1
|
Mizes KGC, Lindsey J, Escola GS, Ölveczky BP. The role of motor cortex in motor sequence execution depends on demands for flexibility. Nat Neurosci 2024:10.1038/s41593-024-01792-3. [PMID: 39496797 DOI: 10.1038/s41593-024-01792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/18/2024] [Indexed: 11/06/2024]
Abstract
The role of the motor cortex in executing motor sequences is widely debated, with studies supporting disparate views. Here we probe the degree to which the motor cortex's engagement depends on task demands, specifically whether its role differs for highly practiced, or 'automatic', sequences versus flexible sequences informed by external cues. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues. Lesioning motor cortex showed that it is necessary for flexible cue-driven motor sequences but dispensable for single automatic behaviors trained in isolation. However, when an automatic motor sequence was practiced alongside the flexible task, it became motor cortex dependent, suggesting that an automatic motor sequence fails to consolidate subcortically when the same sequence is produced also in a flexible context. A simple neural network model recapitulated these results and offered a circuit-level explanation. Our results critically delineate the role of the motor cortex in motor sequence execution, describing the conditions under which it is engaged and the functions it fulfills, thus reconciling seemingly conflicting views about motor cortex's role in motor sequence generation.
Collapse
Affiliation(s)
- Kevin G C Mizes
- Program in Biophysics, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Jack Lindsey
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York City, NY, USA
| | - G Sean Escola
- Department of Psychiatry, Columbia University, New York City, NY, USA.
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Wadsley CG, Nguyen T, Horton C, Greenhouse I. Goal-directed action preparation in humans entails a mixture of corticospinal neural computations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602530. [PMID: 39026882 PMCID: PMC11257418 DOI: 10.1101/2024.07.08.602530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The seemingly effortless ability of humans to transition from thinking about actions to initiating them relies on sculpting corticospinal output from primary motor cortex. This study tested whether canonical additive and multiplicative neural computations, well-described in sensory systems, generalize to the corticospinal pathway during human action preparation. We used non-invasive brain stimulation to measure corticospinal input-output across varying action preparation contexts during instructed-delay finger response tasks. Goal-directed action preparation was marked by increased multiplicative gain of corticospinal projections to task-relevant muscles and additive suppression of corticospinal projections to non-selected and task-irrelevant muscles. Individuals who modulated corticospinal gain to a greater extent were faster to initiate prepared responses. Our findings provide physiological evidence of combined additive suppression and gain modulation in the human motor system. We propose these computations support action preparation by enhancing the contrast between selected motor representations and surrounding background activity to facilitate response selection and execution.
Collapse
Affiliation(s)
- Corey G. Wadsley
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Thuan Nguyen
- School of Public Health, Portland State University-Oregon Health and Science University, Portland, Oregon, USA
| | - Chris Horton
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ian Greenhouse
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Bollu T, Whitehead SC, Prasad N, Walker J, Shyamkumar N, Subramaniam R, Kardon B, Cohen I, Goldberg JH. Motor cortical inactivation impairs corrective submovements in mice performing a hold-still center-out reach task. J Neurophysiol 2024; 132:829-848. [PMID: 39081209 PMCID: PMC11427071 DOI: 10.1152/jn.00241.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Holding still and aiming reaches to spatial targets may depend on distinct neural circuits. Using automated homecage training and a sensitive joystick, we trained freely moving mice to contact a joystick, hold their forelimb still, and then reach to rewarded target locations. Mice learned the task by initiating forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets. Hundreds of thousands of trajectories were decomposed into millions of kinematic submovements, while photoinhibition was used to test roles of motor cortical areas. Inactivation of both caudal and rostral forelimb areas preserved the ability to produce aimed reaches, but reduced reach speed. Inactivation specifically of contralateral caudal forelimb area (CFA) additionally impaired the ability to aim corrective submovements to remembered locations following target undershoots. Our findings show that motor cortical inactivations reduce the gain of forelimb movements but that inactivation specifically of contralateral CFA impairs corrective movements important for reaching a target location.NEW & NOTEWORTHY To test the role of different cortical areas in holding still and reaching to targets, this study combined home-cage training with optogenetic silencing as mice engaged in a learned center-out-reach task. Inactivation specifically of contralateral caudal forelimb area (CFA) impaired corrective movements necessary to reach spatial targets to earn reward.
Collapse
Affiliation(s)
- Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Samuel C Whitehead
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Nikil Prasad
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Jackson Walker
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Nitin Shyamkumar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Raghav Subramaniam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| |
Collapse
|
4
|
Koh N, Ma Z, Sarup A, Kristl AC, Agrios M, Young M, Miri A. Selective direct motor cortical influence during naturalistic climbing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.18.545509. [PMID: 39229015 PMCID: PMC11370436 DOI: 10.1101/2023.06.18.545509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
It remains poorly resolved when and how motor cortical output directly influences limb muscle activity through descending projections, which impedes mechanistic understanding of cortical movement control. Here we addressed this in mice performing an ethologically inspired all-limb climbing behavior. We quantified the direct influence of forelimb primary motor cortex (caudal forelimb area, CFA) on muscle activity comprehensively across the muscle activity states that occur during climbing. We found that CFA informs muscle activity pattern, mainly by selectively activating certain muscles while exerting much smaller, bidirectional effects on their antagonists. From Neuropixel recordings, we identified linear combinations (components) of motor cortical activity that covary with these effects, finding that these components differ from those that covary with muscle activity or kinematics. Collectively, our results reveal an instructive direct motor cortical influence on limb muscles that is selective within a motor behavior and reliant on a new type of neural activity subspace.
Collapse
|
5
|
Marino PJ, Bahureksa L, Fisac CF, Oby ER, Smoulder AL, Motiwala A, Degenhart AD, Grigsby EM, Joiner WM, Chase SM, Yu BM, Batista AP. A posture subspace in primary motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607361. [PMID: 39185208 PMCID: PMC11343157 DOI: 10.1101/2024.08.12.607361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
To generate movements, the brain must combine information about movement goal and body posture. Motor cortex (M1) is a key node for the convergence of these information streams. How are posture and goal information organized within M1's activity to permit the flexible generation of movement commands? To answer this question, we recorded M1 activity while monkeys performed a variety of tasks with the forearm in a range of postures. We found that posture- and goal-related components of neural population activity were separable and resided in nearly orthogonal subspaces. The posture subspace was stable across tasks. Within each task, neural trajectories for each goal had similar shapes across postures. Our results reveal a simpler organization of posture information in M1 than previously recognized. The compartmentalization of posture and goal information might allow the two to be flexibly combined in the service of our broad repertoire of actions.
Collapse
Affiliation(s)
- Patrick J. Marino
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Lindsay Bahureksa
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carmen Fernández Fisac
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emily R. Oby
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canda
| | - Adam L. Smoulder
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Asma Motiwala
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alan D. Degenhart
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Starfish Neuroscience, Bellevue, WA 98004, USA
| | - Erinn M. Grigsby
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Wilsaan M. Joiner
- Dept. of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Steven M. Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
| | - Byron M. Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
| | - Aaron P. Batista
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
6
|
Wang C, He J, Feng X, Qi X, Hong Z, Dun W, Zhang M, Liu J. Characteristics of pain empathic networks in healthy and primary dysmenorrhea women: an fMRI study. Brain Imaging Behav 2024:10.1007/s11682-024-00901-x. [PMID: 38954259 DOI: 10.1007/s11682-024-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Pain empathy enables us to understand and share how others feel pain. Few studies have investigated pain empathy-related functional interactions at the whole-brain level across all networks. Additionally, women with primary dysmenorrhea (PDM) have abnormal pain empathy, and the association among the whole-brain functional network, pain, and pain empathy remain unclear. Using resting-state functional magnetic resonance imaging (fMRI) and machine learning analysis, we identified the brain functional network connectivity (FNC)-based features that are associated with pain empathy in two studies. Specifically, Study 1 examined 41 healthy controls (HCs), while Study 2 investigated 45 women with PDM. Additionally, in Study 3, a classification analysis was performed to examine the differences in FNC between HCs and women with PDM. Pain empathy was evaluated using a visual stimuli experiment, and trait and state of menstrual pain were recorded. In Study 1, the results showed that pain empathy in HCs relied on dynamic interactions across whole-brain networks and was not concentrated in a single or two brain networks, suggesting the dynamic cooperation of networks for pain empathy in HCs. In Study 2, PDM exhibited a distinctive network for pain empathy. The features associated with pain empathy were concentrated in the sensorimotor network (SMN). In Study 3, the SMN-related dynamic FNC could accurately distinguish women with PDM from HCs and exhibited a significant association with trait menstrual pain. This study may deepen our understanding of the neural mechanisms underpinning pain empathy and suggest that menstrual pain may affect pain empathy through maladaptive dynamic interaction between brain networks.
Collapse
Affiliation(s)
- Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Juan He
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Xinyue Feng
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Xingang Qi
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Zilong Hong
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| | - Ming Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China.
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
7
|
Wang T, Chen Y, Zhang Y, Cui H. Multiplicative joint coding in preparatory activity for reaching sequence in macaque motor cortex. Nat Commun 2024; 15:3153. [PMID: 38605030 PMCID: PMC11009282 DOI: 10.1038/s41467-024-47511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Although the motor cortex has been found to be modulated by sensory or cognitive sequences, the linkage between multiple movement elements and sequence-related responses is not yet understood. Here, we recorded neuronal activity from the motor cortex with implanted micro-electrode arrays and single electrodes while monkeys performed a double-reach task that was instructed by simultaneously presented memorized cues. We found that there existed a substantial multiplicative component jointly tuned to impending and subsequent reaches during preparation, then the coding mechanism transferred to an additive manner during execution. This multiplicative joint coding, which also spontaneously emerged in recurrent neural networks trained for double reach, enriches neural patterns for sequential movement, and might explain the linear readout of elemental movements.
