1
|
Jia M, Li G, Chen J, Tang X, Zang Y, Yang G, Shi YS, Ma D, Ji M, Yang J. Hippocampal Nogo66-NgR1 signaling activation restricts postsynaptic assembly in aged mice with postoperative neurocognitive disorders. Aging Cell 2025; 24:e14366. [PMID: 39412367 PMCID: PMC11709113 DOI: 10.1111/acel.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025] Open
Abstract
Postoperative neurocognitive disorders (pNCD) are a common neurological complication, especially in elderly following anesthesia and surgery. Yet, the underlying mechanisms of pNCD remain elusive. This study aimed to investigate the molecular mechanisms that compromise synaptic metaplasticity in pNCD development with a focus on the involvement of Nogo-66 receptor 1 (NgR1) in the pathogenesis of pNCD in aged mice. Aged mice subjected to anesthesia and laparotomy surgery exhibited anxiety-like behavior and contextual fear memory impairment. Moreover, the procedure significantly increased NogoA and NgR1 expressions, particularly in the hippocampal CA1 and CA3 regions. This increase led to the depolymerization of F-actin, attributed to the activation of the RhoA-GTPase, resulting in a reduction of dendritic spines and changes in their morphology. Additionally, these changes hindered the efficient postsynaptic delivery of the subunit GluA1 and GluA2 of AMPA receptors (AMPARs), consequently diminishing excitatory neurotransmission in the hippocampus. Importantly, administering the competitive NgR1 antagonist peptide NEP1-40 (Nogo-A extracellular peptide residues 1-40 amino acids of Nogo-66) and Fasudil (a Rho-kinase inhibitor) effectively mitigated synaptic impairments and reversed neurocognitive deficits in aged mice following anesthesia and surgery. Our work indicates that high hippocampal Nogo66-NgR1 signaling disrupts postsynaptic AMPA receptor surface delivery due to F-actin depolymerization in the pathophysiology of pNCD.
Collapse
Affiliation(s)
- Min Jia
- Department of Anaesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐zhou Li
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Jiang Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Xiao‐hui Tang
- Department of Anaesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yan‐yu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Guo‐lin Yang
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Daqing Ma
- Perioperative and Systems Medicine LaboratoryNational Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of MedicineHangzhouChina
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of MedicineImperial College London, Chelsea & Westminster HospitalLondonUK
| | - Mu‐huo Ji
- Department of AnaesthesiologyThe Second Affiliated Hospital, Nanjing Medical UniversityNanjingChina
| | - Jian‐jun Yang
- Department of Anaesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
2
|
Verrillo CE, Quaglia F, Shields CD, Lin S, Kossenkov AV, Tang HY, Speicher D, Naranjo NM, Testa A, Kelly WK, Liu Q, Leiby B, Musante L, Sossey-Alaoui K, Dogra N, Chen TY, Altieri DC, Languino LR. Expression of the αVβ3 integrin affects prostate cancer sEV cargo and density and promotes sEV pro-tumorigenic activity in vivo through a GPI-anchored receptor, NgR2. J Extracell Vesicles 2024; 13:e12482. [PMID: 39105261 DOI: 10.1002/jev2.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
It is known that small extracellular vesicles (sEVs) are released from cancer cells and contribute to cancer progression via crosstalk with recipient cells. We have previously reported that sEVs expressing the αVβ3 integrin, a protein upregulated in aggressive neuroendocrine prostate cancer (NEPrCa), contribute to neuroendocrine differentiation (NED) in recipient cells. Here, we examine the impact of αVβ3 expression on sEV protein content, density and function. sEVs used in this study were isolated by iodixanol density gradients and characterized by nanoparticle tracking analysis, immunoblotting and single vesicle analysis. Our proteomic profile of sEVs containing αVβ3 shows downregulation of typical effectors involved in apoptosis and necrosis and an upregulation of tumour cell survival factors compared to control sEVs. We also show that the expression of αVβ3 in sEVs causes a distinct reposition of EV markers (Alix, CD81, CD9) to a low-density sEV subpopulation. This low-density reposition is independent of extracellular matrix (ECM) protein interactions with sEVs. This sEV subset contains αVβ3 and an αVβ3 downstream effector, NgR2, a novel marker for NEPrCa. We show that sEVs containing αVβ3 are loaded with higher amounts of NgR2 as compared to sEVs that do not express αVβ3. Mechanistically, we demonstrate that sEVs containing NgR2 do not affect the sEV marker profile, but when injected in vivo intratumorally, they promote tumour growth and induce NED. We show that sEVs expressing NgR2 increase the activation of focal adhesion kinase (FAK), a known promoter of cancer cell proliferation, in recipient cells. We also show that NgR2 mimics the effect of sEVs containing αVβ3 since it displays increased growth of NgR2 transfectants in vivo, as compared to control cells. Overall, our results describe the changes that occur in cargo, density and functions of cancer cell-derived sEVs containing the αVβ3 integrin and its effector, NgR2, without affecting the sEV tetraspanin profiles.
Collapse
Affiliation(s)
- Cecilia E Verrillo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher D Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen Lin
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew V Kossenkov
- Bioinformatics Shared Resource, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David Speicher
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nicole M Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anna Testa
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Luca Musante
- Extracellular Vesicle Core, PennVet, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, School of Medicine MetroHealth Medical Center Rammelkamp Center for Research, Cleveland, Ohio, USA
| | - Navneet Dogra
- Department of Pathology and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tzu-Yi Chen
- Department of Pathology and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Hu R, Dun X, Singh L, Banton MC. Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination. Neural Regen Res 2024; 19:1575-1583. [PMID: 38051902 PMCID: PMC10883509 DOI: 10.4103/1673-5374.387977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/16/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00038/figure1/v/2023-11-20T171125Z/r/image-tiff
Runx2 is a major regulator of osteoblast differentiation and function; however, the role of Runx2 in peripheral nerve repair is unclear. Here, we analyzed Runx2 expression following injury and found that it was specifically up-regulated in Schwann cells. Furthermore, using Schwann cell-specific Runx2 knockout mice, we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent. Changes observed in Runx2 knockout mice include increased proliferation of Schwann cells, impaired Schwann cell migration and axonal regrowth, reduced re-myelination of axons, and a block in macrophage clearance in the late stage of regeneration. Taken together, our findings indicate that Runx2 is a key regulator of Schwann cell plasticity, and therefore peripheral nerve repair. Thus, our study shows that Runx2 plays a major role in Schwann cell migration, re-myelination, and peripheral nerve functional recovery following injury.
Collapse
Affiliation(s)
- Rong Hu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinpeng Dun
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Lolita Singh
- Faculty of Health, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
4
|
Li C, Song Y, Meng X. The Role of Macrophages in Nerve Regeneration: Polarization and Combination with Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38832865 DOI: 10.1089/ten.teb.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Peripheral nerve regeneration after trauma poses a substantial clinical challenge that has already been investigated for many years. Infiltration of immune cells is a critical step in the response to nerve damage that creates a supportive microenvironment for regeneration. In this work, we focus on a special type of immune cell, macrophage, in addressing the problem of neuronal regeneration. We discuss the complex endogenous mechanisms of peripheral nerve injury and regrowth vis-à-vis macrophages, including their recruitment, polarization, and interplay with Schwann cells post-trauma. Furthermore, we elucidate the underlying mechanisms by which exogenous stimuli govern the above events. Finally, we summarize the necessary roles of macrophages in peripheral nerve lesions and reconstruction. There are many challenges in controlling macrophage functions to achieve complete neuronal regeneration, even though considerable progress has been made in understanding the connection between these cells and peripheral nerve damage.
