1
|
Priya P, Srivastava A, Yadav N, Mittal R, Anand S, Banerjee J, Tripathi M, Chandra PS, Doddamani R, Sharma MC, Lalwani S, Siraj F, Dixit AB. Subunit specific altered expression and activity of casein kinase 2 in the brain tissues resected from mesial temporal lobe epilepsy with hippocampal sclerosis patients & rodent temporal lobe epilepsy model. Neuroscience 2025; 572:108-121. [PMID: 40064363 DOI: 10.1016/j.neuroscience.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Mesial temporal lobe epilepsy (MTLE), is associated with dysregulated excitatory-inhibitory balance in the brain. Numerous enzymes, protein kinases, that are modulated through phosphorylation, have been linked with key processes involved in the pathogenesis of epilepsy. Therefore, in this study, we determined the subunit specific expression and activity of multi-subunit casein Kinase 2 (CK2) which influences NMDARs through phosphorylation events, in MTS patients as well as pilocarpine model of TLE. METHODS mRNA expression of CK2 (α, α', β) & NR2B was measured by real time PCR andprotein expression of CK2 (α, α', β), NR2B, and NR2B Ser1480 were evaluated using western blotting and immunohistochemistry in experimental models of TLE and MTS patients. CK2 α and α' activity was measured by kinase assay. RESULTS Significant increase in CK2α', CK2β, and NR2B mRNA expression were noted in chronic TLE rat model. Similarly, MTS patients displayed upregulated CK2α' and CK2β expressions, but NR2B mRNA remained unchanged. CK2α', CK2β, and NR2B Ser1480 protein expressions were higher in chronic TLE and MTS patients in relation to controls (p < 0.05), as was kinase activity (p < 0.05). In acute TLE rats, only NR2B protein expression was upregulated (p < 0.05). CONCLUSION Our research demonstrated for the first time the upregulation of CK2α' subunit and its increased kinase activityin resected brain samples from MTS patients as well as pilocarpine model of TLE. Altered expression and higher activity of CK2 α' highlights subunit specific contribution, suggesting the modulation of NMDA receptors by Casein Kinase 2 may contribute to hyperexcitability in MTLE.
Collapse
Affiliation(s)
- Priya Priya
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | | | - Nitin Yadav
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India; Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Radhika Mittal
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | | | | | | | | | | | - Sanjeev Lalwani
- Department of Forensic Medicine &Toxicology, AIIMS, New Delhi, India
| | - Fouzia Siraj
- National Institute of Pathology, New Delhi, India
| | | |
Collapse
|
2
|
Tahiri E, Corti E, Duarte CB. Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications. Neurochem Res 2025; 50:110. [PMID: 40029461 PMCID: PMC11876243 DOI: 10.1007/s11064-025-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
NMDA receptors for the neurotransmitter glutamate are widely distributed in the central nervous system, playing important roles in brain development, function and plasticity. Alterations in their activity are also important mediators in neuropsychiatric and neurodegenerative disorders. The different NMDA receptor subunits (GluN1, GluN2A-D and GluN3A, B) share a similar structure and membrane topology, with an intracellular C-terminus tail responsible for the interaction with proteins important for the trafficking of the receptors, and to control their surface distribution and signalling activity. The latter sequence varies among subunits but consistently contains the majority of post-translational modification sites on NMDA receptors. These modifications, including phosphorylation, ubiquitination, and palmitoylation, regulate interactions with intracellular proteins. Differences in the amino acid sequence between NMDA receptor subunits lead to a differential regulation by post-translational modifications. Since NMDA receptors are formed by oligomerization of different subunits, and each subunit is regulated in a specific manner, this creates multiple possibilities for regulation of these receptors, with impact in synaptic function and plasticity. This review addresses the diversity of mechanisms involved in the post-translational modification of NMDA receptor subunits, and their impact on the activity and distribution of the receptors, as well as their function in nerve cells.
Collapse
Affiliation(s)
- Emanuel Tahiri
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisa Corti
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.
| |
Collapse
|
3
|
Storey GP, Riquelme R, Barria A. Activity-Dependent Internalization of Glun2B-Containing NMDARs Is Required for Synaptic Incorporation of Glun2A and Synaptic Plasticity. J Neurosci 2025; 45:e0823242024. [PMID: 39562042 PMCID: PMC11756629 DOI: 10.1523/jneurosci.0823-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
NMDA-type glutamate receptors are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The precise composition of the GluN2 subunits determines the channel's biophysical properties and influences its interaction with postsynaptic scaffolding proteins and signaling molecules involved in synaptic physiology and plasticity. The precise regulation of NMDAR subunit composition at synapses is crucial for proper synaptogenesis, neuronal circuit development, and synaptic plasticity, a cellular model of memory formation. In the forebrain during early development, NMDARs contain solely the GluN2B subunit, which is necessary for proper synaptogenesis and synaptic plasticity. In rodents, GluN2A subunit expression begins in the second postnatal week, replacing GluN2B-containing NMDARs at synapses in an activity- or sensory experience-dependent process. This switch in NMDAR subunit composition at synapses alters channel properties and reduces synaptic plasticity. The molecular mechanism regulating the switch remains unclear. We have investigated the role of activity-dependent internalization of GluN2B-containing receptors in shaping synaptic NMDAR subunit composition. Using molecular, pharmacological, and electrophysiological approaches in cultured organotypic hippocampal slices from rats of both sexes, we show that the process of incorporating GluN2A-containing NMDAR receptors requires activity-dependent internalization of GluN2B-containing NMDARs. Interestingly, blockade of GluN2A synaptic incorporation was associated with impaired potentiation of AMPA-mediated synaptic transmission, suggesting a potential coupling between the trafficking of AMPARs into synapses and that of GluN2A-containing NMDARs. These insights contribute to our understanding of the molecular mechanisms underlying synaptic trafficking of glutamate receptors and synaptic plasticity. They may also have implications for therapeutic strategies targeting NMDAR function in neurological disorders.
Collapse
Affiliation(s)
- Granville P Storey
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195-7290
| | - Raul Riquelme
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195-7290
| | - Andres Barria
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195-7290
| |
Collapse
|
4
|
Flores JC, Sarkar D, Zito K. A synapse-specific refractory period for plasticity at individual dendritic spines. Proc Natl Acad Sci U S A 2025; 122:e2410433122. [PMID: 39772745 PMCID: PMC11745398 DOI: 10.1073/pnas.2410433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation fully restored CaMKII signaling but only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to preplasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
Collapse
Affiliation(s)
- Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618
| | - Dipannita Sarkar
- Center for Neuroscience, University of California, Davis, CA95618
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618
| |
Collapse
|
5
|
Acutain MF, Baez MV. Reduced expression of GluN2A induces a delay in neuron maturation. J Neurochem 2024; 168:4001-4013. [PMID: 38037434 DOI: 10.1111/jnc.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
NMDA receptors (NMDARs) play an important role in synaptic plasticity both in physiological and pathological conditions. GluN2A and GluN2B are the most expressed NMDAR regulatory subunits, in the hippocampus and other cognitive-related brain structures. GluN2B is characteristic of immature structures and GluN2A of mature ones. Changes in GluN2A expression were associated with complex phenotypes that led to complex neurodevelopmental disorders, including the occurrence of seizures. However, little is known about the role of GluN2A in these phenotypes. In this work, we reduced GluN2A expression in mature neuronal cultures and observed an altered GluN2A/GluN2B ratio. Furthermore, those neurons exhibit an increase in immature dendritic spines and dendritic branching, as well as an increased response to glutamate stimulus. This phenotype (considering GluN2A/GluN2B ratio, index branching and glutamate response) resembles those observed at immature neuronal stages in vitro. We propose that this immature phenotype led to a higher response to glutamate stimulus which, in vivo, would be the basis of reduced threshold for seizure onset in GluN2A-pathological conditions.
Collapse
Affiliation(s)
- María Florencia Acutain
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
| | - María Verónica Baez
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
- 1UA de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, UBA, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
6
|
Escamilla S, Sáez-Valero J, Cuchillo-Ibáñez I. NMDARs in Alzheimer's Disease: Between Synaptic and Extrasynaptic Membranes. Int J Mol Sci 2024; 25:10220. [PMID: 39337704 PMCID: PMC11431980 DOI: 10.3390/ijms251810220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD). The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models and in the brains of AD patients will also be reviewed.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
7
|
Kolić D, Kovarik Z. N-methyl-d-aspartate receptors: Structure, function, and role in organophosphorus compound poisoning. Biofactors 2024; 50:868-884. [PMID: 38415801 DOI: 10.1002/biof.2048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Acute organophosphorus compound (OP) poisoning induces symptoms of the cholinergic crises with the occurrence of severe epileptic seizures. Seizures are induced by hyperstimulation of the cholinergic system, but are enhanced by hyperactivation of the glutamatergic system. Overstimulation of muscarinic cholinergic receptors by the elevated acetylcholine causes glutamatergic hyperexcitation and an increased influx of Ca2+ into neurons through a type of ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptors (NMDAR). These excitotoxic signaling processes generate reactive oxygen species, oxidative stress, and activation of the neuroinflammatory response, which can lead to recurrent epileptic seizures, neuronal cell death, and long-term neurological damage. In this review, we illustrate the NMDAR structure, complexity of subunit composition, and the various receptor properties that change accordingly. Although NMDARs are in normal physiological conditions important for controlling synaptic plasticity and mediating learning and memory functions, we elaborate the detrimental role NMDARs play in neurotoxicity of OPs and focus on the central role NMDAR inhibition plays in suppressing neurotoxicity and modulating the inflammatory response. The limited efficacy of current medical therapies for OP poisoning concerning the development of pharmacoresistance and mitigating proinflammatory response highlights the importance of NMDAR inhibitors in preventing neurotoxic processes and points to new avenues for exploring therapeutics for OP poisoning.
