1
|
Lee JY, Yun SY, Koo YJ, Song JM, Kim HJ, Choi JY, Kim JS. Disrupted Rotational Perception During Simultaneous Stimulation of Rotation and Inertia. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2003-2011. [PMID: 38702560 DOI: 10.1007/s12311-024-01698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Two vestibular signals, rotational and inertial cues, converge for the perception of complex motion. However, how vestibular perception is built on neuronal behaviors and decision-making processes, especially during the simultaneous presentation of rotational and inertial cues, has yet to be elucidated in humans. In this study, we analyzed the perceptual responses of 20 participants after pairwise rotational experiments, comprised of four control and four test sessions. In both control and test sessions, participants underwent clockwise and counterclockwise rotations in head-down and head-up positions. The difference between the control and test sessions was the head re-orientation relative to gravity after rotations, thereby providing only rotational cues in the control sessions and both rotational and inertial cues in the test sessions. The accuracy of perceptual responses was calculated by comparing the direction of rotational and inertial cues acquired from participants with that predicted by the velocity-storage model. The results showed that the accuracy of rotational perception ranged from 80 to 95% in the four control sessions but significantly decreased to 35 to 75% in the four test sessions. The accuracy of inertial perception in the test sessions ranged from 50 to 70%. The accuracy of rotational perception improved with repetitive exposure to the simultaneous presentation of both rotational and inertial cues, while the accuracy of inertial perception remained steady. The results suggested a significant interaction between rotational and inertial perception and implied that vestibular perception acquired in patients with vestibular disorders are potentially inaccurate.
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Neurology, Catholic University of Korea Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea
| | - So-Yeon Yun
- Department of Neurology, Yonsei University Severance Hospital, Seoul, Republic of Korea
| | - Yu-Jin Koo
- Dizziness Center, Department of Neurology and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jung-Mi Song
- Dizziness Center, Department of Neurology and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jeong-Yoon Choi
- Dizziness Center, Department of Neurology and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea.
| | - Ji-Soo Kim
- Dizziness Center, Department of Neurology and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Tadokoro S, Shinji Y, Yamanaka T, Hirata Y. Learning capabilities to resolve tilt-translation ambiguity in goldfish. Front Neurol 2024; 15:1304496. [PMID: 38774058 PMCID: PMC11106485 DOI: 10.3389/fneur.2024.1304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Spatial orientation refers to the perception of relative location and self-motion in space. The accurate formation of spatial orientation is essential for animals to survive and interact safely with their environment. The formation of spatial orientation involves the integration of sensory inputs from the vestibular, visual, and proprioceptive systems. Vestibular organs function as specialized head motion sensors, providing information regarding angular velocity and linear acceleration via the semicircular canals and otoliths, respectively. However, because forces arising from the linear acceleration (translation) and inclination relative to the gravitational axis (tilt) are equivalent, they are indistinguishable by accelerometers, including otoliths. This is commonly referred to as the tilt - translation ambiguity, which can occasionally lead to the misinterpretation of translation as a tilt. The major theoretical frameworks addressing this issue have proposed that the interpretation of tilt versus translation may be contingent on an animal's previous experiences of motion. However, empirical confirmation of this hypothesis is lacking. Methods In this study, we conducted a behavioral experiment using goldfish to investigate how an animal's motion experience influences its interpretation of tilt vs. translation. We examined a reflexive eye movement called the vestibulo-ocular reflex (VOR), which compensatory-rotates the eyes in response to head motion and is known to reflect an animal's three-dimensional head motion estimate. Results We demonstrated that the VORs of naïve goldfish do not differentiate between translation and tilt at 0.5 Hz. However, following prolonged visual-translation training, which provided appropriate visual stimulation in conjunction with translational head motion, the VORs were capable of distinguishing between the two types of head motion within 3 h. These results were replicated using the Kalman filter model of spatial orientation, which incorporated the variable variance of process noise corresponding to the accumulated motion experience. Discussion Based on these experimental and computational findings, we discuss the neural mechanism underlying the resolution of tilt-translation ambiguity within a context analogous to, yet distinct from, previous cross-axis VOR adaptations.
Collapse
Affiliation(s)
- Shin Tadokoro
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Tokorozawa, Japan
- Japan Air Self-Defense Force, Ichigaya, Japan
| | - Yusuke Shinji
- Department of Computer Science, Graduate School of Engineering, Chubu University, Kasugai, Japan
| | - Toshimi Yamanaka
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Japan
- Academy of Emerging Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
3
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Lee B, Kim M, Yun S, Lee E, Kim H, Choi J, Kim J. Periodic vertigo and downbeat nystagmus while supine: Dysfunction of Purkinje cells coding gravity. Ann Clin Transl Neurol 2023; 10:1931-1936. [PMID: 37607112 PMCID: PMC10578876 DOI: 10.1002/acn3.51883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
Cerebellar nodulus and uvula and their connections with the vestibular nuclei form the so-called velocity-storage circuit. Lesions involving the velocity-storage circuit give rise to positional vertigo and nystagmus. Herein, we present a 32-year-old man with cerebellar nodulus and uvular hemorrhage who showed periodic vertigo and downbeat nystagmus in the supine position. To explain this unusual pattern, we adopted velocity-storage model with a lesion on the neural connection between the gravity and inertia estimators, resulting in periodic neural impulses and a gravity bias in a specific position. This report expands the spectrum of central positional nystagmus due to dysfunction of the velocity-storage mechanism.
Collapse
Affiliation(s)
- Byeongcheon Lee
- Dizziness Center, Clinical Neuroscience Center, and Department of NeurologySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Min‐Ku Kim
- Dizziness Center, Clinical Neuroscience Center, and Department of NeurologySeoul National University Bundang HospitalSeongnamSouth Korea
| | - So‐Yeon Yun
- Dizziness Center, Clinical Neuroscience Center, and Department of NeurologySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Eek‐Sung Lee
- Department of NeurologySoonchunhyang University College of MedicineBucheonSouth Korea
| | - Hyo‐Jung Kim
- Research Administration TeamSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Jeong‐Yoon Choi
- Dizziness Center, Clinical Neuroscience Center, and Department of NeurologySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of NeurologySeoul National University College of MedicineSeoulSouth Korea
| | - Ji‐Soo Kim
- Dizziness Center, Clinical Neuroscience Center, and Department of NeurologySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of NeurologySeoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
5
|
Liu Z, Bagnall MW. Organization of vestibular circuits for postural control in zebrafish. Curr Opin Neurobiol 2023; 82:102776. [PMID: 37634321 PMCID: PMC11528713 DOI: 10.1016/j.conb.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Most animals begin controlling their posture, or orientation with respect to gravity, at an early stage in life. Posture is vital for locomotor function. Even animals like fish, which are capable of swimming upside-down, must actively control their orientation to coordinate behaviors such as capturing prey near the water's surface. Here we review recent research from multiple laboratories investigating the organization and function of the vestibular circuits underlying postural control in zebrafish. Some findings in zebrafish strongly align with prior observations in mammals, reinforcing our understanding of homologies between systems. In other instances, the unique transparency and accessibility of zebrafish has enabled new analyses of several neural circuit components that remain challenging to study in mammalian systems. These new results demonstrate topographical and circuit features in postural control.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/zhikai_liu
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA.
| |
Collapse
|
6
|
Sinha AK, Lee C, Holt JC. Elucidating the role of muscarinic acetylcholine receptor (mAChR) signaling in efferent mediated responses of vestibular afferents in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.549902. [PMID: 37577578 PMCID: PMC10418111 DOI: 10.1101/2023.07.31.549902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The peripheral vestibular system detects head position and movement through activation of vestibular hair cells (HCs) in vestibular end organs. HCs transmit this information to the CNS by way of primary vestibular afferent neurons. The CNS, in turn, modulates HCs and afferents via the efferent vestibular system (EVS) through activation of cholinergic signaling mechanisms. In mice, we previously demonstrated that activation of muscarinic acetylcholine receptors (mAChRs), during EVS stimulation, gives rise to a slow excitation that takes seconds to peak and tens of seconds to decay back to baseline. This slow excitation is mimicked by muscarine and ablated by the non-selective mAChR blockers scopolamine, atropine, and glycopyrrolate. While five distinct mAChRs (M1-M5) exist, the subtype(s) driving EVS-mediated slow excitation remain unidentified and details on how these mAChRs alter vestibular function is not well understood. The objective of this study is to characterize which mAChR subtypes drive the EVS-mediated slow excitation, and how their activation impacts vestibular physiology and behavior. In C57Bl/6J mice, M3mAChR antagonists were more potent at blocking slow excitation than M1mAChR antagonists, while M2/M4 blockers were ineffective. While unchanged in M2/M4mAChR double KO mice, EVS-mediated slow excitation in M3 mAChR-KO animals were reduced or absent in irregular afferents but appeared unchanged in regular afferents. In agreement, vestibular sensory-evoked potentials (VsEP), known to be predominantly generated from irregular afferents, were significantly less enhanced by mAChR activation in M3mAChR-KO mice compared to controls. Finally, M3mAChR-KO mice display distinct behavioral phenotypes in open field activity, and thermal profiles, and balance beam and forced swim test. M3mAChRs mediate efferent-mediated slow excitation in irregular afferents, while M1mAChRs may drive the same process in regular afferents.