Collapse
Affiliation(s)
- Changqing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyu Song
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xianyu Meng
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Hagen KM, Gordon P, Frederick A, Palmer AL, Edalat P, Zonta YR, Scott L, Flancia M, Reid JK, Joel M, Ousman SS. CRYAB plays a role in terminating the presence of pro-inflammatory macrophages in the older, injured mouse peripheral nervous system. Neurobiol Aging 2024; 133:1-15. [PMID: 38381471 DOI: 10.1016/j.neurobiolaging.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 02/22/2024]
Abstract
Evidence indicates that dysfunction of older Schwann cells and macrophages contributes to poor regeneration of more mature peripheral nervous system (PNS) neurons after damage. Since the underlying molecular factors are largely unknown, we investigated if CRYAB, a small heat shock protein that is expressed by Schwann cells and axons and whose expression declines with age, impacts prominent deficits in the injured, older PNS including down-regulation of cholesterol biosynthesis enzyme genes, Schwann cell dysfunction, and macrophage persistence. Following sciatic nerve transection injury in 3- and 12-month-old wildtype and CRYAB knockout mice, we found by bulk RNA sequencing and RT-PCR, that while gene expression of cholesterol biosynthesis enzymes is markedly dysregulated in the aging, injured PNS, CRYAB is not involved. However, immunohistochemical staining of crushed sciatic nerves revealed that more macrophages of the pro-inflammatory but not immunosuppressive phenotype persisted in damaged 12-month-old knockout nerves. These pro-inflammatory macrophages were more efficient at engulfing myelin debris. CRYAB thus appears to play a role in resolving pro-inflammatory macrophage responses after damage to the older PNS.
Collapse
Affiliation(s)
- Kathleen Margaret Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra Louise Palmer
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yohan Ricci Zonta
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Scott
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Melissa Flancia
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline Kelsey Reid
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Joel
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shalina Sheryl Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Ikeda T, Takahashi K, Higashi M, Komiya H, Asano T, Ogasawara A, Kubota S, Hashiguchi S, Kunii M, Tanaka K, Tada M, Doi H, Takeuchi H, Takei K, Tanaka F. Lateral olfactory tract usher substance (LOTUS), an endogenous Nogo receptor antagonist, ameliorates disease progression in amyotrophic lateral sclerosis model mice. Cell Death Discov 2023; 9:454. [PMID: 38097540 PMCID: PMC10721829 DOI: 10.1038/s41420-023-01758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Nogo-Nogo receptor 1 (NgR1) signaling is significantly implicated in neurodegeneration in amyotrophic lateral sclerosis (ALS). We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of NgR1 that prevents all myelin-associated inhibitors (MAIs), including Nogo, from binding to NgR1. Here we investigated the role of LOTUS in ALS pathogenesis by analyzing G93A-mutated human superoxide dismutase 1 (SOD1) transgenic (Tg) mice, as an ALS model, as well as newly generated LOTUS-overexpressing SOD1 Tg mice. We examined expression profiles of LOTUS and MAIs and compared motor functions and survival periods in these mice. We also investigated motor neuron survival, glial proliferation in the lumbar spinal cord, and neuromuscular junction (NMJ) morphology. We analyzed downstream molecules of NgR1 signaling such as ROCK2, LIMK1, cofilin, and ataxin-2, and also neurotrophins. In addition, we investigated LOTUS protein levels in the ventral horn of ALS patients. We found significantly decreased LOTUS expression in both SOD1 Tg mice and ALS patients. LOTUS overexpression in SOD1 Tg mice increased lifespan and improved motor function, in association with prevention of motor neuron loss, reduced gliosis, increased NMJ innervation, maintenance of cofilin phosphorylation dynamics, decreased levels of ataxin-2, and increased levels of brain-derived neurotrophic factor (BDNF). Reduced LOTUS expression may enhance neurodegeneration in SOD1 Tg mice and ALS patients by activating NgR1 signaling, and in this study LOTUS overexpression significantly ameliorated ALS pathogenesis. LOTUS might serve as a promising therapeutic target for ALS.
Collapse
Affiliation(s)
- Takuya Ikeda
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| | - Minatsu Higashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Akihiro Ogasawara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
8
|
Helbing DL, Kirkpatrick JM, Reuter M, Bischoff J, Stockdale A, Carlstedt A, Cirri E, Bauer R, Morrison H. Proteomic analysis of peripheral nerve myelin during murine aging. Front Cell Neurosci 2023; 17:1214003. [PMID: 37964793 PMCID: PMC10642449 DOI: 10.3389/fncel.2023.1214003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Aging of the peripheral nervous system (PNS) is associated with structural and functional changes that lead to a reduction in regenerative capacity and the development of age-related peripheral neuropathy. Myelin is central to maintaining physiological peripheral nerve function and differences in myelin maintenance, degradation, formation and clearance have been suggested to contribute to age-related PNS changes. Recent proteomic studies have elucidated the complex composition of the total myelin proteome in health and its changes in neuropathy models. However, changes in the myelin proteome of peripheral nerves during aging have not been investigated. Here we show that the proteomes of myelin fractions isolated from young and old nerves show only subtle changes. In particular, we found that the three most abundant peripheral myelin proteins (MPZ, MBP, and PRX) do not change in old myelin fractions. We also show a tendency for high-abundance myelin proteins other than these three to be downregulated, with only a small number of ribosome-related proteins significantly downregulated and extracellular matrix proteins such as collagens upregulated. In addition, we illustrate that the peripheral nerve myelin proteome reported in this study is suitable for assessing myelin degradation and renewal during peripheral nerve degeneration and regeneration. Our results suggest that the peripheral nerve myelin proteome is relatively stable and undergoes only subtle changes in composition during mouse aging. We proffer the resultant dataset as a resource and starting point for future studies aimed at investigating peripheral nerve myelin during aging. Said datasets are available in the PRIDE archive under the identifier PXD040719 (aging myelin proteome) and PXD041026 (sciatic nerve injury proteome).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Julia Bischoff
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Amy Stockdale
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
9
|
Rashidbenam Z, Ozturk E, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. How does Nogo receptor influence demyelination and remyelination in the context of multiple sclerosis? Front Cell Neurosci 2023; 17:1197492. [PMID: 37361998 PMCID: PMC10285164 DOI: 10.3389/fncel.2023.1197492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Multiple sclerosis (MS) can progress with neurodegeneration as a consequence of chronic inflammatory mechanisms that drive neural cell loss and/or neuroaxonal dystrophy in the central nervous system. Immune-mediated mechanisms can accumulate myelin debris in the disease extracellular milieu during chronic-active demyelination that can limit neurorepair/plasticity and experimental evidence suggests that potentiated removal of myelin debris can promote neurorepair in models of MS. The myelin-associated inhibitory factors (MAIFs) are integral contributors to neurodegenerative processes in models of trauma and experimental MS-like disease that can be targeted to promote neurorepair. This review highlights the molecular and cellular mechanisms that drive neurodegeneration as a consequence of chronic-active inflammation and outlines plausible therapeutic approaches to antagonize the MAIFs during the evolution of neuroinflammatory lesions. Moreover, investigative lines for translation of targeted therapies against these myelin inhibitors are defined with an emphasis on the chief MAIF, Nogo-A, that may demonstrate clinical efficacy of neurorepair during progressive MS.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Oh SC, Kim SE, Jang IH, Kim SM, Lee SY, Lee S, Chu IS, Yoon SR, Jung H, Choi I, Doh J, Kim TD. NgR1 is an NK cell inhibitory receptor that destabilizes the immunological synapse. Nat Immunol 2023; 24:463-473. [PMID: 36624164 DOI: 10.1038/s41590-022-01394-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/22/2022] [Indexed: 01/10/2023]
Abstract
The formation of an immunological synapse (IS) is essential for natural killer (NK) cells to eliminate target cells. Despite an advanced understanding of the characteristics of the IS and its formation processes, the mechanisms that regulate its stability via the cytoskeleton are unclear. Here, we show that Nogo receptor 1 (NgR1) has an important function in modulating NK cell-mediated killing by destabilization of IS formation. NgR1 deficiency or blockade resulted in improved tumor control of NK cells by enhancing NK-to-target cell contact stability and regulating F-actin dynamics during IS formation. Patients with tumors expressing abundant NgR1 ligand had poor prognosis despite high levels of NK cell infiltration. Thus, our study identifies NgR1 as an immune checkpoint in IS formation and indicates a potential approach to improve the cytolytic function of NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - In-Hwan Jang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - In-Sun Chu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea. .,Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea. .,Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
11
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
13
|
Tumor Biology and Microenvironment of Vestibular Schwannoma-Relation to Tumor Growth and Hearing Loss. Biomedicines 2022; 11:biomedicines11010032. [PMID: 36672540 PMCID: PMC9856152 DOI: 10.3390/biomedicines11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. It arises from Schwann cells of the vestibular nerve. The first symptoms of vestibular schwannoma include hearing loss, tinnitus, and vestibular symptoms. In the event of further growth, cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves, may be present. Although hearing impairment is present in 95% of patients diagnosed with vestibular schwannoma, most tumors do not progress in size or have low growth rates. However, the clinical picture has unpredictable dynamics, and there are currently no reliable predictors of the tumor's behavior. The etiology of the hearing loss in patients with vestibular schwannoma is unclear. Given the presence of hearing loss in patients with non-growing tumors, a purely mechanistic approach is insufficient. A possible explanation for this may be that the function of the auditory system may be affected by the paracrine activity of the tumor. Moreover, initiation of the development and growth progression of vestibular schwannomas is not yet clearly understood. Biallelic loss of the NF2 gene does not explain the occurrence in all patients; therefore, detection of gene expression abnormalities in cases of progressive growth is required. As in other areas of cancer research, the tumor microenvironment is coming to the forefront, also in vestibular schwannomas. In the paradigm of the tumor microenvironment, the stroma of the tumor actively influences the tumor's behavior. However, research in the area of vestibular schwannomas is at an early stage. Thus, knowledge of the molecular mechanisms of tumorigenesis and interactions between cells present within the tumor is crucial for the diagnosis, prediction of tumor behavior, and targeted therapeutic interventions. In this review, we provide an overview of the current knowledge in the field of molecular biology and tumor microenvironment of vestibular schwannomas, as well as their relationship to tumor growth and hearing loss.