Collapse
Affiliation(s)
- Tianwei Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yun Chen
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yiheng Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - He Cui
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai, 200031, China.
| |
Collapse
|
8
|
Losanno E, Badi M, Roussinova E, Bogaard A, Delacombaz M, Shokur S, Micera S. An Investigation of Manifold-Based Direct Control for a Brain-to-Body Neural Bypass. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:271-280. [PMID: 38766541 PMCID: PMC11100864 DOI: 10.1109/ojemb.2024.3381475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 05/22/2024] Open
Abstract
Objective: Brain-body interfaces (BBIs) have emerged as a very promising solution for restoring voluntary hand control in people with upper-limb paralysis. The BBI module decoding motor commands from brain signals should provide the user with intuitive, accurate, and stable control. Here, we present a preliminary investigation in a monkey of a brain decoding strategy based on the direct coupling between the activity of intrinsic neural ensembles and output variables, aiming at achieving ease of learning and long-term robustness. Results: We identified an intrinsic low-dimensional space (called manifold) capturing the co-variation patterns of the monkey's neural activity associated to reach-to-grasp movements. We then tested the animal's ability to directly control a computer cursor using cortical activation along the manifold axes. By daily recalibrating only scaling factors, we achieved rapid learning and stable high performance in simple, incremental 2D tasks over more than 12 weeks of experiments. Finally, we showed that this brain decoding strategy can be effectively coupled to peripheral nerve stimulation to trigger voluntary hand movements. Conclusions: These results represent a proof of concept of manifold-based direct control for BBI applications.
Collapse
Affiliation(s)
- E. Losanno
- The Biorobotics Institute and Department of Excellence in Robotics and AIScuola Superiore Sant'Anna56025PisaItaly
- Modular Implantable Neuroprostheses (MINE) LaboratoryUniversità Vita-Salute San Raffaele and Scuola Superiore Sant'AnnaMilanItaly
| | - M. Badi
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - E. Roussinova
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - A. Bogaard
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and MedicineUniversity of Fribourg1700FribourgSwitzerland
| | - M. Delacombaz
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and MedicineUniversity of Fribourg1700FribourgSwitzerland
| | - S. Shokur
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - S. Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AIScuola Superiore Sant'Anna56025PisaItaly
- Modular Implantable Neuroprostheses (MINE) LaboratoryUniversità Vita-Salute San Raffaele and Scuola Superiore Sant'AnnaMilanItaly
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
9
|
Ryu J, Choi JW, Niketeghad S, Torres EB, Pouratian N. Irregularity of instantaneous gamma frequency in the motor control network characterize visuomotor and proprioceptive information processing. J Neural Eng 2024; 21:10.1088/1741-2552/ad2e1d. [PMID: 38417152 PMCID: PMC11025688 DOI: 10.1088/1741-2552/ad2e1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.The study aims to characterize movements with different sensory goals, by contrasting the neural activity involved in processing proprioceptive and visuo-motor information. To accomplish this, we have developed a new methodology that utilizes the irregularity of the instantaneous gamma frequency parameter for characterization.Approach.In this study, eight essential tremor patients undergoing an awake deep brain stimulation implantation surgery repetitively touched the clinician's finger (forward visually-guided/FV movement) and then one's own chin (backward proprioceptively-guided/BP movement). Neural electrocorticographic recordings from the motor (M1), somatosensory (S1), and posterior parietal cortex (PPC) were obtained and band-pass filtered in the gamma range (30-80 Hz). The irregularity of the inter-event intervals (IEI; inverse of instantaneous gamma frequency) were examined as: (1) auto-information of the IEI time series and (2) correlation between the amplitude and its proceeding IEI. We further explored the network connectivity after segmenting the FV and BP movements by periods of accelerating and decelerating forces, and applying the IEI parameter to transfer entropy methods.Main results.Conceptualizing that the irregularity in IEI reflects active new information processing, we found the highest irregularity in M1 during BP movement, highest in PPC during FV movement, and the lowest during rest at all sites. Also, connectivity was the strongest from S1 to M1 and from S1 to PPC during FV movement with accelerating force and weakest during rest.Significance. We introduce a novel methodology that utilize the instantaneous gamma frequency (i.e. IEI) parameter in characterizing goal-oriented movements with different sensory goals, and demonstrate its use to inform the directional connectivity within the motor cortical network. This method successfully characterizes different movement types, while providing interpretations to the sensory-motor integration processes.
Collapse
Affiliation(s)
- Jihye Ryu
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Soroush Niketeghad
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Elizabeth B. Torres
- Psychology Department, Rutgers University Center for Cognitive Science, Computational Biomedicine Imaging and Modeling Center at Computer Science Department, Rutgers University, Piscataway, NJ 08854
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Pancholi R, Sun-Yan A, Laughton M, Peron S. Sparse and distributed cortical populations mediate sensorimotor integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558857. [PMID: 37790362 PMCID: PMC10542548 DOI: 10.1101/2023.09.21.558857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Touch information is central to sensorimotor integration, yet little is known about how cortical touch and movement representations interact. Touch- and movement-related activity is present in both somatosensory and motor cortices, making both candidate sites for touch-motor interactions. We studied touch-motor interactions in layer 2/3 of the primary vibrissal somatosensory and motor cortices of behaving mice. Volumetric two-photon calcium imaging revealed robust responses to whisker touch, whisking, and licking in both areas. Touch activity was dominated by a sparse population of broadly tuned neurons responsive to multiple whiskers that exhibited longitudinal stability and disproportionately influenced interareal communication. Movement representations were similarly dominated by sparse, stable, reciprocally projecting populations. In both areas, many broadly tuned touch cells also produced robust licking or whisking responses. These touch-licking and touch-whisking neurons showed distinct dynamics suggestive of specific roles in shaping movement. Cortical touch-motor interactions are thus mediated by specialized populations of highly responsive, broadly tuned neurons.
Collapse
Affiliation(s)
- Ravi Pancholi
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
11
|
Mizes KGC, Lindsey J, Escola GS, Ölveczky BP. Motor cortex is required for flexible but not automatic motor sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556348. [PMID: 37732225 PMCID: PMC10508748 DOI: 10.1101/2023.09.05.556348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
How motor cortex contributes to motor sequence execution is much debated, with studies supporting disparate views. Here we probe the degree to which motor cortex's engagement depends on task demands, specifically whether its role differs for highly practiced, or 'automatic', sequences versus flexible sequences informed by external events. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues. Lesioning motor cortex revealed that it is necessary for flexible cue-driven motor sequences but dispensable for single automatic behaviors trained in isolation. However, when an automatic motor sequence was practiced alongside the flexible task, it became motor cortex-dependent, suggesting that subcortical consolidation of an automatic motor sequence is delayed or prevented when the same sequence is produced also in a flexible context. A simple neural network model recapitulated these results and explained the underlying circuit mechanisms. Our results critically delineate the role of motor cortex in motor sequence execution, describing the condition under which it is engaged and the functions it fulfills, thus reconciling seemingly conflicting views about motor cortex's role in motor sequence generation.
Collapse
Affiliation(s)
- Kevin G. C. Mizes
- Program in Biophysics, Harvard University, Cambridge, MA 02138,
USA
- Department of Organismic and Evolutionary Biology and Center for
Brain Science, Harvard University, Cambridge, MA, USA
| | - Jack Lindsey
- Zuckerman Mind Brain and Behavior Institute, Columbia
University, New York, NY, 10027, USA
| | - G. Sean Escola
- Zuckerman Mind Brain and Behavior Institute, Columbia
University, New York, NY, 10027, USA
- Department of Psychiatry, Columbia University, New York, NY,
10032, USA
| | - Bence P. Ölveczky
- Department of Organismic and Evolutionary Biology and Center for
Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
12
|
Zu Y, Luo L, Chen X, Xie H, Yang CHR, Qi Y, Niu W. Characteristics of corticomuscular coupling during wheelchair Tai Chi in patients with spinal cord injury. J Neuroeng Rehabil 2023; 20:79. [PMID: 37330516 PMCID: PMC10276494 DOI: 10.1186/s12984-023-01203-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Wheelchair Tai Chi (WCTC) has been proved to have benefits for the brain and motor system of spinal cord injury (SCI) patients. However, the characteristics of corticomuscular coupling during WCTC are scarcely known. We aimed to investigate changes following SCI on corticomuscular coupling, and further compare the coupling characteristics of WCTC with aerobic exercise in SCI patients. METHODS A total of 15 SCI patients and 25 healthy controls were recruited. The patients had to perform aerobic exercise and WCTC, while healthy controls needed to complete a set of WCTC. The participants accomplished the test following the tutorial video in a sitting position. The upper limb muscle activation was measured from upper trapezius, medial deltoid, biceps brachii and triceps brachii with surface electromyography. Cortical activity in the prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex was simultaneously collected by functional near-infrared spectroscopy. The functional connectivity, phase synchronization index and coherence values were then calculated and statistically analyzed. RESULTS Compared to healthy controls, changes in functional connectivity and higher muscle activation were observed in the SCI group. There was no significant difference in phase synchronization between groups. Among patients, significantly higher coherence values between the left biceps brachii as well as the right triceps brachii and contralateral regions of interest were found during WCTC than during aerobic exercise. CONCLUSION The patients may compensate for the lack of corticomuscular coupling by enhancing muscle activation. This study demonstrated the potential and advantages of WCTC in eliciting corticomuscular coupling, which may optimize rehabilitation following SCI.
