFAP+ peritumoral astrocytes was confirmed in multivariable analyses. This exploratory study thus demonstrates previously unrecognized intercase variability and prognostic significance of peritumoral abundance of a novel PDGFRα+ subset of GFAP+ astrocytes. Findings suggest clinically relevant roles of the microenvironment of peritumoral GBM tissue and encourage further characterization of the novel astrocyte subset with regard to origin, function, and potential as biomarker and drug target.
Collapse
Affiliation(s)
- Lina Leiss
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Mega
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Acandemy, University of Gothenburg, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.,Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Sara Corvigno
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Per Øyvind Enger
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Masui K, Harachi M, Ikegami S, Yang H, Onizuka H, Yong WH, Cloughesy TF, Muragaki Y, Kawamata T, Arai N, Komori T, Cavenee WK, Mischel PS, Shibata N. mTORC2 links growth factor signaling with epigenetic regulation of iron metabolism in glioblastoma. J Biol Chem 2019; 294:19740-19751. [PMID: 31712311 DOI: 10.1074/jbc.ra119.011519] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
In cancer, aberrant growth factor receptor signaling reprograms cellular metabolism and global gene transcription to drive aggressive growth, but the underlying mechanisms are not well-understood. Here we show that in the highly lethal brain tumor glioblastoma (GBM), mTOR complex 2 (mTORC2), a critical core component of the growth factor signaling system, couples acetyl-CoA production with nuclear translocation of histone-modifying enzymes including pyruvate dehydrogenase and class IIa histone deacetylases to globally alter histone acetylation. Integrated analyses in orthotopic mouse models and in clinical GBM samples reveal that mTORC2 controls iron metabolisms via histone H3 acetylation of the iron-related gene promoter, promoting tumor cell survival. These results nominate mTORC2 as a critical epigenetic regulator of iron metabolism in cancer.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Mio Harachi
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Shiro Ikegami
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093
| | - Huijun Yang
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093
| | - Hiromi Onizuka
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - William H Yong
- Henry Singleton Brain Tumor Program, David Geffen UCLA School of Medicine, Los Angeles, California 90095.,Jonsson Comprehensive Cancer Center, David Geffen UCLA School of Medicine, Los Angeles, California 90095
| | - Timothy F Cloughesy
- Henry Singleton Brain Tumor Program, David Geffen UCLA School of Medicine, Los Angeles, California 90095.,Jonsson Comprehensive Cancer Center, David Geffen UCLA School of Medicine, Los Angeles, California 90095.,Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, California 90095
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Takashi Komori
- Department of Neuropathology, Tokyo Metropolitan Neurological Hospital, Musashinodai, Tokyo 183-0042, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093.,Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
47
|
Episodic Prenatal Exposure To Ethanol Affects Postnatal Neurogenesis In The Macaque Dentate Gyrus And Visual Recognition Memory. Int J Dev Neurosci 2019; 79:65-75. [PMID: 31706015 DOI: 10.1016/j.ijdevneu.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 10/11/2019] [Indexed: 11/23/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a prime cause of cognitive dysfunction. The present study tested the hypotheses (a) that gestational ethanol exposure results in deficits in hippocampal-related behaviors and associated neurogenesis and (b) that the period of gastrulation is a time of vulnerability. Pregnant macaques were intubated with ethanol or saline once per week for 3, 6, or 24 weeks. Exposures included or omitted the period of gastrulation. Offspring were given behavioral tests including a Visual-Paired Comparison (VPC), a hippocampal-associated memory task, and euthanized as adolescents. Their dentate gyri were processed for immunohistochemical identification of cells passing through the cell cycle (Ki-67 and proliferating cell nuclear antigen), exiting the cell cycle (p21), or passing through early stages of neuronal morphogenesis (Tuj1). Performance in neurobehavioral tasks was unaffected by ethanol exposure, the notable exception being performance in the VPC that was poorer for macaques exposed to ethanol including gastrulation. Anatomical studies show that the expression of Ki-67 was greater and ratio of p21-positive cells to the ratio of Ki-67-expressing cells was lower in animals in which the ethanol exposure included gastrulation. On the other hand, no ethanol-induced differences in TuJ1 expression were detected. Thus, the dentate gyrus is a bellwether of long-term consequences of gestational ethanol exposure. Targeted effects of ethanol on early neural generation (cell cycle and cycle exit) correlate with the timing-dependent degradation in VPC performance and exposure during gastrulation results in notable deficits. These changes evidence a pattern of fetal programming underlying FAS.