Collapse
|
14
|
miR-301a Deficiency Attenuates the Macrophage Migration and Phagocytosis through YY1/CXCR4 Pathway. Cells 2022; 11:cells11243952. [PMID: 36552718 PMCID: PMC9777533 DOI: 10.3390/cells11243952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: the miR-301a is well known involving the proliferation and migration of tumor cells. However, the role of miR-301a in the migration and phagocytosis of macrophages is still unclear. (2) Methods: sciatic nerve injury, liver injury models, as well as primary macrophage cultures were prepared from the miR-301a knockout (KO) and wild type (WT) mice to assess the macrophage's migration and phagocytosis capabilities. Targetscan database analysis, Western blotting, siRNA transfection, and CXCR4 inhibition or activation were performed to reveal miR301a's potential mechanism. (3) Results: the macrophage's migration and phagocytosis were significantly attenuated by the miR-301a KO both in vivo and in vitro. MiR-301a can target Yin-Yang 1 (YY1), and miR-301a KO resulted in YY1 up-regulation and CXCR4 (YY1's down-stream molecule) down-regulation. siYY1 increased the expression of CXCR4 and enhanced migration and phagocytosis in KO macrophages. Meanwhile, a CXCR4 inhibitor or agonist could attenuate or accelerate, respectively, the macrophage migration and phagocytosis. (4) Conclusions: current findings indicated that miR-301a plays important roles in a macrophage's capabilities of migration and phagocytosis through the YY1/CXCR4 pathway. Hence, miR-301a might be a promising therapeutic candidate for inflammatory diseases by adjusting macrophage bio-functions.
Collapse
|
15
|
Unilateral Sciatic Nerve Crush Induces White Blood Cell Infiltration of the Contralateral Nerve. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1101383. [PMID: 35392148 PMCID: PMC8983237 DOI: 10.1155/2022/1101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Nerve injury leads to the accumulation of white blood cells derived from the bone marrow in the lesioned nerve, but it is still unknown whether there are similar responses in unlesioned nerves. To address this question, sciatic nerves of mice expressing enhanced green fluorescent protein (EGFP) in their bone marrow were crushed unilaterally to observe the invasion of bone marrow-derived cells into the contralateral unlesioned nerve. Two days after surgery, EGFP+ cells began to infiltrate both the damaged and undamaged nerves. These cells gradually amplified to the highest point within 14 days and slowly lowered. In ipsilateral (lesioned) and contralateral (unlesioned) nerves, the time course of infiltration of EGFP+ cells was similar, but the magnitude was much less for the unlesioned one. Through CD68 staining, some cells were identified as macrophages. Transmission electron microscopy revealed slight demyelination and phagocytosing macrophages in the contralateral nerve. The data showed that infiltration by white blood cells is a response to nerve injury, even in uninjured nerves.
Collapse
|
16
|
Maugeri G, D'Agata V, Trovato B, Roggio F, Castorina A, Vecchio M, Di Rosa M, Musumeci G. The role of exercise on peripheral nerve regeneration: from animal model to clinical application. Heliyon 2021; 7:e08281. [PMID: 34765794 PMCID: PMC8571504 DOI: 10.1016/j.heliyon.2021.e08281] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injury is a complex condition with a variety of signs and symptoms depending on the severity and nerves involved. Peripheral nerve damage may lead to sensory and motor functions deficits and even lifelong disability, causing important socioeconomic costs worldwide. Despite the increase in knowledge of the mechanisms of injury and regeneration, a full functional recovery is still unsatisfying in the majority of patients. It is well known that exercise promotes physical and psychological well-being, by ameliorating general health. In the last years, there has been a growing interest in evaluating the effects of exercise on the peripheral nervous system. Experimental works with rodent models showed the potential utility of exercise following peripheral nerve injuries, as evinced by increasing axon regeneration, muscle reinnervation, better recovery of strength, muscle mass and higher expression of neurotrophic factors. Moreover, clinical evidence showed positive trends in favour of physical therapy following peripheral nerve damage based on the improvement of range of motion (ROM), muscle power grade and pain. After a brief overview of peripheral nerve anatomy and the different types of nerve injury, the present review aims to summarize the impact of exercise on peripheral nerve regeneration. Some clinical evidence regarding the effect of exercise after peripheral nerve injury will also be discussed.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95123, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95123, Catania, Italy
| | - Bruno Trovato
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95123, Catania, Italy
| | - Federico Roggio
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95123, Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy & Histology), Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Michele Vecchio
- Unit of Rehabilitation, Vittorio Emanuele University Hospital, Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95123, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95123, Catania, Italy.,Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95123, Catania, Italy.,Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
17
|
Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol 2021; 41:1157-1174. [PMID: 32504327 DOI: 10.1007/s10571-020-00893-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
18
|
Zhang N, Cui Y, Li Y, Mi Y. A Novel Role of Nogo Proteins: Regulating Macrophages in Inflammatory Disease. Cell Mol Neurobiol 2021; 42:2439-2448. [PMID: 34224050 DOI: 10.1007/s10571-021-01124-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Nogo proteins, also known as Reticulon-4, have been identified as myelin-derived inhibitors of neurite outgrowth in the central nervous system (CNS). There are three Nogo variants, Nogo-A, Nogo-B and Nogo-C. Recent studies have shown that Nogo-A/B is abundant in macrophages and may have a wider effect on inflammation. In this review, we focus mainly on the possible roles of Nogo-A/B on polarization and recruitment of macrophages and their involvement in a variety of inflammatory diseases. We then discuss the Nogo receptor1 (NgR1), a common receptor for Nogo proteins that is also abundant in microglia/macrophage in the CNS. Interaction of Nogo and NgR1 in microglia/macrophage may affect the adhesion and polarization of macrophages that are involved in multiple neurodegenerative diseases, including Alzheimer's disease and multiple sclerosis. Overall, this review provides insights into the roles of Nogo proteins in regulating macrophage functions and suggests that, potentially, Nogo proteins maybe a new target in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuanyuan Cui
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuan Li
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yajing Mi
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
19
|
Ma C, Zhang W, Cao M. Role of the Peripheral Nervous System in PD Pathology, Diagnosis, and Treatment. Front Neurosci 2021; 15:598457. [PMID: 33994915 PMCID: PMC8119739 DOI: 10.3389/fnins.2021.598457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Studies on Parkinson disease (PD) have mostly focused on the central nervous system—specifically, on the loss of mesencephalic dopaminergic neurons and associated motor dysfunction. However, the peripheral nervous system (PNS) is gaining prominence in PD research, with increasing clinical attention being paid to non-motor symptoms. Researchers found abnormal deposition of α-synuclein and neuroinflammation in the PNS. Attempts have been made to use these pathological changes during the clinical diagnosis of PD. Animal studies demonstrated that combined transplantation of autologous peripheral nerves and cells with tyrosine hydroxylase activity can reduce dopaminergic neuronal damage, and similar effects were observed in some clinical trials. In this review, we will systematically explain PNS performance in PD pathology and its clinical diagnostic research, describe PNS experimental results [especially Schwann cell (SC) transplantation in the treatment of PD animal models] and the results of clinical trials, and discuss future directions. The mechanism by which SCs produce such a therapeutic effect and the safety of transplantation therapy are briefly described.