Collapse
Affiliation(s)
- Dora Kolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Flores JC, Zito K. A synapse-specific refractory period for plasticity at individual dendritic spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595787. [PMID: 38826343 PMCID: PMC11142223 DOI: 10.1101/2024.05.24.595787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to pre-plasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
Collapse
Affiliation(s)
- Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA 95618
| |
Collapse
|
9
|
Li X, Yang Q, Jiang P, Wen J, Chen Y, Huang J, Tian M, Ren J, Yang Q. Inhibition of CK2 Diminishes Fibrotic Scar Formation and Improves Outcomes After Ischemic Stroke via Reducing BRD4 Phosphorylation. Neurochem Res 2024; 49:1254-1267. [PMID: 38381246 PMCID: PMC10991067 DOI: 10.1007/s11064-024-04112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-β1 (TGF-β1), SB431542 (a TGF-β1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-β1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-β1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-β1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, The Second People's Hospital of Chongqing Banan District, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
10
|
Carles A, Freyssin A, Perin-Dureau F, Rubinstenn G, Maurice T. Targeting N-Methyl-d-Aspartate Receptors in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:3733. [PMID: 38612544 PMCID: PMC11011887 DOI: 10.3390/ijms25073733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| | - Aline Freyssin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
- ReST Therapeutics, 34095 Montpellier, France; (F.P.-D.); (G.R.)
| | | | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| |
Collapse
|
11
|
Tsai YC, Huang SM, Peng HH, Lin SW, Lin SR, Chin TY, Huang SM. Imbalance of synaptic and extrasynaptic NMDA receptors induced by the deletion of CRMP1 accelerates age-related cognitive decline in mice. Neurobiol Aging 2024; 135:48-59. [PMID: 38176125 DOI: 10.1016/j.neurobiolaging.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Collapsin response mediator protein 1 (CRMP1) is involved in semaphorin 3A signaling pathway, promoting neurite extension and growth cone collapse. It is highly expressed in the nervous system, especially the hippocampus. The crmp1 knockout (KO) mice display impaired spatial learning and memory, and this phenomenon seemingly tends to deteriorate with age. Here we investigated whether CRMP1 is involved in age-related cognitive decline in WT and crmp1 KO mice at adult, middle-aged and older stages. The results revealed that cognitive dysfunction in the Morris water maze task became more severe and decreased glutamate and glutamine level in middle-aged crmp1 KO mice. Additionally, increasing levels of extrasynaptic NMDA receptors and phosphorylation of Tau were observed in middle-aged crmp1 KO mice, leading to synaptic and neuronal loss in the CA3 regions of hippocampus. These findings suggest that deletion of CRMP1 accelerates age-related cognitive decline by disrupting the balance between synaptic and extrasynaptic NMDA receptors, resulting in the loss of synapses and neurons.
Collapse
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
12
|
Islam MS, Lai CC, Wang LH, Lin HH. Inhibition of NMDA Receptor Activation in the Rostral Ventrolateral Medulla by Amyloid-β Peptide in Rats. Biomolecules 2023; 13:1736. [PMID: 38136607 PMCID: PMC10741979 DOI: 10.3390/biom13121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are important in regulating sympathetic tone and cardiovascular function in the rostral ventrolateral medulla (RVLM). Amyloid-beta peptide (Aβ) is linked to the pathogenesis of Alzheimer's disease (AD). Cerebro- and cardiovascular diseases might be the risk factors for developing AD. The present study examines the acute effects of soluble Aβ on the function of NMDA receptors in rats RVLM. We used the magnitude of increases in the blood pressure (pressor responses) induced by microinjection of NMDA into the RVLM as an index of NMDA receptor function in the RVLM. Soluble Aβ was applied by intracerebroventricular (ICV) injection. Aβ1-40 at a lower dose (0.2 nmol) caused a slight reduction, and a higher dose (2 nmol) showed a significant decrease in NMDA-induced pressor responses 10 min after administration. ICV injection of Aβ1-42 (2 nmol) did not affect NMDA-induced pressor responses in the RVLM. Co-administration of Aβ1-40 with ifenprodil or memantine blocked the inhibitory effects of Aβ1-40. Immunohistochemistry analysis showed a significant increase in the immunoreactivity of phosphoserine 1480 of GluN2B subunits (pGluN2B-serine1480) in the neuron of the RVLM without significant changes in phosphoserine 896 of GluN1 subunits (pGluN1-serine896), GluN1 and GluN2B, 10 min following Aβ1-40 administration compared with saline. Interestingly, we found a much higher level of Aβ1-40 compared to that of Aβ1-42 in the cerebrospinal fluid (CSF) measured using enzyme-linked immunosorbent assay 10 min following ICV administration of the same dose (2 nmol) of the peptides. In conclusion, the results suggest that ICV Aβ1-40, but not Aβ1-42, produced an inhibitory effect on NMDA receptor function in the RVLM, which might result from changes in pGluN2B-serine1480 (regulated by casein kinase II). The different elimination of the peptides in the CSF might contribute to the differential effects of Aβ1-40 and Aβ1-42 on NMDA receptor function.
Collapse
Affiliation(s)
- Md Sharyful Islam
- Master and Ph.D. Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Lan-Hui Wang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hsun-Hsun Lin
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
13
|
Jeong J, Han W, Hong E, Pandey S, Li Y, Lu W, Roche KW. Regulation of NLGN3 and the Synaptic Rho-GEF Signaling Pathway by CDK5. J Neurosci 2023; 43:7264-7275. [PMID: 37699715 PMCID: PMC10621767 DOI: 10.1523/jneurosci.2309-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that are involved in synapse assembly and function. The NLGN gene family consists of 5 genes (NLGN1-3, 4X, and 4Y). NLGN3 forms heterodimers with other NLGNs and is expressed at both excitatory and inhibitory synapses, although the distinct role at different synapses is not fully understood. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that targets various neuronal substrates to impact neuronal migration, neurite outgrowth, synaptic transmission, and plasticity. Both NLGNs and their presynaptic binding partners neurexins are highly associated with neurodevelopmental disorders. The NLGN3 gene is on the X chromosome and variants in NLGN3 have been linked to the pathophysiology in neurodevelopmental disorders. To better understand the endogenous modulation of NLGN3, we generated an HA-tagged knock-in mouse. We found that Cdk5 associates with NLGN3 in vivo and phosphorylates NLGN3 on serine 725 (S725) in the knock-in mouse of either sex. The phosphorylation affects the NLGN3 association with Kalirin-7, a postsynaptic guanine nucleotide exchange factors for Rho GTPase family proteins. We further observed that the phosphorylation modulates NLGN3 surface expression and NLGN3-mediated synaptic currents in cultured rat neurons. Thus, we characterized NLGN3 as a novel Cdk5 substrate and revealed the functional consequences of NLGN3 S725 phosphorylation in neurons. Our study provides a novel molecular mechanism underlying Cdk5-mediated regulation of postsynaptic cell adhesion molecules.SIGNIFICANCE STATEMENT NLGN3 is involved in synapse assembly and function at both excitatory and inhibitory synapses and has been associated with the pathophysiology of neurodevelopmental disorders. Cdk5 has brain-specific activity and is involved in neuronal transmission, synapse function, and plasticity. Here, we characterize NLGN3 as a Cdk5 substrate for the first time and show that Cdk5-mediated phosphorylation regulates NLGN3 function. We demonstrate that NLGN3 S725 is a Cdk5 phosphorylation site, and reveal that the site is important for NLGN3 association with Kalirin-7, NLGN3 surface expression, and NLGN3-mediated synaptic transmission.
Collapse
Affiliation(s)
- Jaehoon Jeong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Wenyan Han
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Eunhye Hong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Saurabh Pandey
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Yan Li
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Katherine W Roche
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Bagwe PV, Deshpande RD, Juhasz G, Sathaye S, Joshi SV. Uncovering the Significance of STEP61 in Alzheimer's Disease: Structure, Substrates, and Interactome. Cell Mol Neurobiol 2023; 43:3099-3113. [PMID: 37219664 PMCID: PMC11410018 DOI: 10.1007/s10571-023-01364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
STEP (STriatal-Enriched Protein Tyrosine Phosphatase) is a brain-specific phosphatase that plays an important role in controlling signaling molecules involved in neuronal activity and synaptic development. The striatum is the main location of the STEP enzyme. An imbalance in STEP61 activity is a risk factor for Alzheimer's disease (AD). It can contribute to the development of numerous neuropsychiatric diseases, including Parkinson's disease (PD), schizophrenia, fragile X syndrome (FXS), Huntington's disease (HD), alcoholism, cerebral ischemia, and stress-related diseases. The molecular structure, chemistry, and molecular mechanisms associated with STEP61's two major substrates, Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAr) and N-methyl-D-aspartate receptors (NMDARs), are crucial in understanding the relationship between STEP61 and associated illnesses. STEP's interactions with its substrate proteins can alter the pathways of long-term potentiation and long-term depression. Therefore, understanding the role of STEP61 in neurological illnesses, particularly Alzheimer's disease-associated dementia, can provide valuable insights for possible therapeutic interventions. This review provides valuable insights into the molecular structure, chemistry, and molecular mechanisms associated with STEP61. This brain-specific phosphatase controls signaling molecules involved in neuronal activity and synaptic development. This review can aid researchers in gaining deep insights into the complex functions of STEP61.