Collapse
Affiliation(s)
- Yangmin Zu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai, China
| | - Lina Luo
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai, China
| | - Xinpeng Chen
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Haixia Xie
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chich-Haung Richard Yang
- Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien City, Taiwan
- Sport Medicine Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
| | - Yan Qi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Wenxin Niu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai, China
- Department of Rehabilitation Sciences, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Palmer JA, Morris JK, Billinger SA, Lepping RJ, Martin L, Green Z, Vidoni ED. Hippocampal blood flow rapidly and preferentially increases after a bout of moderate-intensity exercise in older adults with poor cerebrovascular health. Cereb Cortex 2023; 33:5297-5306. [PMID: 36255379 PMCID: PMC10152056 DOI: 10.1093/cercor/bhac418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 11/14/2022] Open
Abstract
Over the course of aging, there is an early degradation of cerebrovascular health, which may be attenuated with aerobic exercise training. Yet, the acute cerebrovascular response to a single bout of exercise remains elusive, particularly within key brain regions most affected by age-related disease processes. We investigated the acute global and region-specific cerebral blood flow (CBF) response to 15 minutes of moderate-intensity aerobic exercise in older adults (≥65 years; n = 60) using arterial spin labeling magnetic resonance imaging. Within 0-6 min post-exercise, CBF decreased across all regions, an effect that was attenuated in the hippocampus. The exercise-induced CBF drop was followed by a rebound effect over the 24-minute postexercise assessment period, an effect that was most robust in the hippocampus. Individuals with low baseline perfusion demonstrated the greatest hippocampal-specific CBF effect post-exercise, showing no immediate drop and a rapid increase in CBF that exceeded baseline levels within 6-12 minutes postexercise. Gains in domain-specific cognitive performance postexercise were not associated with changes in regional CBF, suggesting dissociable effects of exercise on acute neural and vascular plasticity. Together, the present findings support a precision-medicine framework for the use of exercise to target brain health that carefully considers age-related changes in the cerebrovascular system.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
| | - Jill K Morris
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Sandra A Billinger
- Department of Neurology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, United States
| | - Rebecca J Lepping
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
| | - Laura Martin
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Zachary Green
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Eric D Vidoni
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| |
Collapse
|
14
|
Floegel M, Kasper J, Perrier P, Kell CA. How the conception of control influences our understanding of actions. Nat Rev Neurosci 2023; 24:313-329. [PMID: 36997716 DOI: 10.1038/s41583-023-00691-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
Wilful movement requires neural control. Commonly, neural computations are thought to generate motor commands that bring the musculoskeletal system - that is, the plant - from its current physical state into a desired physical state. The current state can be estimated from past motor commands and from sensory information. Modelling movement on the basis of this concept of plant control strives to explain behaviour by identifying the computational principles for control signals that can reproduce the observed features of movements. From an alternative perspective, movements emerge in a dynamically coupled agent-environment system from the pursuit of subjective perceptual goals. Modelling movement on the basis of this concept of perceptual control aims to identify the controlled percepts and their coupling rules that can give rise to the observed characteristics of behaviour. In this Perspective, we discuss a broad spectrum of approaches to modelling human motor control and their notions of control signals, internal models, handling of sensory feedback delays and learning. We focus on the influence that the plant control and the perceptual control perspective may have on decisions when modelling empirical data, which may in turn shape our understanding of actions.
Collapse
Affiliation(s)
- Mareike Floegel
- Department of Neurology and Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Kasper
- Department of Neurology and Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Pascal Perrier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
| | - Christian A Kell
- Department of Neurology and Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
15
|
Mastria G, Scaliti E, Mehring C, Burdet E, Becchio C, Serino A, Akselrod M. Morphology, Connectivity, and Encoding Features of Tactile and Motor Representations of the Fingers in the Human Precentral and Postcentral Gyrus. J Neurosci 2023; 43:1572-1589. [PMID: 36717227 PMCID: PMC10008061 DOI: 10.1523/jneurosci.1976-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the tight coupling between sensory and motor processing for fine manipulation in humans, it is not yet totally clear which specific properties of the fingers are mapped in the precentral and postcentral gyrus. We used fMRI to compare the morphology, connectivity, and encoding of the motor and tactile finger representations (FRs) in the precentral and postcentral gyrus of 25 5-fingered participants (8 females). Multivoxel pattern and structural and functional connectivity analyses demonstrated the existence of distinct motor and tactile FRs within both the precentral and postcentral gyrus, integrating finger-specific motor and tactile information. Using representational similarity analysis, we found that the motor and tactile FRs in the sensorimotor cortex were described by the perceived structure of the hand better than by the actual hand anatomy or other functional models (finger kinematics, muscles synergies). We then studied a polydactyly individual (i.e., with a congenital 6-fingered hand) showing superior manipulation abilities and divergent anatomic-functional hand properties. The perceived hand model was still the best model for tactile representations in the precentral and postcentral gyrus, while finger kinematics better described motor representations in the precentral gyrus. We suggest that, under normal conditions (i.e., in subjects with a standard hand anatomy), the sensorimotor representations of the 5 fingers in humans converge toward a model of perceived hand anatomy, deviating from the real hand structure, as the best synthesis between functional and structural features of the hand.SIGNIFICANCE STATEMENT Distinct motor and tactile finger representations exist in both the precentral and postcentral gyrus, supported by a finger-specific pattern of anatomic and functional connectivity across modalities. At the representational level, finger representations reflect the perceived structure of the hand, which might result from an adapting process harmonizing (i.e., uniformizing) the encoding of hand function and structure in the precentral and postcentral gyrus. The same analyses performed in an extremely rare polydactyly subject showed that the emergence of such representational geometry is also found in neuromechanical variants with different hand anatomy and function. However, the harmonization process across the precentral and postcentral gyrus might not be possible because of divergent functional-structural properties of the hand and associated superior manipulation abilities.
Collapse
Affiliation(s)
- Giulio Mastria
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Eugenio Scaliti
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, 16163, Italy
| | - Carsten Mehring
- Bernstein Center and Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom
| | - Cristina Becchio
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, 16163, Italy
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Michel Akselrod
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| |
Collapse
|
16
|
Bayesian prediction of psychophysical detection responses from spike activity in the rat sensorimotor cortex. J Comput Neurosci 2023; 51:207-222. [PMID: 36696073 DOI: 10.1007/s10827-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Decoding of sensorimotor information is essential for brain-computer interfaces (BCIs) as well as in normal functioning organisms. In this study, Bayesian models were developed for the prediction of binary decisions of 10 awake freely-moving male/female rats based on neural activity in a vibrotactile yes/no detection task. The vibrotactile stimuli were 40-Hz sinusoidal displacements (amplitude: 200 µm, duration: 0.5 s) applied on the glabrous skin. The task was to depress the right lever for stimulus detection and left lever for stimulus-off condition. Spike activity was recorded from 16-channel microwire arrays implanted in the hindlimb representation of primary somatosensory cortex (S1), overlapping also with the associated representation in the primary motor cortex (M1). Single-/multi-unit average spike rate (Rd) within the stimulus analysis window was used as the predictor of the stimulus state and the behavioral response at each trial based on a Bayesian network model. Due to high neural and psychophysical response variability for each rat and also across subjects, mean Rd was not correlated with hit and false alarm rates. Despite the fluctuations in the neural data, the Bayesian model for each rat generated moderately good accuracy (0.60-0.90) and good class prediction scores (recall, precision, F1) and was also tested with subsets of data (e.g. regular vs. fast spike groups). It was generally observed that the models were better for rats with lower psychophysical performance (lower sensitivity index A'). This suggests that Bayesian inference and similar machine learning techniques may be especially helpful during the training phase of BCIs or for rehabilitation with neuroprostheses.
Collapse
|
17
|
Nakayama K, Moher J, Song JH. Rethinking Vision and Action. Annu Rev Psychol 2023; 74:59-86. [PMID: 36652303 DOI: 10.1146/annurev-psych-021422-043229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Action is an important arbitrator as to whether an individual or a species will survive. Yet, action has not been well integrated into the study of psychology. Action or motor behavior is a field apart. This is traditional science with its need for specialization. The sequence in a typical laboratory experiment of see → decide → act provides the rationale for broad disciplinary categorizations. With renewed interest in action itself, surprising and exciting anomalous findings at odds with this simplified caricature have emerged. They reveal a much more intimate coupling of vision and action, which we describe. In turn, this prompts us to identify and dwell on three pertinent theories deserving of greater notice.
Collapse
Affiliation(s)
- Ken Nakayama
- Department of Psychology, University of California, Berkeley, California, USA;
| | - Jeff Moher
- Department of Psychology, Connecticut College, New London, Connecticut, USA;
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island, USA;
| |
Collapse
|
18
|
Jensen KT, Kadmon Harpaz N, Dhawale AK, Wolff SBE, Ölveczky BP. Long-term stability of single neuron activity in the motor system. Nat Neurosci 2022; 25:1664-1674. [PMID: 36357811 PMCID: PMC11152193 DOI: 10.1038/s41593-022-01194-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
How an established behavior is retained and consistently produced by a nervous system in constant flux remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time provided that the population dynamics are constrained to produce the same behavior. To arbitrate between these possibilities, we recorded single-unit activity in motor cortex and striatum continuously for several weeks as rats performed stereotyped motor behaviors-both learned and innate. We found long-term stability in single neuron activity patterns across both brain regions. A small amount of drift in neural activity, observed over weeks of recording, could be explained by concomitant changes in task-irrelevant aspects of the behavior. These results suggest that long-term stable behaviors are generated by single neuron activity patterns that are themselves highly stable.