Collapse
Affiliation(s)
- Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wen Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
20
|
The Implication of Reticulons (RTNs) in Neurodegenerative Diseases: From Molecular Mechanisms to Potential Diagnostic and Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094630. [PMID: 33924890 PMCID: PMC8125174 DOI: 10.3390/ijms22094630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.
Collapse
|
21
|
Effects of Pacap on Schwann Cells: Focus on Nerve Injury. Int J Mol Sci 2020; 21:ijms21218233. [PMID: 33153152 PMCID: PMC7663204 DOI: 10.3390/ijms21218233] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Collapse
|
22
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
23
|
Widasmara D, Panjarwanto DA, Sananta P. The Correlation of Semmes-Weinstein Monofilament Test with the Level of P-75 Neurotrophin as Marker of Nerve Damage in Leprosy. Clin Cosmet Investig Dermatol 2020; 13:399-404. [PMID: 32606877 PMCID: PMC7304681 DOI: 10.2147/ccid.s251356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 11/23/2022]
Abstract
Introduction Leprosy is a chronic infectious disease caused by Mycobacterium leprae that causes damage to the peripheral nerve, particularly Schwann cells. Treatment is useful only to kill bacteria but not to recover peripheral nerve damage. However, early detection of peripheral nerve damage is necessary. We examine P-75 neurotrophin (P75NTR) as an indicator of peripheral nerve damage in leprosy with the Semmes–Weinstein monofilament (SWM) test as the comparison. Methods This study uses a quantitative analytic observational study approach with cross-sectional design, conducted at Kediri Leprosy Hospital, Malang, East Java, Indonesia. All leprosy patients had a clinical examination and bacterial index to classify leprosy and then the SWM test to examine the presence of neuropathy in the palms and feet. P75NTR examination uses venous blood samples. An independent t-test was used to compare the SWM and P75NTR scores based on the type of leprosy, and then the Spearman correlation test was used to determine the correlation between SWM scores and P75NTR levels. Results In this study, SWM scores on the soles of the foot and palms and the P75NTR levels were higher in the PB group compared with MB (p<0.05). Also, a significant positive correlation was found between P75NTR and the SWM scores on the palms of the hand (r=0.864; p=0.000) and the soles of the foot (r=0.864; p=0.000). Conclusion There is a strong positive correlation between P75NTR levels and SWM scores, so P75NTR levels are very likely to be a marker of neuropathy in leprosy, but further studies are still needed to examine the specific role of these biomarkers.
Collapse
Affiliation(s)
- Dhelya Widasmara
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Brawijaya, Saiful Anwar Regional General Hospital, Malang, Indonesia
| | | | - Panji Sananta
- Orthopaedic and Traumatology Department, Faculty of Medicine, Universitas Brawijaya, Saiful Anwar Regional General Hospital, Malang, Indonesia
| |
Collapse
|
24
|
Helbing DL, Schulz A, Morrison H. Pathomechanisms in schwannoma development and progression. Oncogene 2020; 39:5421-5429. [PMID: 32616891 PMCID: PMC7410823 DOI: 10.1038/s41388-020-1374-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Schwannomas are tumors of the peripheral nervous system, consisting of different cell types. These include tumorigenic Schwann cells, axons, macrophages, T cells, fibroblasts, blood vessels, and an extracellular matrix. All cell types involved constitute an intricate “tumor microenvironment” and play relevant roles in the development and progression of schwannomas. Although Nf2 tumor suppressor gene-deficient Schwann cells are the primary tumorigenic element and principle focus of current research efforts, evidence is accumulating regarding the contributory roles of other cell types in schwannoma pathology. In this review, we aim to provide an overview of intra- and intercellular mechanisms contributing to schwannoma formation. “Genes load the gun, environment pulls the trigger.” -George A. Bray
Collapse
Affiliation(s)
- Dario-Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Alexander Schulz
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,MVZ Human Genetics, 99084, Erfurt, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.
| |
Collapse
|
25
|
Woodley PK, Min Q, Li Y, Mulvey NF, Parkinson DB, Dun XP. Distinct VIP and PACAP Functions in the Distal Nerve Stump During Peripheral Nerve Regeneration. Front Neurosci 2019; 13:1326. [PMID: 31920495 PMCID: PMC6920234 DOI: 10.3389/fnins.2019.01326] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylyl Cyclase Activating Peptide (PACAP) are regeneration-associated neuropeptides, which are up-regulated by neurons following peripheral nerve injury. So far, they have only been studied for their roles as autocrine signals for both neuronal survival and axon outgrowth during peripheral nerve regeneration. In this report, we examined VIP and PACAP's paracrine effects on Schwann cells and macrophages in the distal nerve stump during peripheral nerve regeneration. We show that VPAC1, VPAC2, and PAC1 are all up-regulated in the mouse distal nerve following peripheral nerve injury and are highly expressed in Schwann cells and macrophages within the distal sciatic nerve. We further investigated the effect of VIP and PACAP on cultured rat Schwann cells, and found that VIP and PACAP can not only promote myelin gene expression in Schwann cells but can also inhibit the release of pro-inflammatory cytokines by Schwann cells. Furthermore, we show that VIP and PACAP inhibit the release of pro-inflammatory cytokines and enhance anti-inflammatory cytokine expression in sciatic nerve explants. Our results provide evidence that VIP and PACAP could have important functions in the distal nerve stump following injury to promote remyelination and regulate the inflammatory response. Thus, VIP and PACAP receptors appear as important targets to promote peripheral nerve repair following injury.
Collapse
Affiliation(s)
- Patricia K Woodley
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth, United Kingdom
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Yankun Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Nina F Mulvey
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - David B Parkinson
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth, United Kingdom
| | - Xin-Peng Dun
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth, United Kingdom.,School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
26
|
Zhang L, Chen X, Liu Z, Han Q, Tang L, Tian Z, Ren Z, Rong C, Xu H. Miconazole alleviates peripheral nerve crush injury by mediating a macrophage phenotype change through the NF-κB pathway. Brain Behav 2019; 9:e01400. [PMID: 31486271 PMCID: PMC6790322 DOI: 10.1002/brb3.1400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury (PNI) causes motor and sensory defects, has strong impact on life quality and still has no effective therapy. Miconazole is one of the most widely used antifungal drugs; the aims of the study were to investigate the effects of miconazole during sciatic nerve regeneration in a mouse model of sciatic nerve crush injury. METHODS We established peripheral nerve crush model and investigated the effects of miconazole by multiple aspects. We further studied the potential mechanism of action of miconazole by Western blotting, fluorescence immunohistochemistry, and PCR analysis. RESULTS Miconazole improves the symptoms of crushed nerve by improving inflammatory cell infiltration and demyelinating myelin of sciatic nerve. Affected by miconazole, the proportion of inflammatory M1 macrophages in the distal part of the sciatic nerve was reduced, and the proportion of anti-inflammatory M2 macrophages was increased. Finally, the neuroprotective properties of miconazole may be regulated by the nuclear factor (NF)-κB pathway. CONCLUSIONS Our data suggest that miconazole can effectively alleviate PNI, and the mechanism involves mediating a phenotype change of M1/ M2 macrophages. Thus, miconazole may represent a potential therapeutic intervention for nerve crush injury.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Xiuju Chen
- Department of Neurology, Tianjin Nankai Hospital, Tianjin, China
| | - Zengyun Liu
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Qingluan Han
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Liguo Tang
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Zhen Tian
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Zhiyong Ren
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Cunmin Rong
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Hui Xu
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| |
Collapse
|
27
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
28
|
Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination. J Neurosci 2019; 39:5562-5580. [PMID: 31061088 DOI: 10.1523/jneurosci.1760-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxβ in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxβ displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.
Collapse
|
29
|
Spotlight on Neurotrauma Research in Canada's Leading Academic Centers. J Neurotrauma 2018; 35:1986-2004. [PMID: 30074875 DOI: 10.1089/neu.2018.29017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Stephenson EL, Yong VW. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol 2018; 71-72:432-442. [PMID: 29702175 DOI: 10.1016/j.matbio.2018.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023]
Abstract
The extracellular matrix of the central nervous system is an interconnected network of proteins and sugars. It is crucial for homeostasis, but its remodeling in neurological diseases impacts both injury and repair. Here we introduce an extracellular matrix family member that participates in immune-matrix interactions, the chondroitin sulfate proteoglycans. Chondroitin sulfate proteoglycans integrate signals from the microenvironment to activate immune cells, and they boost inflammatory responses by binding immunological receptors including toll-like receptors, selectins, CD44, and β1 integrin. Chondroitin sulfate proteoglycans also bind signaling molecules for immune cells such as cytokines and chemokines, and they activate matrix-degrading enzymes. Chondroitin sulfate proteoglycans accumulate in the damaged CNS, including during traumatic brain/spinal cord injury and multiple sclerosis, and they help drive pathogenesis. This Review aims to give new insights into the remodeling of chondroitin sulfate proteoglycans during inflammation, and how these matrix glycoproteins are able to drive neuroinflammation.