Collapse
|
7
|
Sinnott CB, Hausamann PA, MacNeilage PR. Natural statistics of human head orientation constrain models of vestibular processing. Sci Rep 2023; 13:5882. [PMID: 37041176 PMCID: PMC10090077 DOI: 10.1038/s41598-023-32794-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
Head orientation relative to gravity determines how gravity-dependent environmental structure is sampled by the visual system, as well as how gravity itself is sampled by the vestibular system. Therefore, both visual and vestibular sensory processing should be shaped by the statistics of head orientation relative to gravity. Here we report the statistics of human head orientation during unconstrained natural activities in humans for the first time, and we explore implications for models of vestibular processing. We find that the distribution of head pitch is more variable than head roll and that the head pitch distribution is asymmetrical with an over-representation of downward head pitch, consistent with ground-looking behavior. We further suggest that pitch and roll distributions can be used as empirical priors in a Bayesian framework to explain previously measured biases in perception of both roll and pitch. Gravitational and inertial acceleration stimulate the otoliths in an equivalent manner, so we also analyze the dynamics of human head orientation to better understand how knowledge of these dynamics can constrain solutions to the problem of gravitoinertial ambiguity. Gravitational acceleration dominates at low frequencies and inertial acceleration dominates at higher frequencies. The change in relative power of gravitational and inertial components as a function of frequency places empirical constraints on dynamic models of vestibular processing, including both frequency segregation and probabilistic internal model accounts. We conclude with a discussion of methodological considerations and scientific and applied domains that will benefit from continued measurement and analysis of natural head movements moving forward.
Collapse
Affiliation(s)
| | - Peter A Hausamann
- Department of Electrical and Computer Engineering, Technical University of Munich, 80333, Munich, Germany
| | | |
Collapse
|
8
|
The cerebellum promotes sequential foraging strategies and contributes to the directional modulation of hippocampal place cells. iScience 2023; 26:106200. [PMID: 36922992 PMCID: PMC10009096 DOI: 10.1016/j.isci.2023.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/14/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The cerebellum contributes to goal-directed navigation abilities and place coding in the hippocampus. Here we investigated its contribution to foraging strategies. We recorded hippocampal neurons in mice with impaired PKC-dependent cerebellar functions (L7-PKCI) and in their littermate controls while they performed a task where they were rewarded for visiting a subset of hidden locations. We found that L7-PKCI and control mice developed different foraging strategies: while control mice repeated spatial sequences to maximize their rewards, L7-PKCI mice persisted to use a random foraging strategy. Sequential foraging was associated with more place cells exhibiting theta-phase precession and theta rate modulation. Recording in the dark showed that PKC-dependent cerebellar functions controlled how self-motion cues contribute to the selectivity of place cells to both position and direction. Thus, the cerebellum contributes to the development of optimal sequential paths during foraging, possibly by controlling how self-motion and theta signals contribute to place cell coding.
Collapse
|
9
|
Abstract
Aims of the present article are: 1) assessing vestibular contribution to spatial navigation, 2) exploring how age, global positioning systems (GPS) use, and vestibular navigation contribute to subjective sense of direction (SOD), 3) evaluating vestibular navigation in patients with lesions of the vestibular-cerebellum (patients with downbeat nystagmus, DBN) that could inform on the signals carried by vestibulo-cerebellar-cortical pathways. We applied two navigation tasks on a rotating chair in the dark: return-to-start (RTS), where subjects drive the chair back to the origin after discrete angular displacement stimuli (path reversal), and complete-the-circle (CTC) where subjects drive the chair on, all the way round to origin (path completion). We examined 24 normal controls (20-83 yr), five patients with DBN (62-77 yr) and, as proof of principle, two patients with early dementia (84 and 76 yr). We found a relationship between SOD, assessed by Santa Barbara Sense of Direction Scale, and subject's age (positive), GPS use (negative), and CTC-vestibular-navigation-task (positive). Age-related decline in vestibular navigation was observed with the RTS task but not with the complex CTC task. Vestibular navigation was normal in patients with vestibulo-cerebellar dysfunction but abnormal, particularly CTC, in the demented patients. We conclude that vestibular navigation skills contribute to the build-up of our SOD. Unexpectedly, perceived SOD in the elderly is not inferior, possibly explained by increased GPS use by the young. Preserved vestibular navigation in cerebellar patients suggests that ascending vestibular-cerebellar projections carry velocity (not position) signals. The abnormalities in the cognitively impaired patients suggest that their vestibulo-spatial navigation is disrupted.NEW & NOTEWORTHY Our subjective sense-of-direction is influenced by how good we are at spatial navigation using vestibular cues. Global positioning systems (GPS) may inhibit sense of direction. Increased use of GPS by the young may explain why the elderly's sense of direction is not worse than the young's. Patients with vestibulo-cerebellar dysfunction (downbeat nystagmus syndrome) display normal vestibular navigation, suggesting that ascending vestibulo-cerebellar-cortical pathways carry velocity rather than position signals. Pilot data indicate that dementia disrupts vestibular navigation.
Collapse
Affiliation(s)
- Athena Zachou
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital Campus, London, United Kingdom
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Adolfo M Bronstein
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital Campus, London, United Kingdom
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
10
|
Cullen KE. Vestibular motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:31-54. [PMID: 37562876 DOI: 10.1016/b978-0-323-98818-6.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The vestibular system is an essential sensory system that generates motor reflexes that are crucial for our daily activities, including stabilizing the visual axis of gaze and maintaining head and body posture. In addition, the vestibular system provides us with our sense of movement and orientation relative to space and serves a vital role in ensuring accurate voluntary behaviors. Neurophysiological studies have provided fundamental insights into the functional circuitry of vestibular motor pathways. A unique feature of the vestibular system compared to other sensory systems is that the same central neurons that receive direct input from the afferents of the vestibular component of the 8th nerve can also directly project to motor centers that control vital vestibular motor reflexes. In turn, these reflexes ensure stabilize gaze and the maintenance of posture during everyday activities. For instance, a direct three-neuron pathway mediates the vestibulo-ocular reflex (VOR) pathway to provide stable gaze. Furthermore, recent studies have advanced our understanding of the computations performed by the cerebellum and cortex required for motor learning, compensation, and voluntary movement and navigation. Together, these findings have provided new insights into how the brain ensures accurate self-movement during our everyday activities and have also advanced our knowledge of the neurobiological mechanisms underlying disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Departments of Biomedical Engineering, of Otolaryngology-Head and Neck Surgery, and of Neuroscience; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
11
|
Laurens J. The otolith vermis: A systems neuroscience theory of the Nodulus and Uvula. Front Syst Neurosci 2022; 16:886284. [PMID: 36185824 PMCID: PMC9520001 DOI: 10.3389/fnsys.2022.886284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The Nodulus and Uvula (NU) (lobules X and IX of the cerebellar vermis) form a prominent center of vestibular information processing. Over decades, fundamental and clinical research on the NU has uncovered many aspects of its function. Those include the resolution of a sensory ambiguity inherent to inertial sensors in the inner ear, the otolith organs; the use of gravity signals to sense head rotations; and the differential processing of self-generated and externally imposed head motion. Here, I review these works in the context of a theoretical framework of information processing called the internal model hypothesis. I propose that the NU implements a forward internal model to predict the activation of the otoliths, and outputs sensory predictions errors to correct internal estimates of self-motion or to drive learning. I show that a Kalman filter based on this framework accounts for various functions of the NU, neurophysiological findings, as well as the clinical consequences of NU lesions. This highlights the role of the NU in processing information from the otoliths and supports its denomination as the "otolith" vermis.