Collapse
Affiliation(s)
- Pritam V Bagwe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Radni D Deshpande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Gabor Juhasz
- Clinical Research Unit (CRU Global Hungary Ltd.), Budapest, Hungary
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Shreerang V Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
15
|
Wang X, Mei D, Gou L, Zhao S, Gao C, Guo J, Luo S, Guo B, Yang Z, Wang Q, Tan T, Zhang Y. Functional Evaluation of a Novel GRIN2B Missense Variant Associated with Epilepsy and Intellectual Disability. Neuroscience 2023; 526:107-120. [PMID: 37385334 DOI: 10.1016/j.neuroscience.2023.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Epilepsy, a neurological condition, is widely prevalent among individuals with intellectual disability (ID). It is well established that N-methyl-D-aspartate (NMDA) receptors play an important role in both epilepsy and ID. Autosomal dominant mutations in the GRIN2B gene, which encodes the GluN2B subunit of the NMDA receptor, have been reported to be associated with epilepsy and ID. However, the underlying mechanism of this association is not well-understood. In this study, we identified a novel GRIN2B mutation (c.3272A > C, p.K1091T) in a patient with epilepsy and ID. The proband was a one year and ten months old girl. GRIN2B variant was inherited from her mother. We further investigated the functional consequences of this mutation. Our findings revealed that the p.K1091T mutation created a Casein kinase 2 phosphorylation site. Using recombinant NMDA receptors containing the GluN2B-K1091T along with GluN1 in HEK 293T cells, we observed significant defects in its interactions with postsynaptic density 95. It is accompanied by reduced delivery of the receptors to the cell membrane and a decrease in glutamate affinity. Moreover, primary neurons expressing GluN2B-K1091T also exhibited impaired surface expression of NMDA receptors, a reduction in dendritic spine number and excitatory synaptic transmission. In summary, our study reports a novel GRIN2B mutation and provides functional characteristics of this mutation in vitro, thereby contributing to the understanding of GRIN2B variants in epilepsy and ID.
Collapse
Affiliation(s)
- Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China.
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, Henan, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Shuai Zhao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, Henan, China
| | - Jisheng Guo
- School of Basic Medical Sciences, Yantai Campus of Binzhou Medical University, Yantai 264003, Shandong, China
| | - Shuying Luo
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China
| | - Bin Guo
- School of Traditional Chinese Medicine, Ningxia Medical University, Ningxia 750004, China
| | - Zhigang Yang
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, Henan, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China.
| |
Collapse
|
16
|
Zhang X, Gu Y, Ma Y, Wu J, Chen Y, Tao K, Sun H, Liu Z, Wang X, Tian X. The Apelin/APJ system modulates seizure activity and endocytosis of the NMDA receptor GluN2B subunit. Neurochem Int 2023; 167:105545. [PMID: 37169180 DOI: 10.1016/j.neuint.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
In the central nervous system (CNS), the apelin/APJ system is broadly expressed. According to some studies, activation of this system protects against excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors and exerts neuroprotective effects. However, the role of this system in epilepsy remains unclear. In the present study, immunofluorescence staining and western blotting were used to assess APJ localization and expression in the brains of mice with recurrent spontaneous seizures induced by kainic acid (KA). Behavior and local field potentials (LFPs) were assessed in mice with KA-induced seizures. Susceptibility to seizures was assessed in a pentylenetetrazole (PTZ)-induced seizure model. Whole-cell patch-clamp recordings were used to evaluate the role of the apelin/APJ system in regulating synaptic transmission in brain slices from mice in which Mg2+-free medium was used to induce seizures. NMDA receptor GluN2B subunit expression and phosphorylation of GluN2B at Ser1480 were measured in the mouse hippocampus. APJ was primarily localized in neurons, and its expression was upregulated in the epileptic brain. APJ activation after KA-induced status epilepticus (SE) reduced epileptic activity, whereas APJ inhibition aggravated epileptic activity. In the PTZ model, APJ activation was reduced, and APJ inhibition increased susceptibility to seizures. The apelin/APJ system affected NMDA receptor-mediated postsynaptic currents in patch-clamp recordings. Moreover, APJ regulated the levels of GluN2B phosphorylated at Ser1480 and the abundance of cell-surface GluN2B in neurons. Furthermore, endocytosis of the NMDA receptor GluN2B subunit was regulated by the apelin/APJ system. Together, our findings indicate that the apelin/APJ system modulates seizure activity and may be a novel therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China; Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Yixue Gu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Junhong Wu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuanyuan Chen
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Kaiyan Tao
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Houchao Sun
- Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Zhao Liu
- Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China.
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
17
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
18
|
Yang L, Wei M, Wang Y, Zhang J, Liu S, Liu M, Wang S, Li K, Dong Z, Zhang C. Rabphilin-3A undergoes phase separation to regulate GluN2A mobility and surface clustering. Nat Commun 2023; 14:379. [PMID: 36693856 PMCID: PMC9873702 DOI: 10.1038/s41467-023-36046-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are essential for excitatory neurotransmission and synaptic plasticity. GluN2A and GluN2B, two predominant Glu2N subunits of NMDARs in the hippocampus and the cortex, display distinct clustered distribution patterns and mobility at synaptic and extrasynaptic sites. However, how GluN2A clusters are specifically organized and stabilized remains poorly understood. Here, we found that the previously reported GluN2A-specific binding partner Rabphilin-3A (Rph3A) has the ability to undergo phase separation, which relies on arginine residues in its N-terminal domain. Rph3A phase separation promotes GluN2A clustering by binding GluN2A's C-terminal domain. A complex formed by Rph3A, GluN2A, and the scaffolding protein PSD95 promoted Rph3A phase separation. Disrupting Rph3A's phase separation suppressed the synaptic and extrasynaptic surface clustering, synaptic localization, stability, and synaptic response of GluN2A in hippocampal neurons. Together, our results reveal the critical role of Rph3A phase separation in determining the organization and stability of GluN2A in the neuronal surface.
Collapse
Affiliation(s)
- Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yangzhen Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingtao Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengna Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shanshan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ke Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhaoqi Dong
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China. .,Chinese Institute for Brain Research, Beijing, 102206, China. .,State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, 210000, Jiangsu, China. .,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
19
|
Pan L, Li T, Wang R, Deng W, Pu H, Deng M. Roles of Phosphorylation of N-Methyl-D-Aspartate Receptor in Chronic Pain. Cell Mol Neurobiol 2023; 43:155-175. [PMID: 35032275 PMCID: PMC11415214 DOI: 10.1007/s10571-022-01188-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.