Collapse
Affiliation(s)
- Erin L Stephenson
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
31
|
Kawakami Y, Kurihara Y, Saito Y, Fujita Y, Yamashita T, Takei K. The Soluble Form of LOTUS inhibits Nogo Receptor-Mediated Signaling by Interfering with the Interaction Between Nogo Receptor Type 1 and p75 Neurotrophin Receptor. J Neurosci 2018; 38:2589-2604. [PMID: 29440387 PMCID: PMC6705898 DOI: 10.1523/jneurosci.0953-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/25/2023] Open
Abstract
Nogo receptor type 1 (NgR1) is known to inhibit neuronal regeneration in the CNS. Previously, we have shown that lateral olfactory tract usher substance (LOTUS) interacts with NgR1 and inhibits its function by blocking its ligand binding. Therefore, LOTUS is expected to have therapeutic potential for the promotion of neuronal regeneration. However, it remains unknown whether the soluble form of LOTUS (s-LOTUS) also has an inhibitory action on NgR1 function as a candidate for therapeutic agents. Here, we show that s-LOTUS inhibits NgR1-mediated signaling by inhibiting the molecular interaction between NgR1 and its coreceptor, p75 neurotrophin receptor (p75NTR). In contrast to the membrane-bound form of LOTUS, s-LOTUS did not block ligand binding to NgR1. However, we identified p75NTR as a novel LOTUS binding partner and found that s-LOTUS suppressed the interaction between p75NTR and NgR1. s-LOTUS inhibited myelin-associated inhibitor (MAI)-induced RhoA activation in murine cortical neurons. Functional analyses revealed that s-LOTUS inhibited MAI-induced growth cone collapse and neurite outgrowth inhibition in chick DRG neurons. In addition, whereas olfactory bulb neurons of lotus-KO mice are sensitive to MAI due to a lack of LOTUS expression, treatment with s-LOTUS inhibited MAI-induced growth cone collapse in these neurons. Finally, we observed that s-LOTUS promoted axonal regeneration in optic nerve crush injury of mice (either sex). These findings suggest that s-LOTUS inhibits NgR1-mediated signaling, possibly by interfering with the interaction between NgR1 and p75NTR Therefore, s-LOTUS may have potential as a therapeutic agent for neuronal regeneration in the damaged CNS.SIGNIFICANCE STATEMENT Nogo receptor type 1 (NgR1) is a receptor well known to inhibit neuronal regeneration in the CNS. Because the membrane-bound form of lateral olfactory tract usher substance (LOTUS) antagonizes NgR1 through a cis-type molecular interaction between LOTUS and NgR1, the soluble form of LOTUS (s-LOTUS) is expected to be a therapeutic agent for neuronal regeneration. In our present study, we show that s-LOTUS inhibits the interaction between NgR1 and p75NTR, NgR1 ligand-induced RhoA activation, growth cone collapse, and neurite outgrowth inhibition and promotes axonal regeneration. Our results indicate that s-LOTUS inhibits NgR1-mediated signaling through a trans-type molecular interaction between LOTUS and NgR1 and, therefore, s-LOTUS may have therapeutic potential for neuronal regeneration.
Collapse
Affiliation(s)
- Yutaka Kawakami
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| | - Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| | - Yu Saito
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| | - Yuki Fujita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan and
| |
Collapse
|
32
|
p75NTR and TROY: Uncharted Roles of Nogo Receptor Complex in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2018; 55:6329-6336. [PMID: 29294247 DOI: 10.1007/s12035-017-0841-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), have been on the forefront of drug discovery for most of the myelin inhibitory molecules implicated in axonal regenerative process. Nogo-A along with its putative receptor NgR and co-receptor LINGO-1 has paved the way for the production of pharmaceutical agents such as monoclonal antibodies, which are already put into handful of clinical trials. On the other side, little progress has been made towards clarifying the role of neurotrophin receptor p75 (p75NTR) and TROY in disease progression, other key players of the Nogo receptor complex. Previous work of our lab has shown that their exact location and type of expression is harmonized in a phase-dependent manner. Here, in this review, we outline their façade in normal and diseased central nervous system (CNS) and suggest a role for p75NTR in chronic axonal regeneration whereas TROY in acute inflammation of EAE intercourse.
Collapse
|
33
|
Liu J, Kumar S, Dolzhenko E, Alvarado GF, Guo J, Lu C, Chen Y, Li M, Dessing MC, Parvez RK, Cippà PE, Krautzberger AM, Saribekyan G, Smith AD, McMahon AP. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2017; 2:94716. [PMID: 28931758 PMCID: PMC5612583 DOI: 10.1172/jci.insight.94716] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Though an acute kidney injury (AKI) episode is associated with an increased risk of chronic kidney disease (CKD), the mechanisms determining the transition from acute to irreversible chronic injury are not well understood. To extend our understanding of renal repair, and its limits, we performed a detailed molecular characterization of a murine ischemia/reperfusion injury (IRI) model for 12 months after injury. Together, the data comprising RNA-sequencing (RNA-seq) analysis at multiple time points, histological studies, and molecular and cellular characterization of targeted gene activity provide a comprehensive profile of injury, repair, and long-term maladaptive responses following IRI. Tubular atrophy, interstitial fibrosis, inflammation, and development of multiple renal cysts were major long-term outcomes of IRI. Progressive proximal tubular injury tracks with de novo activation of multiple Krt genes, including Krt20, a biomarker of renal tubule injury. RNA-seq analysis highlights a cascade of temporal-specific gene expression patterns related to tubular injury/repair, fibrosis, and innate and adaptive immunity. Intersection of these data with human kidney transplant expression profiles identified overlapping gene expression signatures correlating with different stages of the murine IRI response. The comprehensive characterization of incomplete recovery after ischemic AKI provides a valuable resource for determining the underlying pathophysiology of human CKD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Sanjeev Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Egor Dolzhenko
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Gregory F Alvarado
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Can Lu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, California
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, California
| | - Mark C Dessing
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Pietro E Cippà
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - A Michaela Krautzberger
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Gohar Saribekyan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Ineichen BV, Kapitza S, Bleul C, Good N, Plattner PS, Seyedsadr MS, Kaiser J, Schneider MP, Zörner B, Martin R, Linnebank M, Schwab ME. Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology. Acta Neuropathol 2017. [PMID: 28646336 DOI: 10.1007/s00401-017-1745-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland.
| | - Sandra Kapitza
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Christiane Bleul
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicolas Good
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patricia S Plattner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maryam S Seyedsadr
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Marc P Schneider
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Björn Zörner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Department of Neurorehabilitation, School of Medicine, HELIOS Klinik Hagen-Ambrock, Witten/Herdecke University Faculty of Health, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
35
|
Ziebell JM, Ray-Jones H, Lifshitz J. Nogo presence is inversely associated with shifts in cortical microglial morphology following experimental diffuse brain injury. Neuroscience 2017; 359:209-223. [PMID: 28736137 DOI: 10.1016/j.neuroscience.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/28/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
Abstract
Diffuse traumatic brain injury (TBI) initiates secondary pathology, including inflammation and reduced myelination. Considering these injury-related pathologies, the many states of activated microglia as demonstrated by differing morphologies would form, migrate, and function in and through fields of growth-inhibitory myelin byproduct, specifically Nogo. Here we evaluate the relationship between inflammation and reduced myelin antigenicity in the wake of diffuse TBI and present the hypothesis that the Nogo-66 receptor antagonist peptide NEP(1-40) would reverse the injury-induced shift in distribution of microglia morphologies by limiting myelin-based inhibition. Adult male rats were subjected to midline fluid percussion sham or brain injury. At 2h, 6h, 1d, 2d, 7d, and 21d post-injury, immunohistochemical staining was analyzed in sensory cortex (S1BF) for myelin antigens (myelin basic protein; MBP and CNPase), microglia morphology (ionized calcium-binding adapter protein; Iba1), Nogo receptor and Nogo. Pronounced reduction in myelin antigenicity was evident transiently at 1d post-injury, as evidenced by decreased MBP and CNPase staining, as well as loss of white matter organization, compared to sham and later injury time points. Concomitant with reduced myelin antigenicity, injury shifted microglia morphology from the predominantly ramified morphology observed in sham-injured cortex to hyper-ramified, activated, fully activated, or rod. Changes in microglial morphology were evident as early as 2h post-injury, and remained at least until day 21. Additional cohorts of uninjured and brain-injured animals received vehicle or drug (NEP(1-40), i.p., 15min and 19h post-injury) and brains were collected at 2h, 6h, 1d, 2d, or 7d post-injury. NEP(1-40) administration further shifted distributions of microglia away from an injury-induced activated morphology toward greater proportions of rod and macrophage-like morphologies compared to vehicle-treated. By 7d post-injury, no differences in the distributions of microglia were noted between vehicle and NEP(1-40). This study begins to link secondary pathologies of white matter damage and inflammation after diffuse TBI. In the injured brain, secondary pathologies co-occur and likely interact, with consequences for neuronal circuit disruption leading to neurological symptoms.