Collapse
Affiliation(s)
- Jean Laurens
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| |
Collapse
|
12
|
Leroux S, Rodriguez-Duboc A, Arabo A, Basille-Dugay M, Vaudry D, Burel D. Intermittent hypoxia in a mouse model of apnea of prematurity leads to a retardation of cerebellar development and long-term functional deficits. Cell Biosci 2022; 12:148. [PMID: 36068642 PMCID: PMC9450451 DOI: 10.1186/s13578-022-00869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background Apnea of prematurity (AOP) is caused by respiratory control immaturity and affects nearly 50% of premature newborns. This pathology induces perinatal intermittent hypoxia (IH), which leads to neurodevelopmental disorders. The impact on the brain has been well investigated. However, despite its functional importance and immaturity at birth, the involvement of the cerebellum remains poorly understood. Therefore, this study aims to identify the effects of IH on cerebellar development using a mouse model of AOP consisting of repeated 2-min cycles of hypoxia and reoxygenation over 6 h and for 10 days starting on postnatal day 2 (P2). Results At P12, IH-mice cerebella present higher oxidative stress associated with delayed maturation of the cerebellar cortex and decreased dendritic arborization of Purkinje cells. Moreover, mice present with growth retardation and motor disorders. In response to hypoxia, the developing cerebellum triggers compensatory mechanisms resulting in the unaltered organization of the cortical layers from P21 onwards. Nevertheless, some abnormalities remain in adult Purkinje cells, such as the dendritic densification, the increase in afferent innervation, and axon hypomyelination. Moreover, this compensation seems insufficient to allow locomotor recovery because adult mice still show motor impairment and significant disorders in spatial learning. Conclusions All these findings indicate that the cerebellum is a target of intermittent hypoxia through alterations of developmental mechanisms leading to long-term functional deficits. Thus, the cerebellum could contribute, like others brain structures, to explaining the pathophysiology of AOP. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00869-5.
Collapse
|
13
|
Carriot J, Mackrous I, Cullen KE. Challenges to the Vestibular System in Space: How the Brain Responds and Adapts to Microgravity. Front Neural Circuits 2021; 15:760313. [PMID: 34803615 PMCID: PMC8595211 DOI: 10.3389/fncir.2021.760313] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the next century, flying civilians to space or humans to Mars will no longer be a subject of science fiction. The altered gravitational environment experienced during space flight, as well as that experienced following landing, results in impaired perceptual and motor performance-particularly in the first days of the new environmental challenge. Notably, the absence of gravity unloads the vestibular otolith organs such that they are no longer stimulated as they would be on earth. Understanding how the brain responds initially and then adapts to altered sensory input has important implications for understanding the inherent abilities as well as limitations of human performance. Space-based experiments have shown that altered gravity causes structural and functional changes at multiple stages of vestibular processing, spanning from the hair cells of its sensory organs to the Purkinje cells of the vestibular cerebellum. Furthermore, ground-based experiments have established the adaptive capacity of vestibular pathways and neural mechanism that likely underlie this adaptation. We review these studies and suggest that the brain likely uses two key strategies to adapt to changes in gravity: (i) the updating of a cerebellum-based internal model of the sensory consequences of gravity; and (ii) the re-weighting of extra-vestibular information as the vestibular system becomes less (i.e., entering microgravity) and then again more reliable (i.e., return to earth).
Collapse
Affiliation(s)
- Jérome Carriot
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Beylergil SB, Gupta P, ElKasaby M, Kilbane C, Shaikh AG. Does visuospatial motion perception correlate with coexisting movement disorders in Parkinson's disease? J Neurol 2021; 269:2179-2192. [PMID: 34554323 DOI: 10.1007/s00415-021-10804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Postural instability and balance impairment are common in Parkinson's disease (PD). Multiple factors, such as increased tone, bradykinesia, freezing of gait, posture, axial stiffness, and involuntary appendicular movements, can affect balance. The recent studies found that PD patients have abnormal perception of self-motion in vestibular domain. We asked whether measures of balance function, such as perception of one's motion, correlate with specific movement disorders seen in PD. Moving retinal image or self-motion in space triggers the perception of self-motion. We measured one's linear motion (heading) perception when subjects were moved en bloc using a moving platform (vestibular heading). Similar motion perception was generated in the visual domain (visual heading) by having the subjects view a 3D optical flow with immersive virtual reality goggles. During both tasks, the subjects reported the motion direction in the two-alternative-forced-choice paradigm. The accuracy of perceived motion direction was calculated from the responses fitted to the psychometric function curves to estimate how accurately and precisely the subjects can perceive rightward versus leftward motion (i.e., threshold and slope). Response accuracies and psychometric parameters were correlated with the disease duration, disease severity (total Unified Parkinson's Disease Rating Scale-III, UPDRS-III), and tremor, rigidity, axial, gait/posture components of UPRDS-III. We also correlated heading perception with the number of falls and subjective assessment of balance confidence using the Activities-Specific Balance Component (ABC) Scale. Accuracy, threshold, and sensitivity of vestibular heading perception significantly correlated with the disease duration and severity, particularly the tremor. Correlations were stronger for leftward heading perception in the vestibular domain. The visual heading perception was correlated with ABC Scale, especially with its items concerning optic-flow processing. There was asymmetry in leftward versus rightward vestibular heading perception. The level of asymmetry correlated with the axial component of UPDRS-III. Differences in the clinical parameters that correlate with visual versus vestibular heading perception suggest that two heading perception processes have different mechanistic underpinnings. The correlation of discordance between vestibular and visual heading perception with disease severity and duration suggests that visual function can be utilized for balance rehab in PD patients.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Palak Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Mohamed ElKasaby
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Camilla Kilbane
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA. .,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA.
| |
Collapse
|
15
|
Mazere J, Dilharreguy B, Catheline G, Vidailhet M, Deffains M, Vimont D, Ribot B, Barse E, Cif L, Mazoyer B, Langbour N, Pisani A, Allard M, Lamare F, Guehl D, Fernandez P, Burbaud P. Striatal and cerebellar vesicular acetylcholine transporter expression is disrupted in human DYT1 dystonia. Brain 2021; 144:909-923. [PMID: 33638639 DOI: 10.1093/brain/awaa465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Early-onset torsion dystonia (TOR1A/DYT1) is a devastating hereditary motor disorder whose pathophysiology remains unclear. Studies in transgenic mice suggested abnormal cholinergic transmission in the putamen, but this has not yet been demonstrated in humans. The role of the cerebellum in the pathophysiology of the disease has also been highlighted but the involvement of the intrinsic cerebellar cholinergic system is unknown. In this study, cholinergic neurons were imaged using PET with 18F-fluoroethoxybenzovesamicol, a radioligand of the vesicular acetylcholine transporter (VAChT). Here, we found an age-related decrease in VAChT expression in the posterior putamen and caudate nucleus of DYT1 patients versus matched controls, with low expression in young but not in older patients. In the cerebellar vermis, VAChT expression was also significantly decreased in patients versus controls, but independently of age. Functional connectivity within the motor network studied in MRI and the interregional correlation of VAChT expression studied in PET were also altered in patients. These results show that the cholinergic system is disrupted in the brain of DYT1 patients and is modulated over time through plasticity or compensatory mechanisms.
Collapse
Affiliation(s)
- Joachim Mazere
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Bixente Dilharreguy
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Gwenaëlle Catheline
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Marie Vidailhet
- Institut du Cerveau et de la Moelle épinière (ICM) UMR 1127, hôpital de la Pitié-Salpétrière, Department of Neurology, AP-HP, Sorbonne Université, 75013, Paris, France
| | - Marc Deffains
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Delphine Vimont
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Bastien Ribot
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Elodie Barse
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Laura Cif
- Department of Neurosurgery, CHU de Montpellier, 34000, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Nicolas Langbour
- Centre de Recherche en Psychiatrie, CH de la Milétrie, 86000, Poitiers, France
| | - Antonio Pisani
- Department of Brain and Behavioural Sciences, University of Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Michèle Allard
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Frédéric Lamare
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Dominique Guehl
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France.,Service de Neurophysiologie Clinique, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Philippe Fernandez
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Pierre Burbaud
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France.,Service de Neurophysiologie Clinique, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
16
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
17
|
Opsomer L, Crevecoeur F, Thonnard JL, McIntyre J, Lefèvre P. Distinct adaptation patterns between grip dynamics and arm kinematics when the body is upside-down. J Neurophysiol 2021; 125:862-874. [PMID: 33656927 DOI: 10.1152/jn.00357.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In humans, practically all movements are learnt and performed in a constant gravitational field. Yet, studies on arm movements and object manipulation in parabolic flight have highlighted very fast sensorimotor adaptations to altered gravity environments. Here, we wondered if the motor adjustments observed in those altered gravity environments could also be observed on Earth in a situation where the body is upside-down. To address this question, we asked participants to perform rhythmic arm movements in two different body postures (right-side-up and upside-down) while holding an object in precision grip. Analyses of grip-load force coordination and of movement kinematics revealed distinct adaptation patterns between grip and arm control. Grip force and load force were tightly synchronized from the first movements performed in upside-down posture, reflecting a malleable allocentric grip control. In contrast, velocity profiles showed a more progressive adaptation to the upside-down posture and reflected an egocentric planning of arm kinematics. In addition to suggesting distinct mechanisms between grip dynamics and arm kinematics for adaptation to novel contexts, these results also suggest the existence of general mechanisms underlying gravity-dependent motor adaptation that can be used for fast sensorimotor coordination across different postures on Earth and, incidentally, across different gravitational conditions in parabolic flights, in human centrifuges, or in Space.NEW & NOTEWORTHY During rhythmic arm movements performed in an upside-down posture, grip control adapted very quickly, but kinematics adaptation was more progressive. Our results suggest that grip control and movement kinematics planning might operate in different reference frames. Moreover, by comparing our results with previous results from parabolic flight studies, we propose that a common mechanism underlies adaptation to unfamiliar body postures and adaptation to altered gravity.
