1
|
Guo Z, Yin M, Sun C, Xu G, Wang T, Jia Z, Zhang Z, Zhu C, Zheng D, Wang L, Huang S, Liu D, Zhang Y, Xie R, Gao N, Zhan L, He S, Zhu Y, Li Y, Nashan B, Andrea S, Xu J, Zhao Q, He X. Liver protects neuron viability and electrocortical activity in post-cardiac arrest brain injury. EMBO Mol Med 2024; 16:2322-2348. [PMID: 39300235 PMCID: PMC11479250 DOI: 10.1038/s44321-024-00140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Brain injury is the leading cause of mortality among patients who survive cardiac arrest (CA). Clinical studies have shown that the presence of post-CA hypoxic hepatitis or pre-CA liver disease is associated with increased mortality and inferior neurological recovery. In our in vivo global cerebral ischemia model, we observed a larger infarct area, elevated tissue injury scores, and increased intravascular CD45+ cell adhesion in reperfused brains with simultaneous hepatic ischemia than in those without it. In the ex vivo brain normothermic machine perfusion (NMP) model, we demonstrated that addition of a functioning liver to the brain NMP circuit significantly reduced post-CA brain injury, increased neuronal viability, and improved electrocortical activity. Furthermore, significant alterations were observed in both the transcriptome and metabolome in the presence or absence of hepatic ischemia. Our study highlights the crucial role of the liver in the pathogenesis of post-CA brain injury.
Collapse
Affiliation(s)
- Zhiyong Guo
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.
| | - Meixian Yin
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chengjun Sun
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guixing Xu
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tielong Wang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zehua Jia
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhiheng Zhang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Caihui Zhu
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Donghua Zheng
- Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linhe Wang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Shanzhou Huang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Di Liu
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yixi Zhang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Rongxing Xie
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Ningxin Gao
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Liqiang Zhan
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Shujiao He
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yifan Zhu
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yuexin Li
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Björn Nashan
- Organ Transplant Center, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, China
| | - Schlegel Andrea
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Zhao
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China.
| | - Xiaoshun He
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Kim MH, Strazza P, Puthussery T, Gross OP, Taylor WR, von Gersdorff H. Functional maturation of the rod bipolar to AII-amacrine cell ribbon synapse in the mouse retina. Cell Rep 2023; 42:113440. [PMID: 37976158 PMCID: PMC11560284 DOI: 10.1016/j.celrep.2023.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Retinal ribbon synapses undergo functional changes after eye opening that remain uncharacterized. Using light-flash stimulation and paired patch-clamp recordings, we examined the maturation of the ribbon synapse between rod bipolar cells (RBCs) and AII-amacrine cells (AII-ACs) after eye opening (postnatal day 14) in the mouse retina at near physiological temperatures. We find that light-evoked excitatory postsynaptic currents (EPSCs) in AII-ACs exhibit a slow sustained component that increases in magnitude with advancing age, whereas a fast transient component remains unchanged. Similarly, paired recordings reveal a dual-component EPSC with a slower sustained component that increases during development, even though the miniature EPSC (mEPSC) amplitude and kinetics do not change significantly. We thus propose that the readily releasable pool of vesicles from RBCs increases after eye opening, and we estimate that a short light flash can evoke the release of ∼4,000 vesicles onto a single mature AII-AC.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Paulo Strazza
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Teresa Puthussery
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Owen P Gross
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Physics, Reed College, Portland, OR 97202, USA
| | - W Rowland Taylor
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Shishis S, Tsang B, Ren GJ, Gerlai R. Effects of different handling methods on the behavior of adult zebrafish. Physiol Behav 2023; 262:114106. [PMID: 36758848 DOI: 10.1016/j.physbeh.2023.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
The zebrafish is an important biomedical research organism. In most research, zebrafish are removed from their home tank and subsequently their phenotype is measured. The method of handling the fish, however, may significantly affect a variety of phenotypes. This is particularly problematic for studies of brain function that measure behavioral or neuronal responses. Nevertheless, the potential effects of handling have not been analyzed, and in fact are usually ignored. Here, we explore the effects of two usual and two rarely or never-before employed handling methods on the behavior of adult zebrafish. We exposed each fish to one of four handling methods, a between subject experimental design: (1) net chasing followed by air-suspension, (2) gentle net catching (without chasing) followed by air-suspension, (3) gentle net catching followed by being placed in a beaker (no chasing and very short air-suspension), (4) transportation in home tank and pouring the fish directly into the test tank (no chasing, netting or air-suspension). With these handling methods, the fish were placed in a test tank and their swim path was videorecorded and analyzed. Handling significantly affected swim path parameters, duration and frequency of immobility, absolute turn angle and its temporal variance and velocity, but not the distance to bottom. The behavioral effects confirmed that chasing and netting induce robust behavioral changes, and that pouring the fish from its home to its test tank is least aversive for zebrafish. We recommend using this latter method to reduce experimental error variation and increase reproducibility of results.