Collapse
Affiliation(s)
- Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tiansheng Li
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weiheng Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
20
|
Liu X, Gu XH, Zheng LL, Xu LJ, Yang YJ, Yang G, Wu HJ, Chen ZZ, Wang W. Autophagy promotes membrane trafficking of NR2B to alleviate depression by inhibiting AQP4 expression in mice. Exp Cell Res 2022; 419:113298. [PMID: 35961389 DOI: 10.1016/j.yexcr.2022.113298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Depression is a high-incidence mental illness that seriously affects human health. AQP4 has been reported to be closely associated with depression, while the underlying mechanism is still unclear. This work aimed to investigate the functional role of AQP4 in depression. Depression mouse model was constructed by administration of chronic social defeat stress (CSDS). We found that AQP4 was highly expressed in the hippocampal tissues of CSDS mice. AQP4 knockdown alleviated depression and enhanced the expression of NR2B and PSD95 in CSDS mice. Moreover, primary hippocampal neurons were treated with N-methyl-d-aspartate (NMDA) to induce neuron injury. AQP4 overexpression repressed cell viability and promoted apoptosis of NMDA-treated primary hippocampal neurons. AQP4 up-regulation repressed the expression of NR2B (surface), and enhanced the expression of NR2B (intracellular), P-NR2B, CaMK II and CK2 in the NMDA-treated primary hippocampal neurons. The influence conferred by AQP4 up-regulation was abolished by KN-93 (CaMK II inhibitor) or TBB (CK2 inhibitor) treatment. Rapamycin treatment enhanced the expression of NR2B (surface), and repressed the expression of AQP4, NR2B (intracellular) and P-NR2B in the primary hippocampal neurons by activating autophagy. The activated autophagy alleviated depression in CSDS mice by repressing AQP4 expression. In conclusion, our data demonstrated that autophagy ameliorated depression by repressing AQP4 expression in mice, and AQP4 knockdown promoted membrane trafficking of NR2B and inhibited phosphorylation of NR2B via CaMK II/CK2 pathway. Thus, our work suggests that AQP4 may be a promising molecular target for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xun-Hu Gu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Li-Li Zheng
- Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Li-Jun Xu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yuan-Jian Yang
- Department of Medical Experimental Center, Jiangxi Mental Hospital, Nanchang, Jiangxi, 330029, China
| | - Gang Yang
- Department of Neurology, Fengcheng People's Hospital, No.533 Ziyun Avenue, Fengcheng, Jiangxi, 331100, China
| | - Han-Jun Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhen-Zhen Chen
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
21
|
Haddow K, Kind PC, Hardingham GE. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease. Int J Mol Sci 2022; 23:ijms231911392. [PMID: 36232696 PMCID: PMC9570437 DOI: 10.3390/ijms231911392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kirsty Haddow
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter C. Kind
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Correspondence:
| |
Collapse
|
22
|
White A, McGlone A, Gomez-Pastor R. Protein Kinase CK2 and Its Potential Role as a Therapeutic Target in Huntington's Disease. Biomedicines 2022; 10:1979. [PMID: 36009526 PMCID: PMC9406209 DOI: 10.3390/biomedicines10081979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a devastating neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene, for which no disease modifying therapies are currently available. Much of the recent research has focused on developing therapies to directly lower HTT expression, and while promising, these therapies have presented several challenges regarding administration and efficacy. Another promising therapeutic approach is the modulation of HTT post-translational modifications (PTMs) that are dysregulated in disease and have shown to play a key role in HTT toxicity. Among all PTMs, modulation of HTT phosphorylation has been proposed as an attractive therapeutic option due to the possibility of orally administering specific kinase effectors. One of the kinases described to participate in HTT phosphorylation is Protein Kinase CK2. CK2 has recently emerged as a target for the treatment of several neurological and psychiatric disorders, although its role in HD remains controversial. While pharmacological studies in vitro inhibiting CK2 resulted in reduced HTT phosphorylation and increased toxicity, genetic approaches in mouse models of HD have provided beneficial effects. In this review we discuss potential therapeutic approaches related to the manipulation of HTT-PTMs with special emphasis on the role of CK2 as a therapeutic target in HD.
Collapse
Affiliation(s)
| | | | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Zhang W, Ross PJ, Ellis J, Salter MW. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl Psychiatry 2022; 12:243. [PMID: 35680847 PMCID: PMC9184461 DOI: 10.1038/s41398-022-02010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
NMDA receptors (NMDARs), a prominent subtype of glutamatergic receptors, are implicated in the pathogenesis and development of neuropsychiatric disorders such as epilepsy, intellectual disability, autism spectrum disorder, and schizophrenia, and are therefore a potential therapeutic target in treating these disorders. Neurons derived from induced pluripotent stem cells (iPSCs) have provided the opportunity to investigate human NMDARs in their native environment. In this review, we describe the expression, function, and regulation of NMDARs in human iPSC-derived neurons and discuss approaches for utilizing human neurons for identifying potential drugs that target NMDARs in the treatment of neuropsychiatric disorders. A challenge in studying NMDARs in human iPSC-derived neurons is a predominance of those receptors containing the GluN2B subunit and low synaptic expression, suggesting a relatively immature phenotype of these neurons and delayed development of functional NMDARs. We outline potential approaches for improving neuronal maturation of human iPSC-derived neurons and accelerating the functional expression of NMDARs. Acceleration of functional expression of NMDARs in human iPSC-derived neurons will improve the modeling of neuropsychiatric disorders and facilitate the discovery and development of novel therapeutics targeting NMDARs for the treatment of these disorders.
Collapse
Affiliation(s)
- Wenbo Zhang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - P Joel Ross
- Biology Department, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
24
|
Yu D, Zarate N, White A, Coates D, Tsai W, Nanclares C, Cuccu F, Yue JS, Brown TG, Mansky RH, Jiang K, Kim H, Nichols-Meade T, Larson SN, Gundry K, Zhang Y, Tomas-Zapico C, Lucas JJ, Benneyworth M, Öz G, Cvetanovic M, Araque A, Gomez-Pastor R. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in huntington's disease. Acta Neuropathol Commun 2022; 10:83. [PMID: 35659303 PMCID: PMC9164558 DOI: 10.1186/s40478-022-01379-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene for which no therapies are available. HTT mutation causes protein misfolding and aggregation, preferentially affecting medium spiny neurons (MSNs) of the basal ganglia. Transcriptional perturbations in synaptic genes and neuroinflammation are key processes that precede MSN dysfunction and motor symptom onset. Understanding the interplay between these processes is crucial to develop effective therapeutic strategies to treat HD. We investigated the role of protein kinase CK2α', a kinase upregulated in MSNs in HD and previously associated with Parkinson's disease (PD), in the regulation of neuroinflammation and synaptic function in HD. We used the heterozygous knock-in zQ175 HD mouse model and compared that to zQ175 mice lacking one allele of CK2α' (zQ175:CK2α'(±)). CK2α' haploinsufficiency in zQ175 mice resulted in decreased levels of pro-inflammatory cytokines, HTT aggregation, astrogliosis and transcriptional alterations of synaptic genes related to glutamatergic signaling. zQ175:CK2α'(±) mice also presented increased frequency of striatal miniature excitatory postsynaptic currents (mEPSCs), an indicator of synaptic activity, and improved motor coordination compared to zQ175 mice. Neuropathological and phenotypic changes mediated by CK2α' were connected to alpha-synuclein (α-syn) dysregulation and correlated with differences in α-syn serine 129 phosphorylation (pS129-α-syn), a post-translational modification involved in α-synucleinopathy and shown to be regulated by CK2 in PD. pS129-α-syn was increased in the nuclei of MSNs in zQ175 mice and in the striatum of patients with HD, and it decreased in zQ175:CK2α'(±) mice. Collectively, our data established a novel connection between CK2α', neuroinflammation and synaptic gene dysregulation with synucleinopathy in HD and suggested common molecular mechanisms of neurodegeneration between HD and PD. Our results also support CK2α' inhibition as a potential therapeutic strategy to modulate neuronal function and neuroprotection in HD.
Collapse
Affiliation(s)
- Dahyun Yu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Nicole Zarate
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - De’jah Coates
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Wei Tsai
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Carmen Nanclares
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Francesco Cuccu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Johnny S. Yue
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Mounds View High School, Arden Hills, MN USA
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Kevin Jiang
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Tessa Nichols-Meade
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Sarah N. Larson
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Katherine Gundry
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN USA
| | - Cristina Tomas-Zapico
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Jose J. Lucas
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Benneyworth
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Gülin Öz
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Marija Cvetanovic
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Alfonso Araque
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| |
Collapse
|
25
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
26
|
Marshall CA, McBride JD, Changolkar L, Riddle DM, Trojanowski JQ, Lee VMY. Inhibition of CK2 mitigates Alzheimer's tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathol Commun 2022; 10:30. [PMID: 35246269 PMCID: PMC8895919 DOI: 10.1186/s40478-022-01331-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that exhibits pathological changes in both tau and synaptic function. AD patients display increases in hyperphosphorylated tau and synaptic activity. Previous studies have individually identified the role of NR2B subunit-containing NMDA receptors in AD related synaptic dysfunction and aggregated tau without reconciling the conflicting differences and implications of NR2B expression. Inhibition of extrasynaptically located NR2B mitigates tau pathology in AD models, whereas the inhibition of synaptic NR2B replicates tau-associated hyperactivity. This suggests that a simultaneous increase in extrasynaptic NR2B and decrease in synaptic NR2B may be responsible for tau pathology and synaptic dysfunction, respectively. The synaptic location of NR2B is regulated by casein kinase 2 (CK2), which is highly expressed in AD patients. Here, we used patient brains diagnosed with AD, corticobasal degeneration, progressive supranuclear palsy or Pick’s disease to characterize CK2 expression across these diverse tauopathies. Human derived material was also utilized in conjunction with cultured hippocampal neurons in order to investigate AD-induced changes in NR2B location. We further assessed the therapeutic effect of CK2 inhibition on NR2B synaptic distribution and tau pathology. We found that aberrant expression of CK2, and synaptically translocated NR2B, is unique to AD patients compared to other tauopathies. Increased CK2 was also observed in AD-tau treated neurons in addition to the mislocalization of NR2B receptors. Tau burden was alleviated in vitro by correcting synaptic:extrasynaptic NR2B function. Restoring NR2B physiological expression patterns with CK2 inhibition and inhibiting the function of excessive extrasynaptic NR2B with Memantine both mitigated tau accumulation in vitro. However, the combined pharmacological treatment promoted the aggregation of tau. Our data suggests that the synaptic:extrasynaptic balance of NR2B function regulates AD-tau pathogenesis, and that the inhibition of CK2, and concomitant prevention of NR2B mislocalization, may be a useful therapeutic tool for AD patients.