Collapse
Affiliation(s)
- L Opsomer
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - F Crevecoeur
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - J-L Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - J McIntyre
- Centre National de la Recherche Scientifique, University of Paris, France.,TECNALIA,Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain.,Ikerbasque Science Foundation, Bilbao, Spain
| | - P Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Faulmann I, Descloux V, Saj A, Maurer R. Neuroanatomic Correlates of Distance and Direction Processing During Cognitive Map Retrieval. Front Behav Neurosci 2020; 14:130. [PMID: 33192354 PMCID: PMC7476633 DOI: 10.3389/fnbeh.2020.00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/01/2020] [Indexed: 12/04/2022] Open
Abstract
Navigating toward a goal and mentally comparing distances and directions to landmarks are processes requiring reading information off the memorized representation of the environment, that is, the cognitive map. Brain structures in the medial temporal lobe, in particular, are known to be involved in the learning, storage, and retrieval of cognitive map information, which is generally assumed to be in allocentric form, whereby pure spatial relations (i.e., distance and direction) connect locations with each other. The authors recorded functional magnetic resonance imaging activity, while participants were submitted to a variant of a neuropsychological test (the Cognitive Map Reading Test; CMRT) originally developed to evaluate the performance of brain-lesioned patients and in which participants have to compare distances and directions in their mental map of their hometown. Our main results indicated posterior parahippocampal, but not hippocampal, activity, consistent with a task involving spatial memory of places learned a long time ago; left parietal and left frontal activity, consistent with the distributed processing of navigational representations; and, unexpectedly, cerebellar activity, possibly related to the role of the cerebellum in the processing of (here, imaginary) self-motion cues. In addition, direction, but not distance, comparisons elicited significant activation in the posterior parahippocampal gyrus.
Collapse
Affiliation(s)
- Igor Faulmann
- Frontiers Media SA, Lausanne, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Ecole Doctorale en Neurosciences Lémaniques, Université de Lausanne, Geneva, Switzerland
| | - Virginie Descloux
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Fribourg Cantonal Hospital, Fribourg, Switzerland
| | - Arnaud Saj
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montreal, QC, Canada.,CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC, Canada
| | - Roland Maurer
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Beylergil SB, Petersen M, Gupta P, Elkasaby M, Kilbane C, Shaikh AG. Severity‐Dependent Effects of Parkinson's Disease on Perception of Visual and Vestibular Heading. Mov Disord 2020; 36:360-369. [DOI: 10.1002/mds.28352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
| | - Mikkel Petersen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience Aarhus University Aarhus Denmark
| | - Palak Gupta
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
| | - Mohamed Elkasaby
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| | - Camilla Kilbane
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| | - Aasef G. Shaikh
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| |
Collapse
|
20
|
Beylergil SB, Shaikh AG. Visual Perception of Heading in the Syndrome of Oculopalatal Tremor. THE CEREBELLUM 2020; 20:788-795. [PMID: 32740743 DOI: 10.1007/s12311-020-01176-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perception of our linear motion, heading, relies on convergence from multiple sensory systems utilizing visual and vestibular signals. Multisensory convergence takes place in the visuo-vestibular areas of the cerebral cortex and posterior cerebellar vermis. Latter closely connected with the inferior olive may malfunction in disorders of olivo-cerebellar hypersynchrony, such as the syndrome of oculopalatal tremor (OPT). We had recently shown an impairment in vestibular heading perception in the subjects with OPT. Here we asked whether the hypersynchrony in the inferior-olive cerebellar circuit also affects the visual perception of heading, and the impairment is coupled with the deficits in vestibular heading perception. Three subjects with OPT and 11 healthy controls performed a two-alternative forced-choice task in two separate experiments; one when they were moved en bloc in a straight-ahead forward direction or at multiple heading angles to the right or the left; and second when under virtual reality goggle they experienced the movement of star cloud leading to the percept of heading straight, left or to the right at the heading angles similar to those utilized in the vestibular task. The resultant psychometric function curves, derived from the two-alternative-forced-choice task, revealed abnormal threshold to perceive heading direction, abnormal sensitivity to the change in heading direction compared to straight ahead, and a bias towards one side. Although the impairment was present in both visual and vestibular heading perception, the deficits were not coupled.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell' Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell' Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA. .,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA.
| |
Collapse
|
21
|
Translation information processing is regulated by protein kinase C-dependent mechanism in Purkinje cells in murine posterior vermis. Proc Natl Acad Sci U S A 2020; 117:17348-17358. [PMID: 32636261 DOI: 10.1073/pnas.2002177117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cerebellar posterior vermis generates an estimation of our motion (translation) and orientation (tilt) in space using cues originating from semicircular canals and otolith organs. Theoretical work has laid out the basic computations necessary for this signal transformation, but details on the cellular loci and mechanisms responsible are lacking. Using a multicomponent modeling approach, we show that canal and otolith information are spatially and temporally matched in mouse posterior vermis Purkinje cells and that Purkinje cell responses combine translation and tilt information. Purkinje cell-specific inhibition of protein kinase C decreased and phase-shifted the translation component of Purkinje cell responses, but did not affect the tilt component. Our findings suggest that translation and tilt signals reach Purkinje cells via separate information pathways and that protein kinase C-dependent mechanisms regulate translation information processing in cerebellar cortex output neurons.
Collapse
|
22
|
Noh W, Lee M, Kim HJ, Kim KS, Yang S. Hypergravity induced disruption of cerebellar motor coordination. Sci Rep 2020; 10:4452. [PMID: 32157179 PMCID: PMC7064588 DOI: 10.1038/s41598-020-61453-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023] Open
Abstract
The cerebellum coordinates voluntary movements for balanced motor activity in a normal gravity condition. It remains unknown how hypergravity is associated with cerebellum-dependent motor behaviors and Purkinje cell’s activities. In order to investigate the relationship between gravity and cerebellar physiology, we measured AMPA-mediated fast currents and mGluR1-mediated slow currents of cerebellar Purkinje cells along with cerebellum-dependent behaviors such as the footprint and irregular ladder under a hypergravity condition. We found abnormal animal behaviors in the footprint and irregular ladder tests under hypergravity. They are correlated with decreased AMPA and mGluR1-mediated synaptic currents of Purkinje cells. These results indicate that gravity regulates the activity of Purkinje cells, thereby modulating cerebellum-dependent motor outputs.
Collapse
Affiliation(s)
- Wonjun Noh
- Department of Nano-Bioengineering, Incheon National University, Incheon, Korea
| | - Minseok Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, Korea
| | - Hyun Ji Kim
- Department of Otorhinolaryngology-Head & Neck surgery, Inha University, College of medicine, Incheon, Korea
| | - Kyu-Sung Kim
- Department of Otorhinolaryngology-Head & Neck surgery, Inha University, College of medicine, Incheon, Korea.
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, Korea.
| |
Collapse
|
23
|
Commutative Properties of Head Direction Cells during Locomotion in 3D: Are All Routes Equal? J Neurosci 2020; 40:3035-3051. [PMID: 32127493 DOI: 10.1523/jneurosci.2789-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/21/2022] Open
Abstract
Navigation often requires movement in three-dimensional (3D) space. Recent studies have postulated two different models for how head direction (HD) cells encode 3D space: the rotational plane hypothesis and the dual-axis model. To distinguish these models, we recorded HD cells in female rats while they traveled different routes along both horizontal and vertical surfaces from an elevated platform to the top of a cuboidal apparatus. We compared HD cell preferred firing directions (PFDs) in different planes and addressed the issue of whether HD cell firing is commutative-does the order of the animal's route affect the final outcome of the cell's PFD? Rats locomoted a direct or indirect route from the floor to the cube top via one, two, or three vertical walls. Whereas the rotational plane hypothesis accounted for PFD shifts when the animal traversed horizontal corners, the cell's PFD was better explained by the dual-axis model when the animal traversed vertical corners. Responses also followed the dual-axis model (1) under dark conditions, (2) for passive movement of the rat, (3) following apparatus rotation, (4) for movement around inside vertical corners, and (5) across a 45° outside vertical corner. The order in which the animal traversed the different planes did not affect the outcome of the cell's PFD, indicating that responses were commutative. HD cell peak firing rates were generally equivalent along each surface. These findings indicate that the animal's orientation with respect to gravity plays an important role in determining a cell's PFD, and that vestibular and proprioceptive cues drive these computations.SIGNIFICANCE STATEMENT Navigating in a three-dimensional (3D) world is a complex task that requires one to maintain a proper sense of orientation relative to both local and global cues. Rodent head direction (HD) cells have been suggested to subserve this sense of orientation, but most HD cell studies have focused on navigation in 2D environments. We investigated the responses of HD cells as rats moved between multiple vertically and horizontally oriented planar surfaces, demonstrating that HD cells align their directional representations to both local (current plane of locomotion) and global (gravity) cues across several experimental conditions, including darkness and passive movement. These findings offer critical insights into the processing of 3D space in the mammalian brain.