Collapse
Affiliation(s)
- Jenna M Ziebell
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| | - Helen Ray-Jones
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Department of Biology and Biochemistry, University of Bath, Bath, England, UK
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; VA Healthcare System, Phoenix, AZ, USA; Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
36
|
Chen L, Cheng J, Yang X, Jin X, Qi Z, Jin YQ. Bone marrow-derived cells response in proximal regions of nerves after peripheral nerve injury. Cell Biol Int 2017; 41:863-870. [PMID: 28544161 DOI: 10.1002/cbin.10796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Lulu Chen
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Jia Cheng
- Department of Burn and Plastic Surgery; Wuxi 3rd People's Hospital; Wuxi Jiangsu China
| | - Xiaonan Yang
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Xiaolei Jin
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Zuoliang Qi
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Yu-Qing Jin
- Department of Plastic and Reconstructive Surgery; Shanghai 1st People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
37
|
Ko HR, Kwon IS, Hwang I, Jin EJ, Shin JH, Brennan-Minnella AM, Swanson R, Cho SW, Lee KH, Ahn JY. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration. eLife 2016; 5. [PMID: 27938661 PMCID: PMC5153247 DOI: 10.7554/elife.20799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/28/2016] [Indexed: 02/02/2023] Open
Abstract
Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI:http://dx.doi.org/10.7554/eLife.20799.001
Collapse
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Il-Sun Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joo-Ho Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Angela M Brennan-Minnella
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, United States
| | - Raymond Swanson
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, United States
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hoon Lee
- Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Department of Anatomy, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
38
|
Theotokis P, Touloumi O, Lagoudaki R, Nousiopoulou E, Kesidou E, Siafis S, Tselios T, Lourbopoulos A, Karacostas D, Grigoriadis N, Simeonidou C. Nogo receptor complex expression dynamics in the inflammatory foci of central nervous system experimental autoimmune demyelination. J Neuroinflammation 2016; 13:265. [PMID: 27724971 PMCID: PMC5057208 DOI: 10.1186/s12974-016-0730-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nogo-A and its putative receptor NgR are considered to be among the inhibitors of axonal regeneration in the CNS. However, few studies so far have addressed the issue of local NgR complex multilateral localization within inflammation in an MS mouse model of autoimmune demyelination. METHODS Chronic experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. Analyses were performed on acute (days 18-22) and chronic (day 50) time points and compared to controls. The temporal and spatial expression of the Nogo receptor complex (NgR and coreceptors) was studied at the spinal cord using epifluorescent and confocal microscopy or real-time PCR. Data are expressed as cells/mm2, as mean % ± SEM, or as arbitrary units of integrated density. RESULTS Animals developed a moderate to severe EAE without mortality, followed by a progressive, chronic clinical course. NgR complex spatial expression varied during the main time points of EAE. NgR with coreceptors LINGO-1 and TROY was increased in the spinal cord in the acute phase whereas LINGO-1 and p75 signal seemed to be dominant in the chronic phase, respectively. NgR was detected on gray matter NeuN+ neurons of the spinal cord, within the white matter inflammatory foci (14.2 ± 4.3 % NgR+ inflammatory cells), and found to be colocalized with GAP-43+ axonal growth cones while no β-TubIII+, SMI-32+, or APP+ axons were found as NgR+. Among the NgR+ inflammatory cells, 75.6 ± 9.0 % were microglial/macrophages (lectin+), 49.6 ± 14.2 % expressed CD68 (phagocytic ED1+ cells), and no cells were Mac-3+. Of these macrophages/monocytes, only Arginase-1+/NgR+ but not iNOS+/NgR+ were present in lesions both in acute and chronic phases. CONCLUSIONS Our data describe in detail the expression of the Nogo receptor complex within the autoimmune inflammatory foci and suggest a possible immune action for NgR apart from the established inhibitory one on axonal growth. Its expression by inflammatory macrophages/monocytes could signify a possible role of these cells on axonal guidance and clearance of the lesioned area during inflammatory demyelination.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Arginase/metabolism
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Freund's Adjuvant/immunology
- Freund's Adjuvant/toxicity
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Nerve Tissue Proteins/metabolism
- Nogo Proteins/genetics
- Nogo Proteins/metabolism
- Nogo Receptors/genetics
- Nogo Receptors/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Signal Transduction/physiology
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Paschalis Theotokis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Olga Touloumi
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Roza Lagoudaki
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Nousiopoulou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Kesidou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Spyridon Siafis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Theodoros Tselios
- Department of Chemistry, University of Patras, Rion, 265 04 Patras, Greece
| | - Athanasios Lourbopoulos
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
- Institute for Stroke and Dementia Research (ISD), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Dimitrios Karacostas
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Nikolaos Grigoriadis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Constantina Simeonidou
- Department of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Central Macedonia Greece
| |
Collapse
|
39
|
Role of IL-10 in Resolution of Inflammation and Functional Recovery after Peripheral Nerve Injury. J Neurosci 2016; 35:16431-42. [PMID: 26674868 DOI: 10.1523/jneurosci.2119-15.2015] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED A rapid proinflammatory response after peripheral nerve injury is required for clearance of tissue debris (Wallerian degeneration) and effective regeneration. Unlike the CNS, this response is rapidly terminated in peripheral nerves starting between 2 and 3 weeks after crush injury. We examined the expression and role of the anti-inflammatory cytokine IL-10 in the resolution of inflammation and regeneration after sciatic nerve crush injury in mice. IL-10 mRNA increased over the first 7 d after injury, whereas at the protein level, immunofluorescence labeling showed IL-10(+) cells increased almost 3-fold in the first 3 weeks, with macrophages being the major cell type expressing IL-10. The role of IL-10 in nerve injury was assessed using IL-10-null mice. Increased numbers of macrophages were found in the distal segment of IL-10-null mice at early (3 d) and late (14 and 21 d) time points, suggesting that IL-10 may play a role in controlling the early influx and the later efflux of macrophages out of the nerve. A chemokine/cytokine PCR array of the nerve 24 h after crush showed a 2- to 4-fold increase in the expression of 10 proinflammatory mediators in IL-10(-/-) mice. In addition, myelin phagocytosis in vitro by LPS stimulated bone-marrow-derived macrophages from IL-10-null mice failed to downregulate expression of proinflammatory chemokines/cytokines, suggesting that IL-10 is required for the myelin-phagocytosis-induced shift of macrophages from proinflammatory to anti-inflammatory/pro-repair phenotype. The failure to switch off inflammation in IL-10-null mice was accompanied by impaired axon regeneration and poor recovery of motor and sensory function. SIGNIFICANCE STATEMENT An appropriately regulated inflammatory response after peripheral nerve injury is essential for axon regeneration and recovery. The aim of this study was to investigate the expression and role of the anti-inflammatory cytokine IL-10 in terminating inflammation after sciatic nerve crush injury and promoting regeneration. IL-10 is rapidly expressed by macrophages after crush injury. Its role was assessed using IL-10-null mice, which showed that IL-10 plays a role in controlling the early influx and the later efflux of macrophages out of the injured nerve, reduces the expression of proinflammatory chemokines and cytokines, and is required for myelin-phagocytosis-induced shift of macrophages from proinflammatory to anti-inflammatory. Furthermore, lack of IL-10 leads to impaired axon regeneration and poor recovery of motor and sensory function.