Collapse
|
27
|
Kasai S, Nishizawa D, Hasegawa J, Fukuda KI, Ichinohe T, Nagashima M, Hayashida M, Ikeda K. Short Tandem Repeat Variation in the CNR1 Gene Associated With Analgesic Requirements of Opioids in Postoperative Pain Management. Front Genet 2022; 13:815089. [PMID: 35360861 PMCID: PMC8963810 DOI: 10.3389/fgene.2022.815089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Short tandem repeats (STRs) and variable number of tandem repeats (VNTRs) that have been identified at approximately 0.7 and 0.5 million loci in the human genome, respectively, are highly multi-allelic variations rather than single-nucleotide polymorphisms. The number of repeats of more than a few thousand STRs was associated with the expression of nearby genes, indicating that STRs are influential genetic variations in human traits. Analgesics act on the central nervous system via their intrinsic receptors to produce analgesic effects. In the present study, we focused on STRs and VNTRs in the CNR1, GRIN2A, PENK, and PDYN genes and analyzed two peripheral pain sensation-related traits and seven analgesia-related traits in postoperative pain management. A total of 192 volunteers who underwent the peripheral pain sensation tests and 139 and 252 patients who underwent open abdominal and orthognathic cosmetic surgeries, respectively, were included in the study. None of the four STRs or VNTRs were associated with peripheral pain sensation. Short tandem repeats in the CNR1, GRIN2A, and PENK genes were associated with the frequency of fentanyl use, fentanyl dose, and visual analog scale pain scores 3 h after orthognathic cosmetic surgery (Spearman's rank correlation coefficient ρ = 0.199, p = 0.002, ρ = 0.174, p = 0.006, and ρ = 0.135, p = 0.033, respectively), analgesic dose, including epidural analgesics after open abdominal surgery (ρ = -0.200, p = 0.018), and visual analog scale pain scores 24 h after orthognathic cosmetic surgery (ρ = 0.143, p = 0.023), respectively. The associations between STRs in the CNR1 gene and the frequency of fentanyl use and fentanyl dose after orthognathic cosmetic surgery were confirmed by Holm's multiple-testing correction. These findings indicate that STRs in the CNR1 gene influence analgesia in the orofacial region.
Collapse
Affiliation(s)
- Shinya Kasai
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ken-ichi Fukuda
- Department of Oral Health Science, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Makoto Nagashima
- Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
28
|
Watkins JC, Evans RH, Bayés À, Booker SA, Gibb A, Mabb AM, Mayer M, Mellor JR, Molnár E, Niu L, Ortega A, Pankratov Y, Ramos-Vicente D, Rodríguez-Campuzano A, Rodríguez-Moreno A, Wang LY, Wang YT, Wollmuth L, Wyllie DJA, Zhuo M, Frenguelli BG. 21st century excitatory amino acid research: A Q & A with Jeff Watkins and Dick Evans. Neuropharmacology 2021; 198:108743. [PMID: 34363811 DOI: 10.1016/j.neuropharm.2021.108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.
Collapse
Affiliation(s)
| | | | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alasdair Gibb
- Research Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Mark Mayer
- Bldg 35A, Room 3D-904, 35A Convent Drive, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Jack R Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Li Niu
- Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Arturo Ortega
- Department of Toxicology, Cinvestav, Mexico City, Mexico
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Yu Tian Wang
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Lonnie Wollmuth
- Depts. of Neurobiology & Behavior and Biochemistry & Cell Biology, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, 266000, China
| | | |
Collapse
|
29
|
Regulation of the NMDA receptor by its cytoplasmic domains: (How) is the tail wagging the dog? Neuropharmacology 2021; 195:108634. [PMID: 34097949 DOI: 10.1016/j.neuropharm.2021.108634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Excitatory neurotransmission mediated by N-methyl-d-aspartate receptors (NMDARs) is critical for synapse development, function, and plasticity in the brain. NMDARs are tetra-heteromeric cation-channels that mediate synaptic transmission and plasticity. Extensive human studies show the existence of genetic variants in NMDAR subunits genes (GRIN genes) that are associated with neurodevelopmental and neuropsychiatric disorders, including autism spectrum disorders (ASD), epilepsy (EP), intellectual disability (ID), attention deficit hyperactivity disorder (ADHD), and schizophrenia (SCZ). NMDAR subunits have a unique modular architecture with four semiautonomous domains. Here we focus on the carboxyl terminal domain (CTD), also known as the intracellular C-tail, which varies in length among the glutamate receptor subunits and is the most diverse domain in terms of amino acid sequence. The CTD shows no sequence homology to any known proteins but encodes short docking motifs for intracellular binding proteins and covalent modifications. Our review will discuss the many important functions of the CTD in regulating NMDA membrane and synaptic targeting, stabilization, degradation targeting, allosteric modulation and metabotropic signaling of the receptor. This article is part of the special issue on 'Glutamate Receptors - NMDA Receptors'.
Collapse
|
30
|
Changes in synaptic proteins of the complex PSD-95/NMDA receptor/nNOS and mitochondrial dysfunction after levocabastine treatment. Neurochem Int 2021; 148:105100. [PMID: 34139299 DOI: 10.1016/j.neuint.2021.105100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Nitric oxide generation is related to the activity of certain proteins located at synaptic sites. Previous findings show that NOS activity, nNOS protein expression, respiratory parameters and mitochondrial complex activities are altered in rat cerebral cortex by administration of levocabastine, an antagonist of histamine H1 and neurotensin NTS2 receptors. ATP provision by mitochondria may play an important role in the functional interaction between synaptic proteins NMDA receptor and PSD-95 with NO synthesis. In this context, our purpose was to evaluate the effect of levocabastine administration on protein expression of PSD-95, GluN2B and iNOS, as well as on mitochondrial ATP production. Male Wistar rats received a single (i.p.) dose of levocabastine (50 μg/kg) or saline solution (controls) and were decapitated 18 h later. Mitochondrial and synaptosomal membrane fractions were isolated from cerebral cortex by differential and sucrose gradient centrifugation. Expression of synaptic proteins was evaluated by Western blot assays in synaptosomal membrane fractions. Oxygen consumption, mitochondrial membrane potential and ATP production rate were determined in fresh crude mitochondrial fractions. After levocabastine treatment, protein expression of PSD-95, GluN2B and β-actin decreased 97, 45 and 55%, respectively, whereas that of iNOS enhanced 3.5-fold versus controls. In crude mitochondrial fractions levocabastine administration reduced roughly 15% respiratory control rate as assayed with malate-glutamate or succinate as substrates, decreased mitochondrial membrane potential (21%), and ATP production rates (57%). Results suggested that levocabastine administration induces alterations in synaptic proteins of the protein complex PSD-95/NMDA receptor/nNOS and in neuron cytoskeleton. Mitochondrial bioenergetics impairment may play a role in the functional link between synaptic proteins and NO synthesis.
Collapse
|
31
|
Dominguez I, Cruz-Gamero JM, Corasolla V, Dacher N, Rangasamy S, Urbani A, Narayanan V, Rebholz H. Okur-Chung neurodevelopmental syndrome-linked CK2α variants have reduced kinase activity. Hum Genet 2021; 140:1077-1096. [PMID: 33944995 DOI: 10.1007/s00439-021-02280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022]
Abstract
The Okur-Chung neurodevelopmental syndrome, or OCNDS, is a newly discovered rare neurodevelopmental disorder. It is characterized by developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, epilepsy and language/verbalization deficits. OCNDS is linked to de novo mutations in CSNK2A1, that lead to missense or deletion/truncating variants in the encoded protein, the protein kinase CK2α. Eighteen different missense CK2α mutations have been identified to date; however, no biochemical or cell biological studies have yet been performed to clarify the functional impact of such mutations. Here, we show that 15 different missense CK2α mutations lead to varying degrees of loss of kinase activity as recombinant purified proteins and when mutants are ectopically expressed in mammalian cells. We further detect changes in the phosphoproteome of three patient-derived fibroblast lines and show that the subcellular localization of CK2α is altered for some of the OCNDS-linked variants and in patient-derived fibroblasts. Our data argue that reduced kinase activity and abnormal localization of CK2α may underlie the OCNDS phenotype.