Collapse
|
24
|
Laurens J, Angelaki DE. Simple spike dynamics of Purkinje cells in the macaque vestibulo-cerebellum during passive whole-body self-motion. Proc Natl Acad Sci U S A 2020; 117:3232-3238. [PMID: 31988119 PMCID: PMC7022220 DOI: 10.1073/pnas.1915873117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Theories of cerebellar functions posit that the cerebellum implements internal models for online correction of motor actions and sensory estimation. As an example of such computations, an internal model resolves a sensory ambiguity where the peripheral otolith organs in the inner ear sense both head tilts and translations. Here we exploit the response dynamics of two functionally coupled Purkinje cell types in the vestibular part of the caudal vermis (lobules IX and X) to understand their role in this computation. We find that one population encodes tilt velocity, whereas the other, translation-selective, population encodes linear acceleration. We predict that an intermediate neuronal type should temporally integrate the output of tilt-selective cells into a tilt position signal.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77056
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77056;
- Center for Neural Science, New York University, New York, NY 10003
- Tandon School of Engineering, New York University, New York, NY 10003
| |
Collapse
|
25
|
Beylergil SB, Gupta P, Shaikh AG. Does Inferior-Olive Hypersynchrony Affect Vestibular Heading Perception? THE CEREBELLUM 2020; 20:744-750. [PMID: 31939030 DOI: 10.1007/s12311-020-01103-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multisensory integration is critical for resolving ambiguities in isolated sensory systems assuring accurate perception of one's own linear motion, i.e., heading. The vestibular signal, a critical source of information for heading perception, is transformed in appropriate coordinates suitable for multisensory integration-such transformation takes place under cerebellar supervision. Deficiency in cerebellar function due to Purkinje cell loss results in inaccurate multisensory integration and impaired heading perception. Here, we predict that a classic movement disorder, the syndrome of oculopalatal tremor (OPT), also presents with inaccurate heading direction perception. The characteristic feature of oculopalatal tremor is pseudohypertrophic inferior olive that constantly sends spontaneous, hypersynchronous, abnormal, and meaningless signals to the cerebellum. Such malicious olive signal can impair heading perception. We examined vestibular heading perception in 6 individuals with OPT and 9 age-matched healthy controls (HC). We used a two-alternative forced choice task performed during passive en bloc translation. Compared with age-matched HC, OPT group had significantly higher heading direction perception threshold indicating a less sensitive vestibular system to variations in heading direction. Using computational simulations, we show that the addition of the abnormal noise into the cerebellar system results in decreased spatiotemporal tuning behavior of the cerebellar output. Such impairment in spatiotemporal tuning causes reduced ability to perceive heading direction. Hyperactivity in the inferior-olive cerebellar pathway impairs the heading direction perception. We suggest that this impairment stems from abnormal noise into the cerebellum due to hypersynchronized inferior olive.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, National VA Parkinson Consortium Center, Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Palak Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, National VA Parkinson Consortium Center, Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, National VA Parkinson Consortium Center, Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA. .,Neurological Institute, University Hospitals, Cleveland, OH, USA.
| |
Collapse
|
26
|
Yang X, Casement M, Yokum S, Stice E. Negative affect amplifies the relation between appetitive-food-related neural responses and weight gain over three-year follow-up among adolescents. NEUROIMAGE-CLINICAL 2019; 24:102067. [PMID: 31795036 PMCID: PMC6861567 DOI: 10.1016/j.nicl.2019.102067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/24/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022]
Abstract
Interaction of negative affect and hippocampal food-image response predicts BMI gain. Interaction of negative affect, vermis and precuneus food response predicts BMI gain. Interaction of stress and middle occipital gyrus milkshake response predicts BMI gain. Weight gain associated with restrained eating and eating-disorder related behavior.
Obesity is a major public health concern that is associated with disruption in food reward-related brain function. This study examined if negative affect and stressful events enhance the relation between the food reward-related neural response and future weight gain. Initially healthy weight adolescents (N = 135) completed fMRI paradigms in which they tasted milkshakes and viewed palatable food images, and reported on negative affect and stressful events at baseline; BMI was measured annually over 3-year follow-up. Whole-brain analyses revealed that among participants with higher negative affect, weight gain over 3-year follow-up was predicted by elevated response to appetitive versus unappetitive food images in the left hippocampus, and elevated response in the vermis and the bilateral precuneus to tastes of milkshake versus tasteless solution. Among participants who experienced more stressful events, elevated right middle occipital gyrus response to milkshakes predicted future weight gain. Profiling analyses suggested that participants with higher negative affect or more stressful events who later gained weight reported engaging in more restrained eating and eating disorder-related behaviors. Results suggest that negative affect or stressful events may amplify the relation of neural response to food and the risk for future weight gain.
Collapse
Affiliation(s)
- X Yang
- University of Oregon, 1451 Onyx St, Eugene, OR 97403, United States.
| | - M Casement
- University of Oregon, 1451 Onyx St, Eugene, OR 97403, United States
| | - S Yokum
- Oregon Research Institute, 1776 Millrace Drive, Eugene, OR 97403, United States
| | - E Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, United States.
| |
Collapse
|
27
|
Offline consolidation of spatial memory: Do the cerebellar output circuits play a role? A study utilizing a Morris water maze protocol in male Wistar rats. Brain Res 2019; 1718:148-158. [DOI: 10.1016/j.brainres.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 01/20/2023]
|
28
|
Mackrous I, Carriot J, Jamali M, Cullen KE. Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity. Curr Biol 2019; 29:2698-2710.e4. [PMID: 31378613 DOI: 10.1016/j.cub.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world and our orientation relative to gravity. However, how the brain then accounts for gravity as we actively move and interact with our environment is not yet known. Here, we provide evidence that, although during passive movements, individual cerebellar output neurons encode representations of head motion and orientation relative to gravity, these gravity-driven responses are cancelled when head movement is a consequence of voluntary generated movement. In contrast, the gravity-driven responses of primary otolith and semicircular canal afferents remain intact during both active and passive self-motion, indicating the attenuated responses of central neurons are not inherited from afferent inputs. Taken together, our results are consistent with the view that the cerebellum builds a dynamic prediction (e.g., internal model) of the sensory consequences of gravity during active self-motion, which in turn enables the preferential encoding of unexpected motion to ensure postural and perceptual stability.