Collapse
Affiliation(s)
- Kristopher T Jensen
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Naama Kadmon Harpaz
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Neumane S, Gondova A, Leprince Y, Hertz-Pannier L, Arichi T, Dubois J. Early structural connectivity within the sensorimotor network: Deviations related to prematurity and association to neurodevelopmental outcome. Front Neurosci 2022; 16:932386. [PMID: 36507362 PMCID: PMC9732267 DOI: 10.3389/fnins.2022.932386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Consisting of distributed and interconnected structures that interact through cortico-cortical connections and cortico-subcortical loops, the sensorimotor (SM) network undergoes rapid maturation during the perinatal period and is thus particularly vulnerable to preterm birth. However, the impact of prematurity on the development and integrity of the emerging SM connections and their relationship to later motor and global impairments are still poorly understood. In this study we aimed to explore to which extent the early microstructural maturation of SM white matter (WM) connections at term-equivalent age (TEA) is modulated by prematurity and related with neurodevelopmental outcome at 18 months corrected age. We analyzed 118 diffusion MRI datasets from the developing Human Connectome Project (dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA and a control group of full-term (FT) neonates paired for age at MRI and sex. We delineated WM connections between the primary SM cortices (S1, M1 and paracentral region) and subcortical structures using probabilistic tractography, and evaluated their microstructure with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. To go beyond tract-specific univariate analyses, we computed a maturational distance related to prematurity based on the multi-parametric Mahalanobis distance of each PT infant relative to the FT group. Our results confirmed the presence of microstructural differences in SM tracts between PT and FT infants, with effects increasing with lower gestational age at birth. Maturational distance analyses highlighted that prematurity has a differential effect on SM tracts with higher distances and thus impact on (i) cortico-cortical than cortico-subcortical connections; (ii) projections involving S1 than M1 and paracentral region; and (iii) the most rostral cortico-subcortical tracts, involving the lenticular nucleus. These different alterations at TEA suggested that vulnerability follows a specific pattern coherent with the established WM caudo-rostral progression of maturation. Finally, we highlighted some relationships between NODDI-derived maturational distances of specific tracts and fine motor and cognitive outcomes at 18 months. As a whole, our results expand understanding of the significant impact of premature birth and early alterations on the emerging SM network even in low-risk infants, with possible relationship with neurodevelopmental outcomes. This encourages further exploration of these potential neuroimaging markers for prediction of neurodevelopmental disorders, with special interest for subtle neuromotor impairments frequently observed in preterm-born children.
Collapse
Affiliation(s)
- Sara Neumane
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Andrea Gondova
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Yann Leprince
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Lucie Hertz-Pannier
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Tomoki Arichi
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jessica Dubois
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| |
Collapse
|
20
|
Hao Z, Song Y, Shi Y, Xi H, Zhang H, Zhao M, Yu J, Huang L, Li H. Altered Effective Connectivity of the Primary Motor Cortex in Transient Ischemic Attack. Neural Plast 2022; 2022:2219993. [PMID: 36437903 PMCID: PMC9699783 DOI: 10.1155/2022/2219993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective This study is aimed at exploring alteration in motor-related effective connectivity in individuals with transient ischemic attack (TIA). Methods A total of 48 individuals with TIA and 41 age-matched and sex-matched healthy controls (HCs) were recruited for this study. The participants were scanned using MRI, and their clinical characteristics were collected. To investigate motor-related effective connectivity differences between individuals with TIA and HCs, the bilateral primary motor cortex (M1) was used as the regions of interest (ROIs) to perform a whole-brain Granger causality analysis (GCA). Furthermore, partial correlation was used to evaluate the relationship between GCA values and the clinical characteristics of individuals with TIA. Results Compared with HCs, individuals with TIA demonstrated alterations in the effective connectivity between M1 and widely distributed brain regions involved in motor, visual, auditory, and sensory integration. In addition, GCA values were significantly correlated with high- and low-density lipoprotein cholesterols in individuals with TIA. Conclusion This study provides important evidence for the alteration of motor-related effective connectivity in TIA, which reflects the abnormal information flow between different brain regions. This could help further elucidate the pathological mechanisms of motor impairment in individuals with TIA and provide a new perspective for future early diagnosis and intervention for TIA.
Collapse
Affiliation(s)
- Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Yuyu Shi
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Hongyu Xi
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Mengqi Zhao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Jiahao Yu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
21
|
Okoro SU, Goz RU, Njeri BW, Harish M, Ruff CF, Ross SE, Gerfen C, Hooks BM. Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex. J Neurosci 2022; 42:8095-8112. [PMID: 36104281 PMCID: PMC9637002 DOI: 10.1523/jneurosci.0950-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Intracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing. We then compared anatomic and functional connectivity based on synaptic strength from sensory cortex and thalamus. Functionally, each input innervated M1 interneurons with a unique laminar profile. Different interneuron types were excited in a distinct, complementary manner, suggesting feedforward inhibition proceeds selectively via distinct circuits. Specifically, somatosensory cortex (S1) inputs primarily targeted PV+ neurons in upper layers (L2/3) but SOM+ neurons in middle layers (L5). Somatosensory thalamus [posterior nucleus (PO)] inputs targeted PV+ neurons in middle layers (L5). In contrast to sensory cortical areas, thalamic input to SOM+ neurons was equivalent to that of PV+ neurons. Thus, long-range excitatory inputs target inhibitory neurons in an area and a cell type-specific manner, which contrasts with input to neighboring pyramidal cells. In contrast to feedforward inhibition providing generic inhibitory tone in cortex, circuits are selectively organized to recruit inhibition matched to incoming excitatory circuits.SIGNIFICANCE STATEMENT M1 integrates sensory information and frontal cortical inputs to plan and control movements. Although inputs to excitatory cells are described, the synaptic circuits by which these inputs drive specific types of M1 interneurons are unknown. Anatomical results with rabies tracing and physiological quantification of synaptic strength shows that two main classes of inhibitory cells (PV+ and SOM+ interneurons) both receive substantial cortical and thalamic input, in contrast to interneurons in sensory areas (where thalamic input strongly prefers PV+ interneurons). Further, each input studied targets PV+ and SOM+ interneurons in a different fashion, suggesting that separate, specific circuits exist for recruitment of feedforward inhibition.
Collapse
Affiliation(s)
- Sandra U Okoro
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Roman U Goz
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Brigdet W Njeri
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Madhumita Harish
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Catherine F Ruff
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Sarah E Ross
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Charles Gerfen
- National Institute of Mental Health, Bethesda, Maryland 20892
| | - Bryan M Hooks
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
22
|
Hoshino O, Zheng M, Fukuoka Y. Effect of cortical extracellular GABA on motor response. J Comput Neurosci 2022; 50:375-393. [PMID: 35695984 DOI: 10.1007/s10827-022-00821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
To elucidate how the flattening of sensory tuning due to a deficit in tonic inhibition slows motor responses, we simulated a neural network model in which a sensory cortical network ([Formula: see text]) and a motor cortical network ([Formula: see text]) are reciprocally connected, and the [Formula: see text] projects to spinal motoneurons (Mns). The [Formula: see text] was presented with a feature stimulus and the reaction time of Mns was measured. The flattening of sensory tuning in [Formula: see text] caused by decreasing the concentration of gamma-aminobutyric acid (GABA) in extracellular space resulted in a decrease in the stimulus-sensitive [Formula: see text] pyramidal cell activity while increasing the stimulus-insensitive [Formula: see text] pyramidal cell activity, thereby prolonging the reaction time of Mns to the applied feature stimulus. We suggest that a reduction in extracellular GABA concentration in sensory cortex may interfere with selective activation in motor cortex, leading to slowing the activation of spinal motoneurons and therefore to slowing motor responses.
Collapse
Affiliation(s)
- Osamu Hoshino
- Independent Researcher, 505-9 Namiyanagi, Hanno, Saitama, 357-0021, Japan.
| | - Meihong Zheng
- Department of Psychology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yasuhiro Fukuoka
- Department of Mechanical Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
| |
Collapse
|
23
|
Gorzi A, Rezapour N, Jabbari S, Youzbashi L, Salehi J, Gahreman D, Krause Neto W. Deceptive intensities: An exploratory strategy for overcoming early central fatigue in resistance training. Physiol Behav 2022; 255:113921. [PMID: 35872038 DOI: 10.1016/j.physbeh.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Neuropsychological stress induced by misleading information can limit human performance, possibly by early central fatigue mechanisms. In this study, we investigated the impact caused by prescribing misleading intensities of resistance exercise on acute electroencephalogram (EEG) and electromyogram (EMG) responses and the total number of repetitions to exhaustion. Collegiate female students performed three sets of biceps curls to exhaustion. The actual intensity for all sets was set at 65% 1-Repetition Maximum (1-RM). However, participants were deceptively informed that the intensities were 60%, 65%, or 70% 1-RM. The number of repetitions to fatigue and the magnitude of EEG and EMG signals were analyzed. The number of repetitions to exhaustion was significantly lower in greater announced intensities (18.11 ± 8.44) compared to lower (29.76 ± 16.28; p = 0.017) and correctly (27.82 ± 11.01; p = 0.001) announced intensity. The correlation between frontal and motor-cortex signals was significant in lower (r = 0.72, p = 0.001) and higher (r = 0.64, p = 0.005) announced intensities. The median and mean frequencies of EMG signal and Root Mean Square (RMS) did not show any significant difference between sets, but the peak-to-peak range (PPR) of biceps EMG signals was significantly higher in lower intensity (0.145 ± 0.042) when compared with higher (0.104 ± 0.044; p = 0.028) or correctly (0.126 ± 0.048; p = 0.037) announced intensity. It seems that deceptive information regarding the mass of an object could affect the number of repetitions to exhaustion and PPR to cover muscle capacity in endurance-type strength training.