Collapse
|
40
|
An H, Brettle M, Lee T, Heng B, Lim CK, Guillemin GJ, Lord MS, Klotzsch E, Geczy CL, Bryant K, Fath T, Tedla N. Soluble LILRA3 promotes neurite outgrowth and synapses formation through high affinity interaction with Nogo 66. J Cell Sci 2016; 129:1198-209. [DOI: 10.1242/jcs.182006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/26/2016] [Indexed: 01/24/2023] Open
Abstract
Inhibitory proteins, particularly Nogo 66, a highly conserved 66 amino acid loop of Nogo A, play key roles in limiting the intrinsic capacity of the central nervous system to regenerate after injury. Ligation of surface Nogo receptors (NgRs) and/or leukocyte immunoglobulin like receptor B2 (LILRB2) and its mouse orthologue the paired-immunoglobulin-like receptor B (PIRB) by Nogo 66 transduces inhibitory signals that potently inhibit neurite outgrowth. Here we show that soluble leukocyte immunoglobulin-like receptor A3 (LILRA3) is a high affinity receptor for Nogo 66, suggesting that LILRA3 might be a competitive antagonist to these cell surface inhibitory receptors. Consistent with this, LILRA3 significantly reversed Nogo 66-mediated inhibition of neurite outgrowth and promoted synapse formation in primary cortical neurons via regulation of the MEK/ERK pathway. LILRA3 represents a new antagonist to Nogo 66-mediated inhibition of neurite outgrowth in the CNS, a function distinct from its immune-regulatory role in leukocytes. This report is also the first to demonstrate that a member of LILR family normally not expressed in rodents exerts functions on mouse neurons through the highly homologous Nogo 66 ligand.
Collapse
Affiliation(s)
- Hongyan An
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Terry Lee
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Benjamin Heng
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Chai K. Lim
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Gilles J. Guillemin
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Katherine Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| |
Collapse
|
41
|
Klein D, Martini R. Myelin and macrophages in the PNS: An intimate relationship in trauma and disease. Brain Res 2015; 1641:130-138. [PMID: 26631844 DOI: 10.1016/j.brainres.2015.11.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/08/2023]
Abstract
Macrophages of the peripheral nervous system belong to the so-called tissue macrophages, with multiple functions during injury and disease. Their origin during ontogeny has not yet been completely resolved, but it is clear that upon injury and disease conditions, they are supplemented by hematopoietic derivatives. In the peripheral nervous system, the most abundantly investigated scenario in which resident and infiltrating macrophages are involved is the so-called "Wallerian degeneration", a complex degenerative process where macrophages exhibit mostly beneficial functions by phagocytosing myelin and axonal remnants. Of special interest is the implication of macrophages in inflammatory nerve diseases, like acute Guillain-Barré syndromes and its permanent variant, chronic inflammatory demyelinating polyneuropathy, where macrophages are supposed to be substantial (co-)mediators of the diseases. In inherited peripheral neuropathies nerve macrophages possess a clear disease-amplifying function. In the corresponding animal models, a coordinated interplay between mutant Schwann cells, macrophages, endoneurial fibroblasts and the target structure, myelin, emerged. Along this process, a newly discovered disease mechanism mediated by macrophages is the dedifferentiation of myelinating Schwann cells. As macrophages are amplifiers of the genetically-mediated, non-curable diseases, targeting the mechanisms of their activation might be a promising strategy to treat these disorders. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Dennis Klein
- University Hospital Würzburg, Department of Neurology, Developmental Neurobiology, Josef-Schneider Str. 11, 97080 Würzburg, Germany
| | - Rudolf Martini
- University Hospital Würzburg, Department of Neurology, Developmental Neurobiology, Josef-Schneider Str. 11, 97080 Würzburg, Germany.
| |
Collapse
|
42
|
Liu G, Ni J, Mao L, Yan M, Pang T, Liao H. Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury. Brain Res 2015; 1627:41-51. [PMID: 26367446 DOI: 10.1016/j.brainres.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/26/2015] [Accepted: 09/05/2015] [Indexed: 01/18/2023]
Abstract
As the receptor of myelin associated inhibitory factors Nogo receptor 1 (NgR1) plays an important role in central nervous system (CNS) injury and regeneration. It is found that NgR1 complex acts in neurons to transduce the signals intracelluarly including induction of growth cone collapse, inhibition of axonal regeneration and regulation of nerve inflammation. In recent studies, NgR1 has also been found to be expressed in the microglia. However, NgR1 expressed in microglia in the developing nervous systems and following CNS injury have not been widely investigated. In this study, we detected the expression and cellular localization of NgR1 in microglia during development and following traumatic brain injury (TBI) in mice. The results showed that NgR1 was mainly expressed in microglia during embryonic and postnatal periods. The expression levels peaked at P4 and decreased thereafter into adulthood, while increased significantly with aging representatively at 17 mo. On the other hand, there was no significant difference in the number of double positive NgR1(+)Iba1(+) cells between normal and TBI group. In summary, we first detected the expression of NgR1 in microglia during development and found that NgR1 protein expression increased significantly in microglia with aging. These findings will contribute to make a foundation for subsequent study about the role of NgR1 expressed in microglia on the CNS disorders.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/cytology
- Brain/embryology
- Brain/growth & development
- Brain Injuries/pathology
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Functional Laterality
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation, Developmental/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/metabolism
- Microglia/metabolism
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Nogo Receptor 1
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
Collapse
Affiliation(s)
- Gaoxiang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Ni
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, Nanjing 210000, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
43
|
Fang Y, Yan J, Li C, Zhou X, Yao L, Pang T, Yan M, Zhang L, Mao L, Liao H. The Nogo/Nogo Receptor (NgR) Signal Is Involved in Neuroinflammation through the Regulation of Microglial Inflammatory Activation. J Biol Chem 2015; 290:28901-14. [PMID: 26472924 DOI: 10.1074/jbc.m115.678326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 01/19/2023] Open
Abstract
Microglia have been proposed to play a pivotal role in the inflammation response of the CNS by expressing a range of proinflammatory enzymes and cytokines under pathological stimulus. Our previous study has confirmed that Nogo receptor (NgR), an axon outgrowth inhibition receptor, is also expressed on microglia and regulates cell adhesion and migration behavior in vitro. In the present study, we further investigated the proinflammatory effects and possible mechanisms of Nogo on microglia in vitro. In this study, Nogo peptide, Nogo-P4, a 25-amino acid core inhibitory peptide sequence of Nogo-66, was used. We found that Nogo-P4 was able to induce the expression of inducible nitric-oxide synthase and cyclooxygenase-2 and the release of proinflammatory cytokines, including IL-1β, TNF-α, NO, and prostaglandin E2 in microglia, which could be reversed by NEP1-40 (Nogo-66(1-40) antagonist peptide), phosphatidylinositol-specificphospholipase C, or NgR siRNA treatment. After Nogo-P4 stimulated microglia, the phosphorylation levels of NF-κB and STAT3 were increased obviously, which further mediated microglia expressing proinflammatory factors induced by Nogo-P4. Taken together, we concluded that Nogo peptide could directly take part in CNS inflammatory process by influencing the expression of proinflammatory factors in microglia, which were related to the NF-κB and STAT3 signal pathways. Besides neurite outgrowth restriction, the Nogo/NgR signal might be involved in multiple processes in various inflammation-associated CNS diseases.