Collapse
Affiliation(s)
- I Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - J M Cruz-Gamero
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - V Corasolla
- Laboratorio di Proteomica e Metabonomica, CERC-Fondazione S.Lucia, Via del Fosso di Fiorano 64, 00143, Roma, Italy
| | - N Dacher
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - S Rangasamy
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - A Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168, Roma, Italy
| | - V Narayanan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - H Rebholz
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy. .,GHU Psychiatrie et Neurosciences, Paris, France. .,Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
32
|
Gardoni F, Di Luca M. Protein-protein interactions at the NMDA receptor complex: From synaptic retention to synaptonuclear protein messengers. Neuropharmacology 2021; 190:108551. [PMID: 33819458 DOI: 10.1016/j.neuropharm.2021.108551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that support essential functions throughout the brain. NMDARs are tetramers composed of the GluN1 subunit in complex with GluN2- and GluN3-type regulatory subunits, resulting in the formation of various receptor subtypes throughout the central nervous system (CNS), characterised by different kinetics, biophysical and pharmacological properties, and the abilities to interact with specific partners at dendritic spines. NMDARs are expressed at high levels, are widely distributed throughout the brain, and are involved in several physiological and pathological conditions. Here, we will focus on the GluN2A- and GluN2B-containing NMDARs found at excitatory synapses and their interactions with plasticity-relevant proteins, such as the postsynaptic density family of membrane-associated guanylate kinases (PSD-MAGUKs), Ca2+/calmodulin-dependent kinase II (CaMKII) and synaptonuclear protein messengers. The dynamic interactions between NMDAR subunits and various proteins regulating synaptic receptor retention and synaptonuclear signalling mediated by protein messengers suggest that the NMDAR serves as a key molecular player that coordinates synaptic activity and cell-wide events that require gene transcription. Importantly, protein-protein interactions at the NMDAR complex can also contribute to synaptic dysfunction in several brain disorders. Therefore, the modulation of the molecular composition of the NMDAR complex might represent a novel pharmacological approach for the treatment of certain disease states.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
33
|
Won S, Roche KW. Regulation of glutamate receptors by striatal-enriched tyrosine phosphatase 61 (STEP 61 ). J Physiol 2021; 599:443-451. [PMID: 32170729 PMCID: PMC11526339 DOI: 10.1113/jp278703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation regulates glutamate receptor trafficking. The cytosolic C-terminal domains of both NMDA receptors (NMDARs) and AMPA receptors (AMPARs) have distinct motifs, which are substrates for serine/threonine and tyrosine phosphorylation. Decades of research have shown how phosphorylation of glutamate receptors mediates protein binding and receptor trafficking, ultimately controlling synaptic transmission and plasticity. STEP is a protein tyrosine phosphatase (also known as PTPN5), with several isoforms resulting from alternative splicing. Targets of STEP include a variety of important synaptic substrates, among which are the tyrosine kinase Fyn and glutamate receptors. In particular, STEP61 , the longest isoform, dephosphorylates the NMDAR subunit GluN2B and strongly regulates the expression of NMDARs at synapses. This interplay between STEP, Fyn and GluN2B-containing NMDARs has been characterized by multiple groups. More recently, STEP61 was shown to bind to AMPARs in a subunit-specific manner and differentially regulate synaptic NMDARs and AMPARs. Because of its many effects on synaptic proteins, STEP has been implicated in regulating excitatory synapses during plasticity and playing a role in synaptic dysfunction in a variety of neurological disorders. In this review, we will highlight the ways in which STEP61 differentially regulates NMDARs and AMPARs, as well as its role in plasticity and disease.
Collapse
Affiliation(s)
- Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Spectral blueshift of biophotonic activity and transmission in the ageing mouse brain. Brain Res 2020; 1749:147133. [PMID: 32971084 DOI: 10.1016/j.brainres.2020.147133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
The brain is considered to be a complex system with extremely low energy consumption and high-efficiency information transmission and processing, and this system has not been replicated by any artificial systems so far. Several studies indicate that the activity and transmission of biophotons in neural circuits may play an important role in neural information communication, while the biophotonic spectral redshift from lower to higher in animals may be related to the evolution of intelligence. The ageing processes of higher organisms are often accompanied by a decline in brain functions; however, the underlying mechanisms are unclear. Combining an ultraweak biophoton imaging system with the improved biophoton spectral analysis device, we compared and analyzed the spectra of glutamate-induced biophotonic emissions in mouse brain slices at different ages (newborn, 1, 3, 6, 12, 15, and 18 months). We found that the glutamate-induced biophotonic emissions presented a spectral blueshift from young to old mice, suggesting that the brain may transform to use relatively high-energy biophotons for neural information transmission and processing during the ageing process. Such a change may lead to a gradual decrease in the efficiency of the nervous system and provide a new biophysical mechanism for explaining the ageing-related changes in cognitive functions.
Collapse
|
35
|
Chiu AM, Wang J, Fiske MP, Hubalkova P, Barse L, Gray JA, Sanz-Clemente A. NMDAR-Activated PP1 Dephosphorylates GluN2B to Modulate NMDAR Synaptic Content. Cell Rep 2020; 28:332-341.e5. [PMID: 31291571 PMCID: PMC6639021 DOI: 10.1016/j.celrep.2019.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
In mature neurons, postsynaptic N-methyl-D-aspartate receptors (NMDARs) are segregated into two populations, synaptic and extrasynaptic, which differ in localization, function, and associated intracellular cascades. These two pools are connected via lateral diffusion, and receptor exchange between them modulates synaptic NMDAR content. Here, we identify the phosphorylation of the PDZ-ligand of the GluN2B subunit of NMDARs (at S1480) as a critical determinant in dynamically controlling NMDAR synaptic content. We find that phosphorylation of GluN2B at S1480 maintains NMDARs at extrasynaptic membranes as part of a protein complex containing protein phosphatase 1 (PP1). Global activation of NMDARs leads to the activation of PP1, which mediates dephosphorylation of GluN2B at S1480 to promote an increase in synaptic NMDAR content. Thus, PP1-mediated dephosphorylation of the GluN2B PDZ-ligand modulates the synaptic expression of NMDARs in mature neurons in an activity-dependent manner, a process with profound consequences for synaptic and structural plasticity, metaplasticity, and synaptic neurotransmission. The dynamic regulation of synaptically expressed NMDA receptors (NMDARs) is essential for synaptic function. Here, Chiu et al. describe a mechanism controlling this process in mature neurons by showing that increases in NMDAR synaptic content are driven by PP1-mediated dephosphorylation of extrasynaptic NMDARs within their GluN2B PDZ-ligands.
Collapse
Affiliation(s)
- Andrew M Chiu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jiejie Wang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael P Fiske
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pavla Hubalkova
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Cellular Neurophysiology, Institute of Physiology CAS, Prague 142 20, Czech Republic
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John A Gray
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Antonio Sanz-Clemente
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
Wang J, Swanson RA. Superoxide and Non-ionotropic Signaling in Neuronal Excitotoxicity. Front Neurosci 2020; 4:861. [PMID: 33013314 PMCID: PMC7497801 DOI: 10.3389/fnins.2020.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Excitotoxicity is classically attributed to Ca2+ influx through NMDA receptors (NMDAr), leading to production of nitric oxide by neuronal nitric oxide synthase and superoxide by mitochondria, which react to form highly cytotoxic peroxynitrite. More recent observations warrant revision of the classic view and help to explain some otherwise puzzling aspects of excitotoxic cell injury. Studies using pharmacological and genetic approaches show that superoxide produced by NMDAr activation originates primarily from NADPH oxidase rather than from mitochondria. As NADPH oxidase is localized to the plasma membrane, this also provides an explanation for the extracellular release of superoxide and cell-to-cell "spread" of excitotoxic injury observed in vitro and in vivo. The signaling pathway linking NMDAr to NADPH oxidase involves Ca2+ influx, phosphoinositol-3-kinase, and protein kinase Cζ, and interventions at any of these steps can prevent superoxide production and excitotoxic injury. Ca2+ influx specifically through NMDAr is normally required to induce excitotoxicity, through a mechanism presumed to involve privileged Ca2+ access to local signaling domains. However, experiments using selective blockade of the NMDAr ion channel and artificial reconstitution of Ca2+ by other routes indicate that the special effects of NMDAr activation are attributable instead to concurrent non-ionotropic NMDAr signaling by agonist binding to NMDAr. The non-ionotropic signaling driving NADPH oxidase activation is mediated in part by phosphoinositol-3-kinase binding to the C-terminal domain of GluN2B receptor subunits. These more recently identified aspects of excitotoxicity expand our appreciation of the complexity of excitotoxic processes and suggest novel approaches for limiting neuronal injury.
Collapse
Affiliation(s)
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
37
|
Mota Vieira M, Nguyen TA, Wu K, Badger JD, Collins BM, Anggono V, Lu W, Roche KW. An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKIIα Phosphorylation of GluN2A and NMDA Receptor Trafficking. Cell Rep 2020; 32:108104. [PMID: 32877683 PMCID: PMC11497419 DOI: 10.1016/j.celrep.2020.108104] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022] Open
Abstract
Rare variants in GRIN genes, which encode NMDAR subunits, are strongly associated with neurodevelopmental disorders. Among these, GRIN2A, which encodes the GluN2A subunit of NMDARs, is widely accepted as an epilepsy-causative gene. Here, we functionally characterize the de novo GluN2A-S1459G mutation identified in an epilepsy patient. We show that S1459 is a CaMKIIα phosphorylation site, and that endogenous phosphorylation is regulated during development and in response to synaptic activity in a dark rearing model. GluN2A-S1459 phosphorylation results in preferential binding of NMDARs to SNX27 and a corresponding decrease in PSD-95 binding, which consequently regulates NMDAR trafficking. Furthermore, the epilepsy-associated GluN2A-S1459G variant displays defects in interactions with both SNX27 and PSD-95, resulting in trafficking deficits, reduced spine density, and decreased excitatory synaptic transmission. These data demonstrate a role for CaMKIIα phosphorylation of GluN2A in receptor targeting and implicate NMDAR trafficking defects as a link to epilepsy.