Collapse
Affiliation(s)
- Isabelle Mackrous
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Jerome Carriot
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Mohsen Jamali
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Kathleen E Cullen
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada; Department of Biomedical Engineering, Johns Hopkins University, Rm. 720, Ross Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Laurens J, Angelaki DE. The Brain Compass: A Perspective on How Self-Motion Updates the Head Direction Cell Attractor. Neuron 2019; 97:275-289. [PMID: 29346751 DOI: 10.1016/j.neuron.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/19/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Head direction cells form an internal compass signaling head azimuth orientation even without visual landmarks. This property is generated by a neuronal ring attractor that is updated using rotation velocity cues. The properties and origin of this velocity drive remain, however, unknown. We propose a quantitative framework whereby this drive represents a multisensory self-motion estimate computed through an internal model that uses sensory prediction errors of vestibular, visual, and somatosensory cues to improve on-line motor drive. We show how restraint-dependent strength of recurrent connections within the attractor can explain differences in head direction cell firing between free foraging and restrained passive rotation. We also summarize recent findings on how gravity influences azimuth coding, indicating that the velocity drive is not purely egocentric. Finally, we show that the internal compass may be three-dimensional and hypothesize that the additional vertical degrees of freedom use global allocentric gravity cues.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Choi JY, Glasauer S, Kim JH, Zee DS, Kim JS. Characteristics and mechanism of apogeotropic central positional nystagmus. Brain 2019; 141:762-775. [PMID: 29373699 DOI: 10.1093/brain/awx381] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/23/2017] [Indexed: 11/12/2022] Open
Abstract
Here we characterize persistent apogeotropic type of central positional nystagmus, and compare it with the apogeotropic nystagmus of benign paroxysmal positional vertigo involving the lateral canal. Nystagmus was recorded in 27 patients with apogeotropic type of central positional nystagmus (22 with unilateral and five with diffuse cerebellar lesions) and 20 patients with apogeotropic nystagmus of benign paroxysmal positional vertigo. They were tested while sitting, while supine with the head straight back, and in the right and left ear-down positions. The intensity of spontaneous nystagmus was similar while sitting and supine in apogeotropic type of central positional nystagmus, but greater when supine in apogeotropic nystagmus of benign paroxysmal positional vertigo. In central positional nystagmus, when due to a focal pathology, the lesions mostly overlapped in the vestibulocerebellum (nodulus, uvula, and tonsil). We suggest a mechanism for apogeotropic type of central positional nystagmus based on the location of lesions and a model that uses the velocity-storage mechanism. During both tilt and translation, the otolith organs can relay the same gravito-inertial acceleration signal. This inherent ambiguity can be resolved by a 'tilt-estimator circuit' in which information from the semicircular canals about head rotation is combined with otolith information about linear acceleration through the velocity-storage mechanism. An example of how this mechanism works in normal subjects is the sustained horizontal nystagmus that is produced when a normal subject is rotated at a constant speed around an axis that is tilted away from the true vertical (off-vertical axis rotation). We propose that when the tilt-estimator circuit malfunctions, for example, with lesions in the vestibulocerebellum, the estimate of the direction of gravity is erroneously biased away from true vertical. If the bias is toward the nose, when the head is turned to the side while supine, there will be sustained, unwanted, horizontal positional nystagmus (apogeotropic type of central positional nystagmus) because of an inappropriate feedback signal indicating that the head is rotating when it is not.
Collapse
Affiliation(s)
- Jeong-Yoon Choi
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Stefan Glasauer
- Center for Sensorimotor Research, Department of Neurology, Ludwig-Maximilian University Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilian University Munich, Munich, Germany
| | - Ji Hyun Kim
- Department of Neurology, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - David S Zee
- Departments of Neurology, Ophthalmology, Otolaryngology - Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
31
|
Jamali M, Carriot J, Chacron MJ, Cullen KE. Coding strategies in the otolith system differ for translational head motion vs. static orientation relative to gravity. eLife 2019; 8:45573. [PMID: 31199243 PMCID: PMC6590985 DOI: 10.7554/elife.45573] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022] Open
Abstract
The detection of gravito-inertial forces by the otolith system is essential for our sense of balance and accurate perception. To date, however, how this system encodes the self-motion stimuli that are experienced during everyday activities remains unknown. Here, we addressed this fundamental question directly by recording from single otolith afferents in monkeys during naturalistic translational self-motion and changes in static head orientation. Otolith afferents with higher intrinsic variability transmitted more information overall about translational self-motion than their regular counterparts, owing to stronger nonlinearities that enabled precise spike timing including phase locking. By contrast, more regular afferents better discriminated between different static head orientations relative to gravity. Using computational methods, we further demonstrated that coupled increases in intrinsic variability and sensitivity accounted for the observed functional differences between afferent classes. Together, our results indicate that irregular and regular otolith afferents use different strategies to encode naturalistic self-motion and static head orientation relative to gravity.
Collapse
Affiliation(s)
- Mohsen Jamali
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, United States
| | - Jerome Carriot
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
32
|
Tang SY, Shaikh AG. Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia. CEREBELLUM (LONDON, ENGLAND) 2019; 18:556-564. [PMID: 30523550 PMCID: PMC6751135 DOI: 10.1007/s12311-018-0990-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ataxia-telangiectasia is the second most common autosomal recessive hereditary ataxia, with an estimated incidence of 1 in 100,000 births. Besides ataxia and ocular telangiectasias, eye movement abnormalities have long been associated with this disorder and is frequently present in almost all patients. A handful of studies have described the phenomenology of ocular motor deficits in ataxia-telangiectasia. Contemporary literature linked their physiology to cerebellar dysfunction and secondary abnormalities at the level of brainstem. These studies, while providing a proof of concept of ocular motor physiology in disease, i.e., ataxia-telangiectasia, also advanced our understanding of how the cerebellum works. Here, we will summarize the clinical abnormalities seen with ataxia-telangiectasia in each subtype of eye movements and subsequently describe the underlying pathophysiology. Finally, we will review how these deficits are linked to abnormal cerebellar function and how it allows better understanding of the cerebellar physiology.
Collapse
Affiliation(s)
- Sherry Y Tang
- Department of Neurology, Neurology Service, Cleveland VA Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA
| | - Aasef G Shaikh
- Department of Neurology, Neurology Service, Cleveland VA Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
| |
Collapse
|
33
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
34
|
Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nat Commun 2019; 10:2251. [PMID: 31113954 PMCID: PMC6529420 DOI: 10.1038/s41467-019-09958-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Cerebellar activity supported by PKC-dependent long-term depression in Purkinje cells (PCs) is involved in the stabilization of self-motion based hippocampal representation, but the existence of cerebellar processes underlying integration of allocentric cues remains unclear. Using mutant-mice lacking PP2B in PCs (L7-PP2B mice) we here assess the role of PP2B-dependent PC potentiation in hippocampal representation and spatial navigation. L7-PP2B mice display higher susceptibility to spatial map instability relative to the allocentric cue and impaired allocentric as well as self-motion goal-directed navigation. These results indicate that PP2B-dependent potentiation in PCs contributes to maintain a stable hippocampal representation of a familiar environment in an allocentric reference frame as well as to support optimal trajectory toward a goal during navigation. It is known that Purkinje cell PKC-dependent depression is involved in the stabilization of self-motion based hippocampal representation. Here the authors describe decreased stability of hippocampal place cells based on allocentric cues in mice lacking Purkinje cell PP2B-dependent potentiation.
Collapse
|
35
|
Choi JY, Kim JS. Central positional nystagmus: Characteristics and model-based explanations. PROGRESS IN BRAIN RESEARCH 2019; 249:211-225. [PMID: 31325981 DOI: 10.1016/bs.pbr.2019.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The central vestibular system operates to precisely estimate the rotational velocity and gravity orientation using the inherently ambiguous information from peripheral vestibular system. Therefore, any lesions disrupting this function can generate positional nystagmus. Central positional nystagmus (CPN) can be classified into the paroxysmal (transient) and persistent forms. The paroxysmal CPN has the features suggesting a semicircular canal origin regarding the latency, duration, and direction of nystagmus. Patients with paroxysmal CPN commonly show several different types of nystagmus classified according to the provoking positioning. The persistent form of CPN mostly appears as downbeat nystagmus while prone or supine, or apogeotropic or geotropic horizontal nystagmus when the head is turned to either side while supine. CPN may be ascribed to erroneous neural processing within the velocity-storage circuit that functions in estimating angular head velocity, gravity direction, and inertia. Paroxysmal CPN appears to be post-rotatory rebound nystagmus due to lesions involving the cerebellar nodulus and uvula. In contrast, persistent CPN may arise from erroneous gravity estimation. The overlap of lesion location responsible for both paroxysmal and persistent CPN may account for the frequent coexistence of both forms of nystagmus in a single patient.
Collapse
Affiliation(s)
- Jeong-Yoon Choi
- Department of Neurology, Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
36
|
Britton Z, Arshad Q. Vestibular and Multi-Sensory Influences Upon Self-Motion Perception and the Consequences for Human Behavior. Front Neurol 2019; 10:63. [PMID: 30899238 PMCID: PMC6416181 DOI: 10.3389/fneur.2019.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
In this manuscript, we comprehensively review both the human and animal literature regarding vestibular and multi-sensory contributions to self-motion perception. This covers the anatomical basis and how and where the signals are processed at all levels from the peripheral vestibular system to the brainstem and cerebellum and finally to the cortex. Further, we consider how and where these vestibular signals are integrated with other sensory cues to facilitate self-motion perception. We conclude by demonstrating the wide-ranging influences of the vestibular system and self-motion perception upon behavior, namely eye movement, postural control, and spatial awareness as well as new discoveries that such perception can impact upon numerical cognition, human affect, and bodily self-consciousness.