Collapse
|
48
|
Zhang Y, Pusch S, Innes J, Sidlauskas K, Ellis M, Lau J, El-Hassan T, Aley N, Launchbury F, Richard-Loendt A, deBoer J, Chen S, Wang L, von Deimling A, Li N, Brandner S. Mutant IDH Sensitizes Gliomas to Endoplasmic Reticulum Stress and Triggers Apoptosis via miR-183-Mediated Inhibition of Semaphorin 3E. Cancer Res 2019; 79:4994-5007. [PMID: 31391185 PMCID: PMC7611309 DOI: 10.1158/0008-5472.can-19-0054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/02/2019] [Accepted: 07/25/2019] [Indexed: 02/03/2023]
Abstract
Human astrocytomas and oligodendrogliomas are defined by mutations of the metabolic enzymes isocitrate dehydrogenase (IDH) 1 or 2, resulting in the production of the abnormal metabolite D-2 hydroxyglutarate. Here, we studied the effect of mutant IDH on cell proliferation and apoptosis in a glioma mouse model. Tumors were generated by inactivating Pten and p53 in forebrain progenitors and compared with tumors additionally expressing the Idh1 R132H mutation. Idh-mutant cells proliferated less in vitro and mice with Idh-mutant tumors survived significantly longer compared with Idh-wildtype mice. Comparison of miRNA and RNA expression profiles of Idh-wildtype and Idh-mutant cells and tumors revealed miR-183 was significantly upregulated in IDH-mutant cells. Idh-mutant cells were more sensitive to endoplasmic reticulum (ER) stress, resulting in increased apoptosis and thus reduced cell proliferation and survival. This was mediated by the interaction of miR-183 with the 5' untranslated region of semaphorin 3E, downregulating its function as an apoptosis suppressor. In conclusion, we show that mutant Idh1 delays tumorigenesis and sensitizes tumor cells to ER stress and apoptosis. This may open opportunities for drug treatments targeting the miR-183-semaphorin axis. SIGNIFICANCE: The pathologic metabolite 2-hydroxyglutarate, generated by IDH-mutant astrocytomas, sensitizes tumor cells to ER stress and delays tumorigenesis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/4994/F1.large.jpg.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Heidelberg and Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James Innes
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Kastytis Sidlauskas
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Joanne Lau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Tedani El-Hassan
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Natasha Aley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Francesca Launchbury
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
- UCL IQPath Laboratory, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
- UCL IQPath Laboratory, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jasper deBoer
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Lei Wang
- CapitalBio Technology, Beijing, China
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Heidelberg and Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ningning Li
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
49
|
Alexandru O, Sevastre AS, Castro J, Artene SA, Tache DE, Purcaru OS, Sfredel V, Tataranu LG, Dricu A. Platelet-Derived Growth Factor Receptor and Ionizing Radiation in High Grade Glioma Cell Lines. Int J Mol Sci 2019; 20:ijms20194663. [PMID: 31547056 PMCID: PMC6802357 DOI: 10.3390/ijms20194663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
Treatment of high grade gliomas (HGGs) has remained elusive due to their high heterogeneity and aggressiveness. Surgery followed by radiotherapy represents the mainstay of treatment for HGG. However, the unfavorable location of the tumor that usually limits total resection and the resistance to radiation therapy are the major therapeutic problems. Chemotherapy with DNA alkylating agent temozolomide is also used to treat HGG, despite modest effects on survival. Disregulation of several growth factor receptors (GFRs) were detected in HGG and receptor amplification in glioblastoma has been suggested to be responsible for heterogeneity propagation through clonal evolution. Molecularly targeted agents inhibiting these membrane proteins have