Collapse
Affiliation(s)
- Marta Mota Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Thien A Nguyen
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, NINDS, NIH, Bethesda, MD 20892, USA
| | - John D Badger
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Wei Lu
- Synapse and Neural Circuit Research Section, NINDS, NIH, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Ve H, Cabana VC, Gouspillou G, Lussier MP. Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. Neuroscience 2020; 442:100-113. [PMID: 32652177 DOI: 10.1016/j.neuroscience.2020.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023]
Abstract
Optimal synaptic activity is essential for cognitive function, including memory and learning. Evidence indicates that cognitive decline in elderly individuals is associated with altered synaptic function. However, the impact of aging on the expression of neurotransmitter receptors and accessory proteins in brain synapses remains unclear. To fill this knowledge gap, we investigated the effect of aging on the mouse brain by utilizing a subcellular brain tissue fractionation procedure to measure protein abundance using quantitative Western Blotting. Comparing 7-month- (control) and 22-month- (aged) old mouse tissue, no significant differences were identified in the levels of AMPA receptor subunits between the experimental groups. The abundance of GluN2B NMDA receptor subunits decreased in aged mice, whereas the levels of GluN2A did not change. The analysis of cytoskeletal proteins showed an altered level of actin and tubulin in aged mice while PSD-95 protein did not change. Vesicle protein analysis revealed that synaptophysin abundance is decreased in older brains whereas EEA1 was significantly increased. Thus, our results suggest that physiological aging profoundly impacts the abundance of molecules associated with neurotransmitter release and vesicle cycling, proteins implicated in cognitive function.
Collapse
Affiliation(s)
- Hou Ve
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Valérie C Cabana
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Groupe de Recherche en Activité Physique Adaptée, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Marc P Lussier
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
39
|
Zhang ZY, Bai HH, Guo Z, Li HL, Diao XT, Zhang TY, Yao L, Ma JJ, Cao Z, Li YX, Bai X, Chen HK, Suo ZW, Yang X, Hu XD. Ubiquitination and functional modification of GluN2B subunit-containing NMDA receptors by Cbl-b in the spinal cord dorsal horn. Sci Signal 2020; 13:13/638/eaaw1519. [PMID: 32606037 DOI: 10.1126/scisignal.aaw1519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-methyl-d-aspartate (NMDA) glutamate receptors (NMDARs) containing GluN2B subunits are prevalent early after birth in most brain regions in rodents. Upon synapse maturation, GluN2B is progressively removed from synapses, which affects NMDAR function and synaptic plasticity. Aberrant recruitment of GluN2B into mature synapses has been implicated in several neuropathologies that afflict adults. We found that the E3 ubiquitin ligase Cbl-b was enriched in the spinal cord dorsal horn neurons of mice and rats and suppressed GluN2B abundance during development and inflammatory pain. Cbl-b abundance increased from postnatal day 1 (P1) to P14, a critical time period for synapse maturation. Through its N-terminal tyrosine kinase binding domain, Cbl-b interacted with GluN2B. Ubiquitination of GluN2B by Cbl-b decreased the synaptic transmission mediated by GluN2B-containing NMDARs. Knocking down Cbl-b in vivo during P1 to P14 led to sustained retention of GluN2B at dorsal horn synapses, suggesting that Cbl-b limits the synaptic abundance of GluN2B in adult mice. However, peripheral inflammation induced by intraplantar injection of complete Freund's adjuvant resulted in the dephosphorylation of Cbl-b at Tyr363, which impaired its binding to and ubiquitylation of GluN2B, enabling the reappearance of GluN2B-containing NMDARs at synapses. Expression of a phosphomimic Cbl-b mutant in the dorsal horn suppressed both GluN2B-mediated synaptic currents and manifestations of pain induced by inflammation. The findings indicate a ubiquitin-mediated developmental switch in NMDAR subunit composition that is dysregulated by inflammation, which can enhance nociception.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Hu-Hu Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xin-Tong Diao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Tian-Yu Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Lin Yao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Juan-Juan Ma
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Zheng Cao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Yin-Xia Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xue Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Hai-Kun Chen
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P.R. China.
| |
Collapse
|
40
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
41
|
Warnet XL, Bakke Krog H, Sevillano-Quispe OG, Poulsen H, Kjaergaard M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci 2020; 54:6713-6739. [PMID: 32464691 DOI: 10.1111/ejn.14842] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023]
Abstract
NMDA receptors are part of the ionotropic glutamate receptor family, and are crucial for neurotransmission and memory. At the cellular level, the effects of activating these receptors include long-term potentiation (LTP) or depression (LTD). The NMDA receptor is a stringently gated cation channel permeable to Ca2+ , and it shares the molecular architecture of a tetrameric ligand-gated ion channel with the other family members. Its subunits, however, have uniquely long cytoplasmic C-terminal domains (CTDs). While the molecular gymnastics of the extracellular domains have been described in exquisite detail, much less is known about the structure and function of these CTDs. The CTDs vary dramatically in length and sequence between receptor subunits, but they all have a composition characteristic of intrinsically disordered proteins. The CTDs affect channel properties, trafficking and downstream signalling output from the receptor, and these functions are regulated by alternative splicing, protein-protein interactions, and post-translational modifications such as phosphorylation and palmitoylation. Here, we review the roles of the CTDs in synaptic plasticity with a focus on biochemical mechanisms. In total, the CTDs play a multifaceted role as a modifier of channel function, a regulator of cellular location and abundance, and signalling scaffold control the downstream signalling output.
Collapse
Affiliation(s)
- Xavier L Warnet
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Helle Bakke Krog
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Oscar G Sevillano-Quispe
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Abstract
The NMDA subtype of ionotropic glutamate receptor is a sophisticated integrator and transducer of information. NMDAR-mediated signals control diverse processes across the life course, including synaptogenesis and synaptic plasticity, as well as contribute to excitotoxic processes in neurological disorders. At the basic biophysical level, the NMDAR is a coincidence detector, requiring the co-presence of agonist, co-agonist, and membrane depolarization in order to open. However, the NMDAR is not merely a conduit for ions to flow through; it is linked on the cytoplasmic side to a large network of signaling and scaffolding proteins, primarily via the C-terminal domain of NMDAR GluN2 subunits. These physical interactions help to organize the signaling cascades downstream of NMDAR activation. Notably, the NMDAR does not come in a single form: the subunit composition of the NMDAR, particularly the GluN2 subunit subtype (GluN2A-D), influences the biophysical properties of the channel. Moreover, a growing number of studies have illuminated the extent to which GluN2 C-terminal interactions vary according to GluN2 subtype and how this impacts on the processes that NMDAR activity controls. We will review recent advances, controversies, and outstanding questions in this active area of research.
Collapse
Affiliation(s)
- Giles Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.,Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
43
|
Protopanaxadiol ginsenoside Rd protects against NMDA receptor-mediated excitotoxicity by attenuating calcineurin-regulated DAPK1 activity. Sci Rep 2020; 10:8078. [PMID: 32415270 PMCID: PMC7228936 DOI: 10.1038/s41598-020-64738-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroprotective strategies in the treatment of stroke have been attracting a great deal of attentions. Our previous clinical and basic studies have demonstrated that protopanaxadiol ginsenoside-Rd (Rd), a monomer compound extracted from Panax ginseng or Panax notoginseng, has neuroprotective effects against ischemic stroke, probably due to its ability to block Ca2+ overload, an usual consequence of the overactivation of NMDA receptor (NMDAR). As an extending study, we explored here whether Rd exerted its neuroprotection as a novel NMDAR blocker. Our whole-cell patch-clamp results showed that Rd reduced NMDAR currents of cultured rat cortical neurons (EC50 = 7.7 μM) dose-dependently by acting on extrasynaptic NMDAR NR2b subunit. However, unexpectedly, cell transfection and radioligand binding assays revealed that Rd did not bind to the NMDAR channel directly. Alternatively, it inhibited the phosphorylation of NR2b at Ser-1303, a target of death associated protein kinase 1 (DAPK1). Moreover, cell-based and cell-free enzymatic assays showed that Rd did not inhibit the activity of DAPK1 directly, but blocked the activity of calcineurin, a key phosphatase for activating DAPK1. Importantly, other protopanaxadiol ginsenosides were also found to have potential inhibitory effects on calcineurin activity. Furthermore, as expected, calcineurin inhibition by cyclosporin A could mimic Rd's effects and protect against NMDA-, oxygen glucose deprivation- or transient ischemic stroke-induced neuronal injury. Therefore, our present study provided the first evidence that Rd could exert an inhibitive effect on NMDAR-triggered currents and sequential excitotoxicity through mitigation of DAPK1-mediated NR2b phosphorylation by attenuating calcineurin activity.
Collapse
|
44
|
Vieira M, Yong XLH, Roche KW, Anggono V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J Neurochem 2020; 154:121-143. [PMID: 31978252 DOI: 10.1111/jnc.14970] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
The N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate the flux of calcium (Ca2+ ) into the post-synaptic compartment. Ca2+ influx subsequently triggers the activation of various intracellular signalling cascades that underpin multiple forms of synaptic plasticity. Functional NMDARs are assembled as heterotetramers composed of two obligatory GluN1 subunits and two GluN2 or GluN3 subunits. Four different GluN2 subunits (GluN2A-D) are present throughout the central nervous system; however, they are differentially expressed, both developmentally and spatially, in a cell- and synapse-specific manner. Each GluN2 subunit confers NMDARs with distinct ion channel properties and intracellular trafficking pathways. Regulated membrane trafficking of NMDARs is a dynamic process that ultimately determines the number of NMDARs at synapses, and is controlled by subunit-specific interactions with various intracellular regulatory proteins. Here we review recent progress made towards understanding the molecular mechanisms that regulate the trafficking of GluN2-containing NMDARs, focusing on the roles of several key synaptic proteins that interact with NMDARs via their carboxyl termini.