Collapse
Affiliation(s)
- Zelie Britton
- Department of Neuro-Otology, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Qadeer Arshad
- Department of Neuro-Otology, Charing Cross Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Genetically eliminating Purkinje neuron GABAergic neurotransmission increases their response gain to vestibular motion. Proc Natl Acad Sci U S A 2019; 116:3245-3250. [PMID: 30723151 DOI: 10.1073/pnas.1818819116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purkinje neurons in the caudal cerebellar vermis combine semicircular canal and otolith signals to segregate linear and gravitational acceleration, evidence for how the cerebellum creates internal models of body motion. However, it is not known which cerebellar circuit connections are necessary to perform this computation. We first showed that this computation is evolutionarily conserved and represented across multiple lobules of the rodent vermis. Then we tested whether Purkinje neuron GABAergic output is required for accurately differentiating linear and gravitational movements through a conditional genetic silencing approach. By using extracellular recordings from lobules VI through X in awake mice, we show that silencing Purkinje neuron output significantly alters their baseline simple spike variability. Moreover, the cerebellum of genetically manipulated mice continues to distinguish linear from gravitational acceleration, suggesting that the underlying computations remain intact. However, response gain is significantly increased in the mutant mice over littermate controls. Altogether, these data argue that Purkinje neuron feedback regulates gain control within the cerebellar circuit.
Collapse
|
38
|
Favre-Bulle IA, Vanwalleghem G, Taylor MA, Rubinsztein-Dunlop H, Scott EK. Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain. Curr Biol 2018; 28:3711-3722.e3. [PMID: 30449665 DOI: 10.1016/j.cub.2018.09.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/26/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
The vestibular system, which reports on motion and gravity, is essential to postural control, balance, and egocentric representations of movement and space. The motion needed to stimulate the vestibular system complicates studying its circuitry, so we previously developed a method for fictive vestibular stimulation in zebrafish, using optical trapping to apply physical forces to the otoliths. Here, we combine this approach with whole-brain calcium imaging at cellular resolution, delivering a comprehensive map of the brain regions and cellular responses involved in basic vestibular processing. We find responses broadly distributed across the brain, with unique profiles of cellular responses and topography in each region. The most widespread and abundant responses involve excitation that is graded to the stimulus strength. Other responses, localized to the telencephalon and habenulae, show excitation that is only weakly correlated to stimulus strength and that is sensitive to weak stimuli. Finally, numerous brain regions contain neurons that are inhibited by vestibular stimuli, and these neurons are often tightly localized spatially within their regions. By exerting separate control over the left and right otoliths, we explore the laterality of brain-wide vestibular processing, distinguishing between neurons with unilateral and bilateral vestibular sensitivity and revealing patterns whereby conflicting signals from the ears mutually cancel. Our results confirm previously identified vestibular responses in specific regions of the larval zebrafish brain while revealing a broader and more extensive network of vestibular responsive neurons than has previously been described. This provides a departure point for more targeted studies of the underlying functional circuits.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gilles Vanwalleghem
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael A Taylor
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
39
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
40
|
Popa LS, Streng ML, Ebner TJ. Purkinje Cell Representations of Behavior: Diary of a Busy Neuron. Neuroscientist 2018; 25:241-257. [PMID: 29985093 DOI: 10.1177/1073858418785628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fundamental for understanding cerebellar function is determining the representations in Purkinje cell activity, the sole output of the cerebellar cortex. Up to the present, the most accurate descriptions of the information encoded by Purkinje cells were obtained in the context of motor behavior and reveal a high degree of heterogeneity of kinematic and performance error signals encoded. The most productive framework for organizing Purkinje cell firing representations is provided by the forward internal model hypothesis. Direct tests of this hypothesis show that individual Purkinje cells encode two different forward models simultaneously, one for effector kinematics and one for task performance. Newer results demonstrate that the timing of simple spike encoding of motor parameters spans an extend interval of up to ±2 seconds. Furthermore, complex spike discharge is not limited to signaling errors, can be predictive, and dynamically controls the information in the simple spike firing to meet the demands of upcoming behavior. These rich, diverse, and changing representations highlight the integrative aspects of cerebellar function and offer the opportunity to generalize the cerebellar computational framework over both motor and non-motor domains.
Collapse
Affiliation(s)
- Laurentiu S Popa
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Martha L Streng
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Ebner
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
41
|
Shaikh AG, Antoniades C, Fitzgerald J, Ghasia FF. Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function. Front Neurol 2018; 9:444. [PMID: 29946295 PMCID: PMC6005881 DOI: 10.3389/fneur.2018.00444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/25/2018] [Indexed: 12/20/2022] Open
Abstract
Discovery of inter-latching circuits in the basal ganglia and invention of deep brain stimulation (DBS) for their modulation is a breakthrough in basic and clinical neuroscience. The DBS not only changes the quality of life of hundreds of thousands of people with intractable movement disorders, but it also offers a unique opportunity to understand how the basal ganglia interacts with other neural structures. An attractive yet less explored area is the study of DBS on eye movements and vestibular function. From the clinical perspective such studies provide valuable guidance in efficient programming of stimulation profile leading to optimal motor outcome. From the scientific standpoint such studies offer the ability to assess the outcomes of basal ganglia stimulation on eye movement behavior in cognitive as well as in motor domains. Understanding the influence of DBS on ocular motor function also leads to analogies to interpret its effects on complex appendicular and axial motor function. This review focuses on the influence of globus pallidus, subthalamic nucleus, and thalamus DBS on ocular motor and vestibular functions. The anatomy and physiology of basal ganglia, pertinent to the principles of DBS and ocular motility, is discussed. Interpretation of the effects of electrical stimulation of the basal ganglia in Parkinson's disease requires understanding of baseline ocular motor function in the diseased brain. Therefore we have also discussed the baseline ocular motor deficits in these patients and how the DBS changes such functions.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, University Hospitals, Case Western Reserve University, Cleveland, OH, United States.,Daroff-Dell'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, United States
| | - Chrystalina Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - James Fitzgerald
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fatema F Ghasia
- Daroff-Dell'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, United States.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
42
|
Long RM, Pakan JMP, Graham DJ, Hurd PL, Gutierrez-Ibañez C, Wylie DR. Modulation of complex spike activity differs between zebrin-positive and -negative Purkinje cells in the pigeon cerebellum. J Neurophysiol 2018; 120:250-262. [PMID: 29589816 DOI: 10.1152/jn.00797.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII-). In the pigeon vestibulocerebellum, a ZII+/- stripe pair represents a functional unit, insofar as both ZII+ and ZII- PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII- PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII- PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII- PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII- PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII-).
Collapse
Affiliation(s)
- Rebecca M Long
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Janelle M P Pakan
- German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany.,Institute for Cognitive Neurology (IKND), Medical Faculty, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | | | - Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
43
|
Shaikh AG, Straumann D, Palla A. Motion Illusion-Evidence towards Human Vestibulo-Thalamic Projections. THE CEREBELLUM 2018; 16:656-663. [PMID: 28127679 DOI: 10.1007/s12311-017-0844-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contemporary studies speculated that cerebellar network responsible for motion perception projects to the cerebral cortex via vestibulo-thalamus. Here, we sought for the physiological properties of vestibulo-thalamic pathway responsible for the motion perception. Healthy subjects and the patient with focal vestibulo-thalamic lacunar stroke spun a hand-held rheostat to approximate the value of perceived angular velocity during whole-body passive earth-vertical axis rotations in yaw plane. Vestibulo-ocular reflex was simultaneously measured with high-resolution search coils (paradigm 1). In primates, the vestibulo-thalamic projections remain medial and then dorsomedial to the subthalamus. Therefore, the paradigm 2 assessed the effects of high-frequency subthalamic nucleus electrical stimulation through the medial and caudal deep brain stimulation electrode in five subjects with Parkinson's disease. Paradigm 1 discovered directional mismatch of perceived rotation in a patient with vestibulo-thalamic lacune. There was no such mismatch in vestibulo-ocular reflex. Healthy subjects did not have such directional discrepancy of perceived motion. The results confirmed that perceived angular motion is relayed through the thalamus. Stimulation through medial and caudal-most electrode of subthalamic deep brain stimulator in paradigm 2 resulted in perception of rotational motion in the horizontal semicircular canal plane. One patient perceived riding a swing, a complex motion, possibly the combination of vertical canal and otolith-derived signals representing pitch and fore-aft motion, respectively. The results examined physiological properties of the vestibulo-thalamic pathway that passes in proximity to the subthalamic nucleus conducting pure semicircular canal signals and convergent signals from the semicircular canals and the otoliths.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA. .,Neurology Service, Cleveland VA Medical Center, Cleveland, OH, USA. .,Daroff-DelOsso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, University Hospitals, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
| | - Dominik Straumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonella Palla
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Flexible egocentric and allocentric representations of heading signals in parietal cortex. Proc Natl Acad Sci U S A 2018; 115:E3305-E3312. [PMID: 29555744 DOI: 10.1073/pnas.1715625115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
By systematically manipulating head position relative to the body and eye position relative to the head, previous studies have shown that vestibular tuning curves of neurons in the ventral intraparietal (VIP) area remain invariant when expressed in body-/world-centered coordinates. However, body orientation relative to the world was not manipulated; thus, an egocentric, body-centered representation could not be distinguished from an allocentric, world-centered reference frame. We manipulated the orientation of the body relative to the world such that we could distinguish whether vestibular heading signals in VIP are organized in body- or world-centered reference frames. We found a hybrid representation, depending on gaze direction. When gaze remained fixed relative to the body, the vestibular heading tuning of VIP neurons shifted systematically with body orientation, indicating an egocentric, body-centered reference frame. In contrast, when gaze remained fixed relative to the world, this representation changed to be intermediate between body- and world-centered. We conclude that the neural representation of heading in posterior parietal cortex is flexible, depending on gaze and possibly attentional demands.