demonstrated significant cytotoxicity in several types of cancer cells when tested in preclinical models. Platelet-derived growth factor receptors (PDGFRs) and associated signaling were found to be implicated in gliomagenesis, moreover, HGG commonly display a Platelet-derived growth factor (PDGF) autocrine pathway that is not present in normal brain tissues. We have previously shown that both the susceptibility towards PDGFR and the impact of the PDGFR inactivation on the radiation response were different in different HGG cell lines. Therefore, we decided to extend our investigation, using two other HGG cell lines that express PDGFR at the cell surface. Here, we investigated the effect of PDGFR inhibition alone or in combination with gamma radiation in 11 and 15 HGG cell lines. Our results showed that while targeting the PDGFR represents a good means of treatment in HGG, the combination of receptor inhibition with gamma radiation did not result in any discernable difference compared to the single treatment. The PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways are the major signaling pathways emerging from the GFRs, including PDGFR. Decreased sensitivity to radiation-induced cell death are often associated with redundancy in these pro-survival signaling pathways. Here we found that Phosphoinositide 3-kinases (PI3K), Extracellular-signal-regulated kinase 1/2 (ERK1/2), or c-Jun N-terminal kinase 1/2 (JNK1/2) inactivation induced radiosensitivity in HGG cells.
Collapse
Affiliation(s)
- Oana Alexandru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Ani-Simona Sevastre
- Department of Pharmacological Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Juan Castro
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska University Hospital, Z1:00, 171 76 Stockholm, Sweden.
| | - Stefan-Alexandru Artene
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Oana Stefana Purcaru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, "Bagdasar-Arseni" Emergency Hospital, Soseaua Berceni 12, 041915 Bucharest, Romania.
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| |
Collapse
|
50
|
Stoyanov GS, Dzhenkov DL. On the Concepts and History of Glioblastoma Multiforme - Morphology, Genetics and Epigenetics. Folia Med (Plovdiv) 2019; 60:48-66. [PMID: 29668458 DOI: 10.1515/folmed-2017-0069] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV WHO malignant tumor with astrocytic differentiation. As one of the most common clinically diagnosed central nervous system (CNS) oncological entries, there have been a wide variety of historical reports of the description and evolution of ideas regarding these tumors. The first recorded reports of gliomas were given in British scientific reports, by Berns in 1800 and in 1804 by Abernety, with the first comprehensive histomorphological description being given in 1865 by Rudolf Virchow. In 1926 Percival Bailey and Harvey Cushing gave the base for the modern classification of gliomas. Between 1934 and 1941 the most prolific researcher in glioma research was Hans-Joachim Scherer, who postulated some of the clinico-morphological aspects of GBM. With the introduction of molecular and genetic tests the true multifomity of GBM has been established, with different genotypes bearing the same histomorphological and IHC picture, as well as some of the aspects of gliomagenesis. For a GBM to develop, a specific trigger mutation needs to occur in a GBM stem cell - primary GBM, or a slow aggregation of individual mutations, without a distinct trigger mutation - secondary GBM. Knowledge of GBM has been closely related to general medical knowledge of the CNS since these malignancies were first described more than 200 years ago. Several great leaps have been made in that time, in the footsteps of both CNS and advancements in general medical knowledge.
Collapse
Affiliation(s)
- George St Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Prof Dr. Paraskev Stoyanov Medical University, Varna, Bulgaria
| | - Deyan L Dzhenkov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Prof Dr. Paraskev Stoyanov Medical University, Varna, Bulgaria
| |
Collapse
|