Collapse
Affiliation(s)
- Yinquan Fang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Jun Yan
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Chenhui Li
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Xiao Zhou
- the Department of Biophysics, Saarland University, Homburg 66421, Germany, and
| | - Lemeng Yao
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Tao Pang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Ming Yan
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Luyong Zhang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Lei Mao
- the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Hong Liao
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China,
| |
Collapse
|
44
|
Seiler S, Di Santo S, Widmer HR. Non-canonical actions of Nogo-A and its receptors. Biochem Pharmacol 2015; 100:28-39. [PMID: 26348872 DOI: 10.1016/j.bcp.2015.08.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
45
|
Meeker RB, Williams KS. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res 2015; 10:721-5. [PMID: 26109945 PMCID: PMC4468762 DOI: 10.4103/1673-5374.156967] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 12/14/2022] Open
Abstract
The strong repair and pro-survival functions of neurotrophins at their primary receptors, TrkA, TrkB and TrkC, have made them attractive candidates for treatment of nervous system injury and disease. However, difficulties with the clinical implementation of neurotrophin therapies have prompted the search for treatments that are stable, easier to deliver and allow more precise regulation of neurotrophin actions. Recently, the p75 neurotrophin receptor (p75NTR) has emerged as a potential target for pharmacological control of neurotrophin activity, supported in part by studies demonstrating 1) regulation of neural plasticity in the mature nervous system, 2) promotion of adult neurogenesis and 3) increased expression in neurons, macrophages, microglia, astrocytes and/or Schwann cells in response to injury and neurodegenerative diseases. Although the receptor has no intrinsic catalytic activity it interacts with and modulates the function of TrkA, TrkB, and TrkC, as well as sortilin and the Nogo receptor. This provides substantial cellular and molecular diversity for regulation of neuron survival, neurogenesis, immune responses and processes that support neural function. Upregulation of the p75NTR under pathological conditions places the receptor in a key position to control numerous processes necessary for nervous system recovery. Support for this possibility has come from recent studies showing that small, non-peptide p75NTR ligands can selectively modify pro-survival and repair functions. While a great deal remains to be discovered about the wide ranging functions of the p75NTR, studies summarized in this review highlight the immense potential for development of novel neuroprotective and neurorestorative therapies.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Kimberly S Williams
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Potas JR, Haque F, Maclean FL, Nisbet DR. Interleukin-10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo. J Immunol Methods 2015; 420:38-49. [PMID: 25837415 DOI: 10.1016/j.jim.2015.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 01/19/2023]
Abstract
Macrophages play a key role in tissue regeneration following peripheral nerve injury by preparing the surrounding parenchyma for regeneration, however, they can be damaging if the response is excessive. Interleukin 10 (IL-10) is a cytokine that promotes macrophages toward an anti-inflammatory/wound healing state (M2 phenotype). The bioactive half-life of IL-10 is dependent on the cellular microenvironment and ranges from minutes to hours in vivo. Our objective was to extend the in vivo bioavailability and bioactivity of IL-10 by attaching the protein onto nanofibrous scaffolds and demonstrating increased expression levels of M2 macrophages when placed around healthy intact peripheral nerves. IL-10 was adsorbed and covalently bound to electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffolds. In vivo bioavailability and bioactivity of IL-10 was confirmed by wrapping IL-10 conjugated nanofibres around the sciatic nerves of Wistar rats and quantifying M2 macrophages immunohistochemically double labelled with ED1 and either arginase 1 or CD206. IL-10 remained immobilised to PCL scaffolds for more than 120 days when stored in phosphate buffered saline at room temperature and for up to 14d ays when implanted around the sciatic nerve. IL-10 conjugated nanofibres successfully induced macrophage polarisation towards the M2 activated state within the scaffold material as well as the adjacent tissue surrounding the nerve. PCL biofunctionalised nanofibres are useful for manipulating the cellular microenvironment. Materials such as these could potentially lead to new therapeutic strategies for nervous tissue injuries as well as provide novel investigative tools for biological research.
Collapse
Affiliation(s)
- Jason R Potas
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, ACT 0200, Australia; ANU Medical School, The Australian National University, Acton, ACT 0200, Australia.
| | - Farhia Haque
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, ACT 0200, Australia
| | - Francesca L Maclean
- Research School of Engineering, The Australian National University, Acton, ACT 0200, Australia
| | - David R Nisbet
- Research School of Engineering, The Australian National University, Acton, ACT 0200, Australia
| |
Collapse
|
47
|
Mietto BS, Mostacada K, Martinez AMB. Neurotrauma and inflammation: CNS and PNS responses. Mediators Inflamm 2015; 2015:251204. [PMID: 25918475 PMCID: PMC4397002 DOI: 10.1155/2015/251204] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity.
Collapse
Affiliation(s)
- Bruno Siqueira Mietto
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Klauss Mostacada
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
48
|
McLean NA, Popescu BF, Gordon T, Zochodne DW, Verge VMK. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves. PLoS One 2014; 9:e110174. [PMID: 25310564 PMCID: PMC4195712 DOI: 10.1371/journal.pone.0110174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/17/2014] [Indexed: 01/19/2023] Open
Abstract
Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.
Collapse
Affiliation(s)
- Nikki A. McLean
- CMSNRC (Cameco MS Neuroscience Research Center) and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bogdan F. Popescu
- CMSNRC (Cameco MS Neuroscience Research Center) and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tessa Gordon
- Department of Surgery, Division of Plastic Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Douglas W. Zochodne
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valerie M. K. Verge
- CMSNRC (Cameco MS Neuroscience Research Center) and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| |
Collapse
|
49
|
Liu X, Zuo Z, Liu W, Wang Z, Hou Y, Fu Y, Han Y. Upregulation of Nogo receptor expression induces apoptosis of retinal ganglion cells in diabetic rats. Neural Regen Res 2014; 9:815-20. [PMID: 25206894 PMCID: PMC4146255 DOI: 10.4103/1673-5374.131597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2014] [Indexed: 11/20/2022] Open
Abstract
The Nogo receptor is an essential factor for neuronal apoptosis, but the changes in Nogo receptor expression in the retina and the effects of the Nogo receptor on retinal ganglion cell apoptosis in diabetes mellitus remain unclear. We found that Nogo receptor expression was mainly visible in retinal ganglion cells of a rat model of diabetes mellitus induced by streptozotocin. At 12 weeks after onset of diabetes mellitus, Nogo receptor and Rho kinase expression significantly increased in the retina, and retinal ganglion cell apoptosis was apparent. When RNA interference was used to suppress Nogo receptor expression in rat retina, Rho kinase expression was obviously inhibited, and retinal ganglion cell apoptosis was evidently reduced in rats with diabetes mellitus. These results indicate that upregulation of Nogo receptor expression is an important mechanism of retinal ganglion cell apoptosis in rats with diabetes mellitus.
Collapse
Affiliation(s)
- Xuezheng Liu
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Zhongfu Zuo
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Wanpeng Liu
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Zhiyun Wang
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Yang Hou
- Scientific Experimental Center, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Yunjie Fu
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Yuzhi Han
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
50
|
Pourabdolhossein F, Mozafari S, Morvan-Dubois G, Mirnajafi-Zadeh J, Lopez-Juarez A, Pierre-Simons J, Demeneix BA, Javan M. Nogo receptor inhibition enhances functional recovery following lysolecithin-induced demyelination in mouse optic chiasm. PLoS One 2014; 9:e106378. [PMID: 25184636 PMCID: PMC4153612 DOI: 10.1371/journal.pone.0106378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Inhibitory factors have been implicated in the failure of remyelination in demyelinating diseases. Myelin associated inhibitors act through a common receptor called Nogo receptor (NgR) that plays critical inhibitory roles in CNS plasticity. Here we investigated the effects of abrogating NgR inhibition in a non-immune model of focal demyelination in adult mouse optic chiasm. METHODOLOGY/PRINCIPAL FINDINGS A focal area of demyelination was induced in adult mouse optic chiasm by microinjection of lysolecithin. To knock down NgR levels, siRNAs against NgR were intracerebroventricularly administered via a permanent cannula over 14 days, Functional changes were monitored by electrophysiological recording of latency of visual evoked potentials (VEPs). Histological analysis was carried out 3, 7 and 14 days post demyelination lesion. To assess the effect of NgR inhibition on precursor cell repopulation, BrdU was administered to the animals prior to the demyelination induction. Inhibition of NgR significantly restored VEPs responses following optic chiasm demyelination. These findings were confirmed histologically by myelin specific staining. siNgR application resulted in a smaller lesion size compared to control. NgR inhibition significantly increased the numbers of BrdU+/Olig2+ progenitor cells in the lesioned area and in the neurogenic zone of the third ventricle. These progenitor cells (Olig2+ or GFAP+) migrated away from this area as a function of time. CONCLUSIONS/SIGNIFICANCE Our results show that inhibition of NgR facilitate myelin repair in the demyelinated chiasm, with enhanced recruitment of proliferating cells to the lesion site. Thus, antagonizing NgR function could have therapeutic potential for demyelinating disorders such as Multiple Sclerosis.
Collapse
Affiliation(s)
- Fereshteh Pourabdolhossein
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Sabah Mozafari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghislaine Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alejandra Lopez-Juarez
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Jacqueline Pierre-Simons
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A. Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|