Collapse
|
45
|
Role of Rostral Fastigial Neurons in Encoding a Body-Centered Representation of Translation in Three Dimensions. J Neurosci 2018; 38:3584-3602. [PMID: 29487123 DOI: 10.1523/jneurosci.2116-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 11/21/2022] Open
Abstract
Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the rostral fastigial nucleus (rFN) reflect these computations, but whether they explicitly encode estimates of body motion remains unclear. A key limitation in addressing this question is that, to date, cell tuning properties have only been characterized for a restricted set of motions across head-re-body orientations in the horizontal plane. Here we examined, for the first time, how 3D spatiotemporal tuning for translational motion varies with head-re-body orientation in both horizontal and vertical planes in the rFN of male macaques. While vestibular coding was profoundly influenced by head-re-body position in both planes, neurons typically reflected at most a partial transformation. However, their tuning shifts were not random but followed the specific spatial trajectories predicted for a 3D transformation. We show that these properties facilitate the linear decoding of fully body-centered motion representations in 3D with a broad range of temporal characteristics from small groups of 5-7 cells. These results demonstrate that the vestibular reference frame transformation required to compute body motion is indeed encoded by cerebellar neurons. We propose that maintaining partially transformed rFN responses with different spatiotemporal properties facilitates the creation of downstream body motion representations with a range of dynamic characteristics, consistent with the functional requirements for tasks such as postural control and reaching.SIGNIFICANCE STATEMENT Estimates of body motion are essential for many daily activities. Vestibular signals are important contributors to such estimates but must be transformed from a head- to a body-centered reference frame. Here, we provide the first direct demonstration that the cerebellum computes this transformation fully in 3D. We show that the output of these computations is reflected in the tuning properties of deep cerebellar rostral fastigial nucleus neurons in a specific distributed fashion that facilitates the efficient creation of body-centered translation estimates with a broad range of temporal properties (i.e., from acceleration to position). These findings support an important role for the rostral fastigial nucleus as a source of body translation estimates functionally relevant for behaviors ranging from postural control to perception.
Collapse
|
46
|
Abstract
Egocentric (self-centered) and allocentric (viewpoint independent) representations of space are essential for spatial navigation and wayfinding. Deficits in spatial memory come with age-related cognitive decline, are marked in mild cognitive impairment (MCI) and Alzheimer’s disease (AD), and are associated with cognitive deficits in autism. In most of these disorders, a change in the brain areas engaged in the spatial reference system processing has been documented. However, the spatial memory deficits observed during physiological and pathological aging are quite different. While patients with AD and MCI have a general spatial navigation impairment in both allocentric and egocentric strategies, healthy older adults are particularly limited in the allocentric navigation, but they can still count on egocentric navigation strategy to solve spatial tasks. Therefore, specific navigational tests should be considered for differential diagnosis between healthy and pathological aging conditions. Finally, more research is still needed to better understand the spatial abilities of autistic individuals.
Collapse
Affiliation(s)
- Maria Concetta Miniaci
- Department of Pharmacy , School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB) , National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| |
Collapse
|
47
|
Newlands SD, Abbatematteo B, Wei M, Carney LH, Luan H. Convergence of linear acceleration and yaw rotation signals on non-eye movement neurons in the vestibular nucleus of macaques. J Neurophysiol 2018; 119:73-83. [PMID: 28978765 DOI: 10.1152/jn.00382.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center , Rochester, New York.,Department of Neuroscience, University of Rochester Medical Center , Rochester, New York
| | - Ben Abbatematteo
- Department of Biomedical Engineering, University of Rochester , Rochester, New York
| | - Min Wei
- Department of Otolaryngology, University of Rochester Medical Center , Rochester, New York
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester , Rochester, New York.,Department of Neuroscience, University of Rochester Medical Center , Rochester, New York
| | - Hongge Luan
- Department of Otolaryngology, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
48
|
Dakin CJ, Rosenberg A. Gravity estimation and verticality perception. HANDBOOK OF CLINICAL NEUROLOGY 2018; 159:43-59. [PMID: 30482332 DOI: 10.1016/b978-0-444-63916-5.00003-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gravity is a defining force that governs the evolution of mechanical forms, shapes and anchors our perception of the environment, and imposes fundamental constraints on our interactions with the world. Within the animal kingdom, humans are relatively unique in having evolved a vertical, bipedal posture. Although a vertical posture confers numerous benefits, it also renders us less stable than quadrupeds, increasing susceptibility to falls. The ability to accurately and precisely estimate our orientation relative to gravity is therefore of utmost importance. Here we review sensory information and computational processes underlying gravity estimation and verticality perception. Central to gravity estimation and verticality perception is multisensory cue combination, which serves to improve the precision of perception and resolve ambiguities in sensory representations by combining information from across the visual, vestibular, and somatosensory systems. We additionally review experimental paradigms for evaluating verticality perception, and discuss how particular disorders affect the perception of upright. Together, the work reviewed here highlights the critical role of multisensory cue combination in gravity estimation, verticality perception, and creating stable gravity-centered representations of our environment.
Collapse
Affiliation(s)
- Christopher J Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States.
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|
49
|
Babayan BM, Watilliaux A, Viejo G, Paradis AL, Girard B, Rondi-Reig L. A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Sci Rep 2017; 7:17812. [PMID: 29259243 PMCID: PMC5736633 DOI: 10.1038/s41598-017-18004-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
How do we translate self-motion into goal-directed actions? Here we investigate the cognitive architecture underlying self-motion processing during exploration and goal-directed behaviour. The task, performed in an environment with limited and ambiguous external landmarks, constrained mice to use self-motion based information for sequence-based navigation. The post-behavioural analysis combined brain network characterization based on c-Fos imaging and graph theory analysis as well as computational modelling of the learning process. The study revealed a widespread network centred around the cerebral cortex and basal ganglia during the exploration phase, while a network dominated by hippocampal and cerebellar activity appeared to sustain sequence-based navigation. The learning process could be modelled by an algorithm combining memory of past actions and model-free reinforcement learning, which parameters pointed toward a central role of hippocampal and cerebellar structures for learning to translate self-motion into a sequence of goal-directed actions.
Collapse
Affiliation(s)
- Benedicte M Babayan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France
| | - Aurélie Watilliaux
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France
| | - Guillaume Viejo
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), F-75005, Paris, France
| | - Anne-Lise Paradis
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France
| | - Benoît Girard
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), F-75005, Paris, France
| | - Laure Rondi-Reig
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France.
| |
Collapse
|
50
|
Laurens J, Angelaki DE. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 2017; 6:28074. [PMID: 29043978 PMCID: PMC5839740 DOI: 10.7554/elife.28074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. When seated in a car, we can detect when the vehicle begins to move even with our eyes closed. Structures in the inner ear called the vestibular, or balance, organs enable us to sense our own movement. They do this by detecting head rotations, accelerations and gravity. They then pass this information on to specialized vestibular regions of the brain. Experiments using rotating chairs and moving platforms have shown that passive movements – such as car journeys and rollercoaster rides – activate the brain’s vestibular regions. But recent work has revealed that voluntary movements – in which individuals start the movement themselves – activate these regions far less than passive movements. Does this mean that the brain ignores signals from the inner ear during voluntary movements? Another possibility is that the brain predicts in advance how each movement will affect the vestibular organs in the inner ear. It then compares these predictions with the signals it receives during the movement. Only mismatches between the two activate the brain’s vestibular regions. To test this theory, Laurens and Angelaki created a mathematical model that compares predicted signals with actual signals in the way the theory proposes. The model accurately predicts the patterns of brain activity seen during both active and passive movement. This reconciles the results of previous experiments on active and passive motion. It also suggests that the brain uses similar processes to analyze vestibular signals during both types of movement. These findings can help drive further research into how the brain uses sensory signals to refine our everyday movements. They can also help us understand how people recover from damage to the vestibular system. Most patients with vestibular injuries learn to walk again, but have difficulty walking on uneven ground. They also become disoriented by passive movement. Using the model to study how the brain adapts to loss of vestibular input could lead to new strategies to aid recovery.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|