Collapse
Affiliation(s)
- Ali Gorzi
- Department of Sport Sciences, University of Zanjan, Zanjan, Iran.
| | - Neda Rezapour
- Department of Electrical and Computer Engineering, University of Zanjan, Zanjan. Iran
| | - Sepideh Jabbari
- Department of Electrical and Computer Engineering, University of Zanjan, Zanjan. Iran
| | - Leila Youzbashi
- Department of Sport Sciences, University of Zanjan, Zanjan, Iran
| | - Javad Salehi
- Department of Psychology, University of Zanjan. Zanjan. Iran
| | - Daniel Gahreman
- Exercise and Sport Science, College of Health and Human Sciences, Charles Darwin University, Darwin. Australia
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo-SP, Brazil.
| |
Collapse
|
24
|
Rosso M, Heggli OA, Maes PJ, Vuust P, Leman M. Mutual beta power modulation in dyadic entrainment. Neuroimage 2022; 257:119326. [PMID: 35667334 DOI: 10.1016/j.neuroimage.2022.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Across a broad spectrum of interactions, humans exhibit a prominent tendency to synchronize their movements with one another. Traditionally, this phenomenon has been explained from the perspectives of predictive coding or dynamical systems theory. While these theories diverge with respect to whether individuals hold internal models of each other, they both assume a predictive or anticipatory mechanism enabling rhythmic interactions. However, the neural bases underpinning interpersonal synchronization are still a subject under active investigation. Here we provide evidence that the brain relies on a common oscillatory mechanism to pace self-generated rhythmic movements and to track the movements produced by a partner. By performing dual-electroencephalography recordings during a joint finger-tapping task, we identified an oscillatory component in the beta range (∼ 20 Hz), which was significantly modulated by both self-generated and other-generated movement. In conditions where the partners perceived each other, we observed periodic fluctuations of beta power as a function of the reciprocal movement cycles. Crucially, this modulation occurred both in visually and in auditorily coupled conditions, and was accompanied by recurrent periods of dyadic synchronized behavior. Our results show that periodic beta power modulations may be a critical mechanism underlying interpersonal synchronization, possibly enabling mutual predictions between coupled individuals, leading to co-regulation of timing and overt mutual adaptation. Our findings thus provide a potential bridge between influential theories attempting to explain interpersonal coordination, and a concrete connection to its neurophysiological bases.
Collapse
Affiliation(s)
- Mattia Rosso
- IPEM Institute for Systematic Musicology - Ghent University, Miriam Makebaplein 1, Ghent 9000, Belgium.
| | - Ole A Heggli
- Center for Music in the Brain - Aarhus University, Universitetsbyen 3 - Building 1710, Aarhus C 8000, Denmark
| | - Pieter J Maes
- IPEM Institute for Systematic Musicology - Ghent University, Miriam Makebaplein 1, Ghent 9000, Belgium
| | - Peter Vuust
- Center for Music in the Brain - Aarhus University, Universitetsbyen 3 - Building 1710, Aarhus C 8000, Denmark
| | - Marc Leman
- IPEM Institute for Systematic Musicology - Ghent University, Miriam Makebaplein 1, Ghent 9000, Belgium
| |
Collapse
|
25
|
Schneider A, Zimmermann C, Alyahyay M, Steenbergen F, Brox T, Diester I. 3D pose estimation enables virtual head fixation in freely moving rats. Neuron 2022; 110:2080-2093.e10. [DOI: 10.1016/j.neuron.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
26
|
Bao SS, Zhao C, Chen HW, Feng T, Guo XJ, Xu M, Rao JS. NT3 treatment alters spinal cord injury-induced changes in the gray matter volume of rhesus monkey cortex. Sci Rep 2022; 12:5919. [PMID: 35396344 PMCID: PMC8993853 DOI: 10.1038/s41598-022-09981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) may cause structural alterations in brain due to pathophysiological processes, but the effects of SCI treatment on brain have rarely been reported. Here, voxel-based morphometry is employed to investigate the effects of SCI and neurotrophin-3 (NT3) coupled chitosan-induced regeneration on brain and spinal cord structures in rhesus monkeys. Possible association between brain and spinal cord structural alterations is explored. The pain sensitivity and stepping ability of animals are collected to evaluate sensorimotor functional alterations. Compared with SCI, the unique effects of NT3 treatment on brain structure appear in extensive regions which involved in motor control and neuropathic pain, such as right visual cortex, superior parietal lobule, left superior frontal gyrus (SFG), middle frontal gyrus, inferior frontal gyrus, insula, secondary somatosensory cortex, anterior cingulate cortex, and bilateral caudate nucleus. Particularly, the structure of insula is significantly correlated with the pain sensitivity. Regenerative treatment also shows a protective effect on spinal cord structure. The associations between brain and spinal cord structural alterations are observed in right primary somatosensory cortex, SFG, and other regions. These results help further elucidate secondary effects on brain of SCI and provide a basis for evaluating the effects of NT3 treatment on brain structure.
Collapse
Affiliation(s)
- Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, 100068, China. .,School of Rehabilitation, Capital Medical University, Beijing, 100068, China.
| | - Hao-Wei Chen
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
27
|
Rahman Z, Murray NWG, Sala-Padró J, Bartley M, Dexter M, Fung VSC, Mahant N, Bleasel AF, Wong CH. Investigating the Precise Localization of the Grasping Action in the Mid-Cingulate Cortex and Future Directions. Front Hum Neurosci 2022; 16:815749. [PMID: 35280209 PMCID: PMC8909638 DOI: 10.3389/fnhum.2022.815749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To prospectively study the cingulate cortex for the localization and role of the grasping action in humans during electrical stimulation of depth electrodes. Methods All the patients (n = 23) with intractable focal epilepsy and a depth electrode stereotactically placed in the cingulate cortex, as part of their pre-surgical epilepsy evaluation from 2015 to 2017, were included. Cortical stimulation was performed and examined for grasping actions. Post-implantation volumetric T1 MRIs were co-registered to determine the exact electrode position. Results Five patients (male: female 4:1; median age 31) exhibited contralateral grasping actions during electrical stimulation. All patients had electrodes implanted in the ventral bank of the right cingulate sulcus adjacent to the vertical anterior commissure (VAC) line. Stimulation of other electrodes in adjacent regions did not elicit grasping. Conclusion Grasping action elicited from a localized region in the mid-cingulate cortex (MCC) directly supports the concept of the cingulate cortex being crucially involved in the grasping network. This opens an opportunity to explore this region with deep brain stimulation as a motor neuromodulation target for treatment in specific movement disorders or neurorehabilitation.
Collapse
Affiliation(s)
- Zebunnessa Rahman
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Zebunnessa Rahman,
| | | | | | - Melissa Bartley
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Mark Dexter
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Victor S. C. Fung
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Neil Mahant
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Andrew Fabian Bleasel
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Chong H. Wong
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Sense of agency for intracortical brain-machine interfaces. Nat Hum Behav 2022; 6:565-578. [PMID: 35046522 DOI: 10.1038/s41562-021-01233-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/05/2021] [Indexed: 11/08/2022]
Abstract
Intracortical brain-machine interfaces decode motor commands from neural signals and translate them into actions, enabling movement for paralysed individuals. The subjective sense of agency associated with actions generated via intracortical brain-machine interfaces, the neural mechanisms involved and its clinical relevance are currently unknown. By experimentally manipulating the coherence between decoded motor commands and sensory feedback in a tetraplegic individual using a brain-machine interface, we provide evidence that primary motor cortex processes sensory feedback, sensorimotor conflicts and subjective states of actions generated via the brain-machine interface. Neural signals processing the sense of agency affected the proficiency of the brain-machine interface, underlining the clinical potential of the present approach. These findings show that primary motor cortex encodes information related to action and sensing, but also sensorimotor and subjective agency signals, which in turn are relevant for clinical applications of brain-machine interfaces.
Collapse
|
29
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
30
|
De Kock R, Gladhill KA, Ali MN, Joiner WM, Wiener M. How movements shape the perception of time. Trends Cogn Sci 2021; 25:950-963. [PMID: 34531138 PMCID: PMC9991018 DOI: 10.1016/j.tics.2021.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.
Collapse
|
31
|
Deo DR, Rezaii P, Hochberg LR, M Okamura A, Shenoy KV, Henderson JM. Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and Associated Sensory Responses in Motor Cortex. IEEE TRANSACTIONS ON HAPTICS 2021; 14:762-775. [PMID: 33844633 PMCID: PMC8745032 DOI: 10.1109/toh.2021.3072615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intracortical brain-computer interfaces (iBCIs) provide people with paralysis a means to control devices with signals decoded from brain activity. Despite recent impressive advances, these devices still cannot approach able-bodied levels of control. To achieve naturalistic control and improved performance of neural prostheses, iBCIs will likely need to include proprioceptive feedback. With the goal of providing proprioceptive feedback via mechanical haptic stimulation, we aim to understand how haptic stimulation affects motor cortical neurons and ultimately, iBCI control. We provided skin shear haptic stimulation as a substitute for proprioception to the back of the neck of a person with tetraplegia. The neck location was determined via assessment of touch sensitivity using a monofilament test kit. The participant was able to correctly report skin shear at the back of the neck in 8 unique directions with 65% accuracy. We found motor cortical units that exhibited sensory responses to shear stimuli, some of which were strongly tuned to the stimuli and well modeled by cosine-shaped functions. In this article, we also demonstrated online iBCI cursor control with continuous skin-shear feedback driven by decoded command signals. Cursor control performance increased slightly but significantly when the participant was given haptic feedback, compared to the purely visual feedback condition.