Collapse
Affiliation(s)
- Marta Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
45
|
Feng M, Cui D, Li Y, Shi J, Xiang L, Bian H, Ma Z, Xia W, Wei G. Carnosic Acid Reverses the Inhibition of ApoE4 on Cell Surface Level of ApoER2 and Reelin Signaling Pathway. J Alzheimers Dis 2020; 73:517-528. [PMID: 31796678 DOI: 10.3233/jad-190914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maoxiao Feng
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China
| | - Donghai Cui
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yi Li
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Lan Xiang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Hong Bian
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Zhiyong Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Wen Xia
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
46
|
Cellular and Molecular Changes in Hippocampal Glutamate Signaling and Alterations in Learning, Attention, and Impulsivity Following Prenatal Nicotine Exposure. Mol Neurobiol 2020; 57:2002-2020. [PMID: 31916029 DOI: 10.1007/s12035-019-01854-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Over 70 million European pregnant women are smokers during their child-bearing years. Consumption of tobacco-containing products during pregnancy is associated with several negative behavioral outcomes for the offspring, including a higher susceptibility for the development of attention-deficit/hyperactive disorder (ADHD). In efforts to minimize fetal exposure to tobacco smoke, many women around the world switch to nicotine replacement therapies (NRTs) during the gestational period; however, prenatal nicotine exposure (PNE) in any form has been associated with alterations in cognitive processes, including learning, memory, and attention. These processes are controlled by glutamatergic signaling of hippocampal pyramidal neurons within the CA1 region, suggesting actions of nicotine on glutamatergic transmission in this region if present prenatally. Accordingly, we aimed to investigate hippocampal glutamatergic function following PNE treatment in NMRI mice employing molecular, cellular electrophysiology, and pharmacological approaches, as well as to evaluate cognition in the rodent continuous performance task (rCPT), a recently developed mouse task allowing assessment of learning, attention, and impulsivity. PNE induced increases in the expression levels of mRNA coding for different glutamate receptors and subunits within the hippocampus. Functional alterations in AMPA and NMDA receptors on CA1 pyramidal neurons of PNE mice were suggestive of higher GluA2-lacking and lower GluN2A-containing receptors, respectively. Finally, PNE was associated with reduced learning, attention, and enhanced impulsivity in the rCPT. Alterations in glutamatergic functioning in CA1 neurons parallel changes seen in the spontaneously hypertensive rat ADHD model and likely contribute to the lower cognitive performance in the rCPT.
Collapse
|
47
|
Tang X, Zhang X, Li S, Chi X, Luo A, Zhao Y. NR2B receptor- and calpain-mediated KCC2 cleavage resulted in cognitive deficiency exposure to isoflurane. Neurotoxicology 2020; 76:75-83. [PMID: 31672664 DOI: 10.1016/j.neuro.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND During brain development, volatile anesthetic can rapidly interfere with physiologic patterns of dendritic development and synaptogenesis and impair the formation of precise neuronal circuits. KCC2 plays vital roles in spine development and synaptogenesis through its Cl- transport function and structural interactions with the spine cytoskeleton protein 4.1 N. The aim of this study was to dissect the mechanism of volatile anesthetics, which impair dendritic development and synaptogenesis via mediation of KCC2 cleavage. METHODS Westernblotting was employed to assess the expression change of NR2B, NR2A, calpain-1, calpain-2, KCC2, and 4.1 N protein of rat (PND 5). Co-immunoprecipitation was applied to demonstrate the interaction between KCC2 and 4.1 N protein. Long-term cognitive deficiency was assessed by MWM. Lentivirus-calpain-2 was administered by hippocampus stereotaxic injection. RESULTS There was a significant increase in the level of NR2B instead of NR2A exposure to isoflurane. Calpain-2 was excessively activated via NR2B after 6 h of isoflurane exposure. The expression of plasmalemmal KCC2 and 4.1 N protein was significantly decreased treated with isoflurane. The isoflurane group showed longer traveled distance, prolonged escape latency, less time spent in the target quadrant, and decreased platform crossings. Pretreatment with ifenprodil and downregulated calpain-2 expression significantly alleviated these neurotoxicity responses and cognitive deficiency after isoflurane exposure. CONCLUSIONS A significant increase in NR2B, excessive activation of calpain-2 and increased cleavage of plasmalemmal KCC2, are involved in isoflurane-induced neurotoxicity and long-term cognitive deficiency. Blocking NR2B and calpain-2 activity significantly attenuated these responses. The KCC2 cleavage mediated by NR2B and calpain-2 is a major determinant of isoflurane-induced long-term cognitive deficiency.
Collapse
Affiliation(s)
- Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xiaohui Chi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
48
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
49
|
Postsynaptic GluN2B-containing NMDA receptors contribute to long-term depression induction in medial vestibular nucleus neurons of juvenile rats. Neurosci Lett 2019; 715:134674. [PMID: 31809803 DOI: 10.1016/j.neulet.2019.134674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Medial vestibular nucleus (MVN) neurons are involved in the regulation of eye movements to endure the stability of the image during head movement, and play a critical role in plasticity of the vestibulo-ocular reflex (VOR) during the juvenile period. We have previously shown that the long-term depression (LTD) of synaptic transmission was induced by high frequency stimulation (HFS) and blocked by N-methyl-D-aspartate (NMDA) receptor antagonist D-APV at the vestibular afferent synapses of type-B MVN neurons. In the present study, we used whole-cell patch-clamp recordings in vitro to investigate the subunit composition of these NMDA receptors in the induction of LTD in MVN slices from postnatal 13-16 day rats. We found that LTD induced in type-B neurons of the rat MVN with HFS was blocked by Ro 25-6981, a specific antagonist for GluN2B-containing NMDA receptors. Moreover, the other selective GluN2B-containing NMDA receptor antagonist (ifenprodil) also prevented the induction of LTD. However, bath application of the GluN2A-containing NMDA receptor antagonists (Zn2+ and TCN 201) had no influence on the induction of LTD. Similar results were obtained by exogenously applied two GluN2C/GluN2D-preferring NMDA receptor antagonists (PPDA and UBP 141). Furthermore, presynaptic NMDA receptor subunits are not necessary for vestibular LTD. These results suggest that the induction of LTD by HFS in vestibular afferent synapses of type-B MVN neurons requires postsynaptic GluN2B-containing NMDA receptors, but not GluN2A-containing NMDA receptors or GluN2C/GluN2D-containing NMDA receptors.
Collapse
|
50
|
McKay S, Ryan TJ, McQueen J, Indersmitten T, Marwick KFM, Hasel P, Kopanitsa MV, Baxter PS, Martel MA, Kind PC, Wyllie DJA, O'Dell TJ, Grant SGN, Hardingham GE, Komiyama NH. The Developmental Shift of NMDA Receptor Composition Proceeds Independently of GluN2 Subunit-Specific GluN2 C-Terminal Sequences. Cell Rep 2019; 25:841-851.e4. [PMID: 30355491 PMCID: PMC6218242 DOI: 10.1016/j.celrep.2018.09.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/13/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
The GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This “switch” is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse. However, these models remain untested in the context of endogenous NMDARs. We show that, although mutating the endogenous GluN2B CaMKII site has secondary effects on GluN2B CTD phosphorylation, the developmental changes in NMDAR composition occur normally and measures of plasticity and synaptogenesis are unaffected. Moreover, the switch proceeds normally in mice that have the GluN2A CTD replaced by that of GluN2B and commences without an observable decline in GluN2B levels but is impaired by GluN2A haploinsufficiency. Thus, GluN2A expression levels, and not GluN2 subtype-specific CTD-driven events, are the overriding factor in the developmental switch in NMDAR composition. Mutating the GluN2B CaMKII site affects phosphorylation of its C-terminal domain The developmental changes in NMDAR composition and synaptogenesis occur normally Changes in NMDAR composition do not require distinct GluN2 C-terminal domains Developmental changes in NMDAR composition are primarily sensitive to GluN2A levels
Collapse
Affiliation(s)
- Sean McKay
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Jamie McQueen
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK
| | - Tim Indersmitten
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Katie F M Marwick
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Philip Hasel
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK
| | - Maksym V Kopanitsa
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; UK Dementia Research Institute at Imperial College London, Hammersmith Hospital Campus, Imperial College, London W12 0NN, UK
| | - Paul S Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK
| | - Marc-André Martel
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Seth G N Grant
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Centre for Clinical Brain Sciences, University of Edinburgh Chancellor's Building, Edinburgh, UK
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK.
| | - Noboru H Komiyama
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Centre for Clinical Brain Sciences, University of Edinburgh Chancellor's Building, Edinburgh, UK.
| |
Collapse
|