Collapse
|
32
|
Mirdamadi JL, Seigel CR, Husch SD, Block HJ. Somatotopic Specificity of Perceptual and Neurophysiological Changes Associated with Visuo-proprioceptive Realignment. Cereb Cortex 2021; 32:1184-1199. [PMID: 34424950 DOI: 10.1093/cercor/bhab280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
When visual and proprioceptive estimates of hand position disagree (e.g., viewing the hand underwater), the brain realigns them to reduce mismatch. This perceptual change is reflected in primary motor cortex (M1) excitability, suggesting potential relevance for hand movement. Here, we asked whether fingertip visuo-proprioceptive misalignment affects only the brain's representation of that finger (somatotopically focal), or extends to other parts of the limb that would be needed to move the misaligned finger (somatotopically broad). In Experiments 1 and 2, before and after misaligned or veridical visuo-proprioceptive training at the index finger, we used transcranial magnetic stimulation to assess M1 representation of five hand and arm muscles. The index finger representation showed an association between M1 excitability and visuo-proprioceptive realignment, as did the pinkie finger representation to a lesser extent. Forearm flexors, forearm extensors, and biceps did not show any such relationship. In Experiment 3, participants indicated their proprioceptive estimate of the fingertip, knuckle, wrist, and elbow, before and after misalignment at the fingertip. Proprioceptive realignment at the knuckle, but not the wrist or elbow, was correlated with realignment at the fingertip. These results suggest the effects of visuo-proprioceptive mismatch are somatotopically focal in both sensory and motor domains.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Courtney R Seigel
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Stephen D Husch
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Hannah J Block
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
33
|
Glanz RM, Dooley JC, Sokoloff G, Blumberg MS. Sensory Coding of Limb Kinematics in Motor Cortex across a Key Developmental Transition. J Neurosci 2021; 41:6905-6918. [PMID: 34281990 PMCID: PMC8360693 DOI: 10.1523/jneurosci.0921-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023] Open
Abstract
Primary motor cortex (M1) undergoes protracted development in mammals, functioning initially as a sensory structure. Throughout the first postnatal week in rats, M1 is strongly activated by self-generated forelimb movements-especially by the twitches that occur during active sleep. Here, we quantify the kinematic features of forelimb movements to reveal receptive-field properties of individual units within the forelimb region of M1. At postnatal day 8 (P8), nearly all units were strongly modulated by movement amplitude, especially during active sleep. By P12, only a minority of units continued to exhibit amplitude tuning, regardless of behavioral state. At both ages, movement direction also modulated M1 activity, though to a lesser extent. Finally, at P12, M1 population-level activity became more sparse and decorrelated, along with a substantial alteration in the statistical distribution of M1 responses to limb movements. These findings reveal a transition toward a more complex and informationally rich representation of movement long before M1 develops its motor functionality.SIGNIFICANCE STATEMENT Primary motor cortex (M1) plays a fundamental role in the generation of voluntary movements and motor learning in adults. In early development, however, M1 functions as a prototypical sensory structure. Here, we demonstrate in infant rats that M1 codes for the kinematics of self-generated limb movements long before M1 develops its capacity to drive movements themselves. Moreover, we identify a key transition during the second postnatal week in which M1 activity becomes more informationally complex. Together, these findings further delineate the complex developmental path by which M1 develops its sensory functions in support of its later-emerging motor capacities.
Collapse
Affiliation(s)
- Ryan M Glanz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52245
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
34
|
Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nat Rev Neurosci 2021; 22:389-406. [PMID: 33958775 DOI: 10.1038/s41583-021-00459-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
Functions of the neocortex depend on its bidirectional communication with the thalamus, via cortico-thalamo-cortical (CTC) loops. Recent work dissecting the synaptic connectivity in these loops is generating a clearer picture of their cellular organization. Here, we review findings across sensory, motor and cognitive areas, focusing on patterns of cell type-specific synaptic connections between the major types of cortical and thalamic neurons. We outline simple and complex CTC loops, and note features of these loops that appear to be general versus specialized. CTC loops are tightly interlinked with local cortical and corticocortical (CC) circuits, forming extended chains of loops that are probably critical for communication across hierarchically organized cerebral networks. Such CTC-CC loop chains appear to constitute a modular unit of organization, serving as scaffolding for area-specific structural and functional modifications. Inhibitory neurons and circuits are embedded throughout CTC loops, shaping the flow of excitation. We consider recent findings in the context of established CTC and CC circuit models, and highlight current efforts to pinpoint cell type-specific mechanisms in CTC loops involved in consciousness and perception. As pieces of the connectivity puzzle fall increasingly into place, this knowledge can guide further efforts to understand structure-function relationships in CTC loops.
Collapse
|
35
|
Paraskevopoulou SE, Coon WG, Brunner P, Miller KJ, Schalk G. Within-subject reaction time variability: Role of cortical networks and underlying neurophysiological mechanisms. Neuroimage 2021; 237:118127. [PMID: 33957232 DOI: 10.1016/j.neuroimage.2021.118127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Variations in reaction time are a ubiquitous characteristic of human behavior. Extensively documented, they have been successfully modeled using parameters of the subject or the task, but the neural basis of behavioral reaction time that varies within the same subject and the same task has been minimally studied. In this paper, we investigate behavioral reaction time variance using 28 datasets of direct cortical recordings in humans who engaged in four different types of simple sensory-motor reaction time tasks. Using a previously described technique that can identify the onset of population-level cortical activity and a novel functional connectivity algorithm described herein, we show that the cumulative latency difference of population-level neural activity across the task-related cortical network can explain up to 41% of the trial-by-trial variance in reaction time. Furthermore, we show that reaction time variance may primarily be due to the latencies in specific brain regions and demonstrate that behavioral latency variance is accumulated across the whole task-related cortical network. Our results suggest that population-level neural activity monotonically increases prior to movement execution, and that trial-by-trial changes in that increase are, in part, accounted for by inhibitory activity indexed by low-frequency oscillations. This pre-movement neural activity explains 19% of the measured variance in neural latencies in our data. Thus, our study provides a mechanistic explanation for a sizable fraction of behavioral reaction time when the subject's task is the same from trial to trial.
Collapse
Affiliation(s)
| | - William G Coon
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD, USA.
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Albany Medical College, Albany, NY, USA; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA.
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Biomedical Science, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
36
|
Parallel and Serial Sensory Processing in Developing Primary Somatosensory and Motor Cortex. J Neurosci 2021; 41:3418-3431. [PMID: 33622773 DOI: 10.1523/jneurosci.2614-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
It is generally supposed that primary motor cortex (M1) receives somatosensory input predominantly via primary somatosensory cortex (S1). However, a growing body of evidence indicates that M1 also receives direct sensory input from the thalamus, independent of S1; such direct input is particularly evident at early ages before M1 contributes to motor control. Here, recording extracellularly from the forelimb regions of S1 and M1 in unanesthetized rats at postnatal day (P)8 and P12, we compared S1 and M1 responses to self-generated (i.e., reafferent) forelimb movements during active sleep and wake, and to other-generated (i.e., exafferent) forelimb movements. At both ages, reafferent responses were processed in parallel by S1 and M1; in contrast, exafferent responses were processed in parallel at P8 but serially, from S1 to M1, at P12. To further assess this developmental difference in processing, we compared exafferent responses to proprioceptive and tactile stimulation. At both P8 and P12, proprioceptive stimulation evoked parallel responses in S1 and M1, whereas tactile stimulation evoked parallel responses at P8 and serial responses at P12. Independent of the submodality of exafferent stimulation, pairs of S1-M1 units exhibited greater coactivation during active sleep than wake. These results indicate that S1 and M1 independently develop somatotopy before establishing the interactive relationship that typifies their functionality in adults.SIGNIFICANCE STATEMENT Learning any new motor task depends on the ability to use sensory information to update motor outflow. Thus, to understand motor learning, we must also understand how animals process sensory input. Primary somatosensory cortex (S1) and primary motor cortex (M1) are two interdependent structures that process sensory input throughout life. In adults, the functional relationship between S1 and M1 is well established; however, little is known about how S1 and M1 begin to transmit or process sensory information in early life. In this study, we investigate the early development of S1 and M1 as a sensory processing unit. Our findings provide new insights into the fundamental principles of sensory processing and the development of functional connectivity between these important sensorimotor structures.
Collapse
|
37
|
Yamawaki N, Raineri Tapies MG, Stults A, Smith GA, Shepherd GMG. Circuit organization of the excitatory sensorimotor loop through hand/forelimb S1 and M1. eLife 2021; 10:e66836. [PMID: 33851917 PMCID: PMC8046433 DOI: 10.7554/elife.66836] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sensory-guided limb control relies on communication across sensorimotor loops. For active touch with the hand, the longest loop is the transcortical continuation of ascending pathways, particularly the lemnisco-cortical and corticocortical pathways carrying tactile signals via the cuneate nucleus, ventral posterior lateral (VPL) thalamus, and primary somatosensory (S1) and motor (M1) cortices to reach corticospinal neurons and influence descending activity. We characterized excitatory connectivity along this pathway in the mouse. In the lemnisco-cortical leg, disynaptic cuneate→VPL→S1 connections excited mainly layer (L) 4 neurons. In the corticocortical leg, S1→M1 connections from L2/3 and L5A neurons mainly excited downstream L2/3 neurons, which excite corticospinal neurons. The findings provide a detailed new wiring diagram for the hand/forelimb-related transcortical circuit, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical somatosensory input to cortical motor output to spinal cord.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | | | - Austin Stults
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Gregory A Smith
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Gordon MG Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
38
|
Grecco GG, Mork BE, Huang JY, Metzger CE, Haggerty DL, Reeves KC, Gao Y, Hoffman H, Katner SN, Masters AR, Morris CW, Newell EA, Engleman EA, Baucum AJ, Kim J, Yamamoto BK, Allen MR, Wu YC, Lu HC, Sheets PL, Atwood BK. Prenatal methadone exposure disrupts behavioral development and alters motor neuron intrinsic properties and local circuitry. eLife 2021; 10:e66230. [PMID: 33724184 PMCID: PMC7993998 DOI: 10.7554/elife.66230] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the rising prevalence of methadone treatment in pregnant women with opioid use disorder, the effects of methadone on neurobehavioral development remain unclear. We developed a translational mouse model of prenatal methadone exposure (PME) that resembles the typical pattern of opioid use by pregnant women who first use oxycodone then switch to methadone maintenance pharmacotherapy, and subsequently become pregnant while maintained on methadone. We investigated the effects of PME on physical development, sensorimotor behavior, and motor neuron properties using a multidisciplinary approach of physical, biochemical, and behavioral assessments along with brain slice electrophysiology and in vivo magnetic resonance imaging. Methadone accumulated in the placenta and fetal brain, but methadone levels in offspring dropped rapidly at birth which was associated with symptoms and behaviors consistent with neonatal opioid withdrawal. PME produced substantial impairments in offspring physical growth, activity in an open field, and sensorimotor milestone acquisition. Furthermore, these behavioral alterations were associated with reduced neuronal density in the motor cortex and a disruption in motor neuron intrinsic properties and local circuit connectivity. The present study adds to the limited body of work examining PME by providing a comprehensive, translationally relevant characterization of how PME disrupts offspring physical and neurobehavioral development.
Collapse
Affiliation(s)
- Gregory G Grecco
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University School of Medicine, Medical Scientist Training ProgramIndianapolisUnited States
| | - Briana E Mork
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Program in Medical Neuroscience, Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Jui-Yen Huang
- Department of Psychological and Brain Sciences, Indiana UniversityBloomingtonUnited States
- The Linda and Jack Gill Center for Biomolecular Sciences, Department of Psychological and Brain Science, Program in Neuroscience, Indiana UniversityBloomingtonUnited States
| | - Corinne E Metzger
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of MedicineIndianapolisUnited States
| | - David L Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Kaitlin C Reeves
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Yong Gao
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Hunter Hoffman
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Simon N Katner
- Deparment of Psychiatry, Indiana University School of MedicineIndianapolisUnited States
| | - Andrea R Masters
- Clinical Pharmacology Analytical Core-Indiana University Simon Cancer Center, Indiana University School of MedicineIndianapolisUnited States
| | - Cameron W Morris
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Department of Biology, Indiana University-Purdue UniversityIndianapolisUnited States
| | - Erin A Newell
- Deparment of Psychiatry, Indiana University School of MedicineIndianapolisUnited States
| | - Eric A Engleman
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Anthony J Baucum
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Department of Biology, Indiana University-Purdue UniversityIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Jiuen Kim
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Bryan K Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of MedicineIndianapolisUnited States
- Indiana Center for Musculoskeletal Health, Indiana University School of MedicineIndianapolisUnited States
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisUnited States
| | - Hui-Chen Lu
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Department of Psychological and Brain Sciences, Indiana UniversityBloomingtonUnited States
| | - Patrick L Sheets
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| |
Collapse
|
39
|
Canna A, Lehto LJ, Wu L, Sang S, Laakso H, Ma J, Filip P, Zhang Y, Gröhn O, Esposito F, Chen CC, Lavrov I, Michaeli S, Mangia S. Brain fMRI during orientation selective epidural spinal cord stimulation. Sci Rep 2021; 11:5504. [PMID: 33750822 PMCID: PMC7943775 DOI: 10.1038/s41598-021-84873-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Epidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.
Collapse
Affiliation(s)
- Antonietta Canna
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lauri J Lehto
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Lin Wu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Sheng Sang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Hanne Laakso
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Pavel Filip
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Yuan Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Igor Lavrov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
40
|
Khanna P, Totten D, Novik L, Roberts J, Morecraft RJ, Ganguly K. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 2021; 184:912-930.e20. [PMID: 33571430 DOI: 10.1016/j.cell.2021.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.
Collapse
Affiliation(s)
- Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Douglas Totten
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Lisa Novik
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jeffrey Roberts
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Barczak A, Haegens S, Ross DA, McGinnis T, Lakatos P, Schroeder CE. Dynamic Modulation of Cortical Excitability during Visual Active Sensing. Cell Rep 2020; 27:3447-3459.e3. [PMID: 31216467 PMCID: PMC6598687 DOI: 10.1016/j.celrep.2019.05.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/19/2019] [Accepted: 05/17/2019] [Indexed: 01/15/2023] Open
Abstract
Visual physiology is traditionally investigated by presenting stimuli with gaze held constant. However, during active viewing of a scene, information is actively acquired using systematic patterns of fixations and saccades. Prior studies suggest that during such active viewing, both nonretinal, saccade-related signals and “extra-classical” receptive field inputs modulate visual processing. This study used a set of active viewing tasks that allowed us to compare visual responses with and without direct foveal input, thus isolating the contextual eye movement-related influences. Studying nonhuman primates, we find strong contextual modulation in primary visual cortex (V1): excitability and response amplification immediately after fixation onset, transiting to suppression leading up to the next saccade. Time-frequency decomposition suggests that this amplification and suppression cycle stems from a phase reset of ongoing neuronal oscillatory activity. The impact of saccade-related contextual modulation on stimulus processing makes active visual sensing fundamentally different from the more passive processes investigated in traditional paradigms. By isolating contextual eye movement-related influences during active vision, Barczak et al. show that eye movements affect excitability in V1 such that responses are amplified immediately after fixation onset and suppressed as the next saccade approaches. This amplification and suppression cycle stems from a phase reset of ambient oscillatory activity in V1.
Collapse
Affiliation(s)
- Annamaria Barczak
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Saskia Haegens
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6500HB, the Netherlands
| | - Deborah A Ross
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Tammy McGinnis
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Peter Lakatos
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
42
|
Balasubramanian K, Papadourakis V, Liang W, Takahashi K, Best MD, Suminski AJ, Hatsopoulos NG. Propagating Motor Cortical Dynamics Facilitate Movement Initiation. Neuron 2020; 106:526-536.e4. [PMID: 32145183 PMCID: PMC7210059 DOI: 10.1016/j.neuron.2020.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023]
Abstract
Voluntary movement initiation involves the modulations of large groups of neurons in the primary motor cortex (M1). Yet similar modulations occur during movement planning when no movement occurs. Here, we show that a sequential spatiotemporal pattern of excitability propagates across M1 prior to the movement initiation in one of two oppositely oriented directions along the rostro-caudal axis. Using spatiotemporal patterns of intracortical microstimulation, we find that reaction time increases significantly when stimulation is delivered against, but not with, the natural propagation direction. Functional connections among M1 units emerge at movement that are oriented along the same rostro-caudal axis but not during movement planning. Finally, we show that beta amplitude profiles can more accurately decode muscle activity when they conform to the natural propagating patterns. These findings provide the first causal evidence that large-scale, propagating patterns of cortical excitability are behaviorally relevant and may be a necessary component of movement initiation.
Collapse
Affiliation(s)
| | - Vasileios Papadourakis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Wei Liang
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Kazutaka Takahashi
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Matthew D Best
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Aaron J Suminski
- Department of Neurological Surgery, University of Wisconsin, Madison, Madison, WI 53792, USA; Department of Biomedical Engineering, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA; Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
43
|
Ganzer PD, Colachis SC, Schwemmer MA, Friedenberg DA, Dunlap CF, Swiftney CE, Jacobowitz AF, Weber DJ, Bockbrader MA, Sharma G. Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface. Cell 2020; 181:763-773.e12. [DOI: 10.1016/j.cell.2020.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
|
44
|
Kolasinski J, Dima DC, Mehler DMA, Stephenson A, Valadan S, Kusmia S, Rossiter HE. Spatially and Temporally Distinct Encoding of Muscle and Kinematic Information in Rostral and Caudal Primary Motor Cortex. Cereb Cortex Commun 2020; 1:tgaa009. [PMID: 32864612 PMCID: PMC7446240 DOI: 10.1093/texcom/tgaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/02/2022] Open
Abstract
The organizing principle of human motor cortex does not follow an anatomical body map, but rather a distributed representational structure in which motor primitives are combined to produce motor outputs. Electrophysiological recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint position and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stimuli, raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or are they an epiphenomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of naturalistic hand movements. Using a powerful combination of high-field functional magnetic resonance imaging and magnetoencephalography, a spatial and temporal multivariate representational similarity analysis revealed encoding of kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to movement production.
Collapse
Affiliation(s)
- James Kolasinski
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Diana C Dima
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - David M A Mehler
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Alice Stephenson
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sara Valadan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Slawomir Kusmia
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Holly E Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
45
|
Bhattacharjee S, Kashyap R, Abualait T, Annabel Chen SH, Yoo WK, Bashir S. The Role of Primary Motor Cortex: More Than Movement Execution. J Mot Behav 2020; 53:258-274. [PMID: 32194004 DOI: 10.1080/00222895.2020.1738992] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The predominant role of the primary motor cortex (M1) in motor execution is well acknowledged. However, additional roles of M1 are getting evident in humans owing to advances in noninvasive brain stimulation (NIBS) techniques. This review collates such studies in humans and proposes that M1 also plays a key role in higher cognitive processes. The review commences with the studies that have investigated the nature of connectivity of M1 with other cortical regions in light of studies based on NIBS. The review then moves on to discuss the studies that have demonstrated the role of M1 in higher cognitive processes such as attention, motor learning, motor consolidation, movement inhibition, somatomotor response, and movement imagery. Overall, the purpose of the review is to highlight the additional role of M1 in motor cognition besides motor control, which remains unexplored.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Center for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore
| | - Turki Abualait
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shen-Hsing Annabel Chen
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.,Office of Educational Research, National Institute of Education, Nanyang Technological University, Singapore
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Pilkiewicz KR, Lemasson BH, Rowland MA, Hein A, Sun J, Berdahl A, Mayo ML, Moehlis J, Porfiri M, Fernández-Juricic E, Garnier S, Bollt EM, Carlson JM, Tarampi MR, Macuga KL, Rossi L, Shen CC. Decoding collective communications using information theory tools. J R Soc Interface 2020; 17:20190563. [PMID: 32183638 PMCID: PMC7115225 DOI: 10.1098/rsif.2019.0563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/28/2020] [Indexed: 02/03/2023] Open
Abstract
Organisms have evolved sensory mechanisms to extract pertinent information from their environment, enabling them to assess their situation and act accordingly. For social organisms travelling in groups, like the fish in a school or the birds in a flock, sharing information can further improve their situational awareness and reaction times. Data on the benefits and costs of social coordination, however, have largely allowed our understanding of why collective behaviours have evolved to outpace our mechanistic knowledge of how they arise. Recent studies have begun to correct this imbalance through fine-scale analyses of group movement data. One approach that has received renewed attention is the use of information theoretic (IT) tools like mutual information, transfer entropy and causation entropy, which can help identify causal interactions in the type of complex, dynamical patterns often on display when organisms act collectively. Yet, there is a communications gap between studies focused on the ecological constraints and solutions of collective action with those demonstrating the promise of IT tools in this arena. We attempt to bridge this divide through a series of ecologically motivated examples designed to illustrate the benefits and challenges of using IT tools to extract deeper insights into the interaction patterns governing group-level dynamics. We summarize some of the approaches taken thus far to circumvent existing challenges in this area and we conclude with an optimistic, yet cautionary perspective.
Collapse
Affiliation(s)
- K. R. Pilkiewicz
- Environmental Laboratory, U.S. Army Engineer Research and Development Center (EL-ERDC), Vicksburg, MS, USA
| | | | - M. A. Rowland
- Environmental Laboratory, U.S. Army Engineer Research and Development Center (EL-ERDC), Vicksburg, MS, USA
| | - A. Hein
- National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
- University of California, Santa Cruz, CA, USA
| | - J. Sun
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - A. Berdahl
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - M. L. Mayo
- Environmental Laboratory, U.S. Army Engineer Research and Development Center (EL-ERDC), Vicksburg, MS, USA
| | - J. Moehlis
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - M. Porfiri
- Department of Mechanical and Aerospace Engineering and Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | | | - S. Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - E. M. Bollt
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - J. M. Carlson
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - M. R. Tarampi
- Department of Psychology, University of Hartford, West Hartford, CT, USA
| | - K. L. Macuga
- School of Psychological Science, Oregon State University, Corvallis, OR, USA
| | - L. Rossi
- Department of Mathematical Sciences, University of Delaware, Newark, DE, USA
| | - C.-C. Shen
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
47
|
Zalta A, Petkoski S, Morillon B. Natural rhythms of periodic temporal attention. Nat Commun 2020; 11:1051. [PMID: 32103014 PMCID: PMC7044316 DOI: 10.1038/s41467-020-14888-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/04/2022] Open
Abstract
That attention is a fundamentally rhythmic process has recently received abundant empirical evidence. The essence of temporal attention, however, is to flexibly focus in time. Whether this function is constrained by an underlying rhythmic neural mechanism is unknown. In six interrelated experiments, we behaviourally quantify the sampling capacities of periodic temporal attention during auditory or visual perception. We reveal the presence of limited attentional capacities, with an optimal sampling rate of ~1.4 Hz in audition and ~0.7 Hz in vision. Investigating the motor contribution to temporal attention, we show that it scales with motor rhythmic precision, maximal at ~1.7 Hz. Critically, motor modulation is beneficial to auditory but detrimental to visual temporal attention. These results are captured by a computational model of coupled oscillators, that reveals the underlying structural constraints governing the temporal alignment between motor and attention fluctuations.
Collapse
Affiliation(s)
- Arnaud Zalta
- Inserm, INS, Inst Neurosci Syst, Aix Marseille University, 13005, Marseille, France
- APHM, INSERM, Inst Neurosci Syst, Service de Pharmacologie Clinique et Pharmacovigilance, Aix Marseille University, 13005, Marseille, France
| | - Spase Petkoski
- Inserm, INS, Inst Neurosci Syst, Aix Marseille University, 13005, Marseille, France
| | - Benjamin Morillon
- Inserm, INS, Inst Neurosci Syst, Aix Marseille University, 13005, Marseille, France.
| |
Collapse
|
48
|
Rastogi A, Vargas-Irwin CE, Willett FR, Abreu J, Crowder DC, Murphy BA, Memberg WD, Miller JP, Sweet JA, Walter BL, Cash SS, Rezaii PG, Franco B, Saab J, Stavisky SD, Shenoy KV, Henderson JM, Hochberg LR, Kirsch RF, Ajiboye AB. Neural Representation of Observed, Imagined, and Attempted Grasping Force in Motor Cortex of Individuals with Chronic Tetraplegia. Sci Rep 2020; 10:1429. [PMID: 31996696 PMCID: PMC6989675 DOI: 10.1038/s41598-020-58097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Hybrid kinetic and kinematic intracortical brain-computer interfaces (iBCIs) have the potential to restore functional grasping and object interaction capabilities in individuals with tetraplegia. This requires an understanding of how kinetic information is represented in neural activity, and how this representation is affected by non-motor parameters such as volitional state (VoS), namely, whether one observes, imagines, or attempts an action. To this end, this work investigates how motor cortical neural activity changes when three human participants with tetraplegia observe, imagine, and attempt to produce three discrete hand grasping forces with the dominant hand. We show that force representation follows the same VoS-related trends as previously shown for directional arm movements; namely, that attempted force production recruits more neural activity compared to observed or imagined force production. Additionally, VoS-modulated neural activity to a greater extent than grasping force. Neural representation of forces was lower than expected, possibly due to compromised somatosensory pathways in individuals with tetraplegia, which have been shown to influence motor cortical activity. Nevertheless, attempted forces (but not always observed or imagined forces) could be decoded significantly above chance, thereby potentially providing relevant information towards the development of a hybrid kinetic and kinematic iBCI.
Collapse
Affiliation(s)
- Anisha Rastogi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Carlos E Vargas-Irwin
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Robert J. Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, 02912, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Department of VA Medical Center, Providence, RI, 02912, USA
| | - Francis R Willett
- Neurosurgery, Stanford University, Stanford, CA, 94035, USA
- Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
| | - Jessica Abreu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - Douglas C Crowder
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - Brian A Murphy
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - William D Memberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - Jonathan P Miller
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
- Department of Neurological Surgery, UH Cleveland Med. Ctr., Cleveland, OH, 44106, USA
- Neurological Surgery, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Jennifer A Sweet
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
- Department of Neurological Surgery, UH Cleveland Med. Ctr., Cleveland, OH, 44106, USA
- Neurological Surgery, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Benjamin L Walter
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
- Department of Neurology, UH Cleveland Med. Ctr., Cleveland, OH, 44106, USA
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Brian Franco
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jad Saab
- Robert J. Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, 02912, USA
- School of Engineering, Brown University, Providence, RI, 02912, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Department of VA Medical Center, Providence, RI, 02912, USA
| | - Sergey D Stavisky
- Neurosurgery, Stanford University, Stanford, CA, 94035, USA
- Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
| | - Krishna V Shenoy
- Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
- Bioengineering, Stanford University, Stanford, CA, 94035, USA
- Department of Neurobiology, Stanford University, Stanford, CA, 94035, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94035, USA
| | - Jaimie M Henderson
- Neurosurgery, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
- Bio-X Program, Stanford University, Stanford, CA, 94035, USA
| | - Leigh R Hochberg
- School of Engineering, Brown University, Providence, RI, 02912, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Department of VA Medical Center, Providence, RI, 02912, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert F Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - A Bolu Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA.
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA.
| |
Collapse
|
49
|
Ranzani R, Viggiano F, Engelbrecht B, Held JPO, Lambercy O, Gassert R. Method for Muscle Tone Monitoring During Robot-Assisted Therapy of Hand Function: A Proof of Concept. IEEE Int Conf Rehabil Robot 2020; 2019:957-962. [PMID: 31374753 DOI: 10.1109/icorr.2019.8779454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Robot-assisted rehabilitation of hand function is becoming an established approach to complement conventional therapy after stroke, particularly in view of its possible unsupervised use to promote an increase in therapy dose. Given their intensive therapy regime, robots may promote a temporary increase in hand muscle tone and spasticity, which may cause pain and negatively affect recovery. To integrate hand muscle tone monitoring into an assessment-driven robot-assisted therapy concept, an online assessment of muscle tone is proposed and incorporated into an exercise. The exercise was preliminarily tested in a pilot study with five chronic stroke survivors (non-spastic at rest) and five healthy participants to identify the range of potential physiological muscle tone change that can happen also in a non-spastic population during a single exercise session. In both groups, the muscle tone level during hand opening was higher in fast 20 mm ramp-and-hold perturbations (150 ms) compared to slow (250 ms) perturbations, and corresponded to a force change of approximately 4-5 N. Despite not being statistically significantly different, in the stroke group the force change (and the speed dependency) increased with exercise time. This information could serve as a basis to develop strategies to continuously adapt the difficulty and activity level required in robot-assisted rehabilitation and to monitor or even control the muscle tone evolution over time.
Collapse
|
50
|
Abualait TS. Effects of transcranial direct current stimulation of primary motor cortex on cortical sensory deficits and hand dexterity in a patient with stroke: A case study. J Int Med Res 2019; 48:300060519894137. [PMID: 31885346 PMCID: PMC7783281 DOI: 10.1177/0300060519894137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fine motor and manual dexterity deficits are the main causes of significant
physical and psychosocial impairments in stroke survivors. Transcranial direct
current stimulation (tDCS) is a noninvasive brain stimulation technique used to
modulate brain activity and improve clinical outcomes. This study was performed
to investigate the efficacy of dual-hemispheric tDCS of the primary motor cortex
(M1) in a patient with stroke exhibiting cortical sensation deficits. A
double-blind, sham-controlled, single-case study was conducted. The patient
underwent 30 sessions of sham tDCS followed by 30 real-stimulation sessions over
both M1 cortices. Each session involved 20 minutes of 2-mA stimulation (current
density, 0.08 mA/cm2; total charge density, 0.096 C/cm2).
Functional measures were assessed using the Action Research Arm Test, grooved
pegboard test, nine-hole peg test, and box and block test at several time
points. Structural and diffusion tensor imaging data were acquired before
(t0) and after (t1) stimulation. Slight improvements
following sham tDCS were observed. However, following real stimulation, all
results at all time points were clinically significant. Higher fractional
anisotropy of the corticospinal tract and regional gray matter density were
positively correlated with better recovery of fine motor skills. tDCS
intervention induced functional improvement and structural changes in this
patient with stroke.
Collapse
Affiliation(s)
- Turki S. Abualait
- Turki S. Abualait, Department of Physical
Therapy, College of Applied Medical Sciences, Eastern Campus, Imam Abdulrahman
Bin Faisal University, PO Box 2435, Dammam 31451, Saudi Arabia.
| |
Collapse
|