Collapse
Affiliation(s)
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Critical Care Medicine, Hospital for Sick Children, Canada
| | - Gary J Ren
- Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
4
|
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021; 10:cells10030633. [PMID: 33809186 PMCID: PMC8000332 DOI: 10.3390/cells10030633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative retinal diseases, such as glaucoma and diabetic retinopathy, involve a gradual loss of neurons in the retina as the disease progresses. Central nervous system neurons are not able to regenerate in mammals, therefore, an often sought after course of treatment for neuronal loss follows a neuroprotective or regenerative strategy. Neuroprotection is the process of preserving the structure and function of the neurons that have survived a harmful insult; while regenerative approaches aim to replace or rewire the neurons and synaptic connections that were lost, or induce regrowth of damaged axons or dendrites. In order to test the neuroprotective effectiveness or the regenerative capacity of a particular agent, a robust experimental model of retinal neuronal damage is essential. Zebrafish are being used more often in this type of study because their eye structure and development is well-conserved between zebrafish and mammals. Zebrafish are robust genetic tools and are relatively inexpensive to maintain. The large array of functional and behavioral tests available in zebrafish makes them an attractive model for neuroprotection studies. Some common insults used to model retinal disease and study neuroprotection in zebrafish include intense light, chemical toxicity and mechanical damage. This review covers the existing retinal neuroprotection and regeneration literature in the zebrafish and highlights their potential for future studies.
Collapse
|
5
|
Abstract
Intact and functioning brain enables quantification of neural activities directly associated with real world such as visual and auditory information. In vivo patch clamp can record different types of neuronal activity, such as spiking responses, membrane potential dynamics, and synaptic currents (e.g., EPSC, IPSC) in either anesthetized or awake or even free moving animals. Researchers can not only directly measure these neuronal activities but also quantify and unravel synaptic contribution from excitatory and inhibitory circuits. Here, we describe the requirements and standard protocols to perform in vivo patch clamp recording. The key factors of successful recording based on references and our experiences are also provided.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China.
| | - He Li
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongju Xiao
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhang RW, Du WJ, Prober DA, Du JL. Müller Glial Cells Participate in Retinal Waves via Glutamate Transporters and AMPA Receptors. Cell Rep 2020; 27:2871-2880.e2. [PMID: 31167134 PMCID: PMC6659749 DOI: 10.1016/j.celrep.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. Although it is known that the wave is initiated successively by amacrine cells and bipolar cells, the behavior and function of glia in retinal waves remain unclear. Using multiple in vivo methods in larval zebrafish, we found that Müller glial cells (MGCs) display wave-like spontaneous activities, which start at MGC processes within the inner plexiform layer, vertically spread to their somata and endfeet, and horizontally propagate into neighboring MGCs. MGC waves depend on glutamatergic signaling derived from bipolar cells. Moreover, MGCs express both glia-specific glutamate transporters and the AMPA subtype of glutamate receptors. The AMPA receptors mediate MGC calcium activities during retinal waves, whereas the glutamate transporters modulate the occurrence of retinal waves. Thus, MGCs can sense and regulate retinal waves via AMPA receptors and glutamate transporters, respectively.
Collapse
Affiliation(s)
- Rong-Wei Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Wen-Jie Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China.
| |
Collapse
|
7
|
Bicskei B, Taggart JB, Bron JE, Glover KA. Transcriptomic comparison of communally reared wild, domesticated and hybrid Atlantic salmon fry under stress and control conditions. BMC Genet 2020; 21:57. [PMID: 32471356 PMCID: PMC7257211 DOI: 10.1186/s12863-020-00858-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Domestication is the process by which organisms become adapted to the human-controlled environment. Since the selection pressures that act upon cultured and natural populations differ, adaptations that favour life in the domesticated environment are unlikely to be advantageous in the wild. Elucidation of the differences between wild and domesticated Atlantic salmon may provide insights into some of the genomic changes occurring during domestication, and, help to predict the evolutionary consequences of farmed salmon escapees interbreeding with wild conspecifics. In this study the transcriptome of the offspring of wild and domesticated Atlantic salmon were compared using a common-garden experiment under standard hatchery conditions and in response to an applied crowding stressor. RESULTS Transcriptomic differences between wild and domesticated crosses were largely consistent between the control and stress conditions, and included down-regulation of environmental information processing, immune and nervous system pathways and up-regulation of genetic information processing, carbohydrate metabolism, lipid metabolism and digestive and endocrine system pathways in the domesticated fish relative to their wild counterparts, likely reflective of different selection pressures acting in wild and cultured populations. Many stress responsive functions were also shared between crosses and included down-regulation of cellular processes and genetic information processing and up-regulation of some metabolic pathways, lipid and energy in particular. The latter may be indicative of mobilization and reallocation of energy resources in response to stress. However, functional analysis indicated that a number of pathways behave differently between domesticated and wild salmon in response to stress. Reciprocal F1 hybrids permitted investigation of inheritance patterns that govern transcriptomic differences between these genetically divergent crosses. Additivity and maternal dominance accounted for approximately 42 and 25% of all differences under control conditions for both hybrids respectively. However, the inheritance of genes differentially expressed between crosses under stress was less consistent between reciprocal hybrids, potentially reflecting maternal environmental effects. CONCLUSION We conclude that there are transcriptomic differences between the domesticated and wild salmon strains studied here, reflecting the different selection pressures operating on them. Our results indicate that stress may affect certain biological functions differently in wild, domesticated and hybrid crosses and these should be further investigated.
Collapse
Affiliation(s)
- Beatrix Bicskei
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - John B. Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - James E. Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - Kevin A. Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Retinal biomarkers and pharmacological targets for Hermansky-Pudlak syndrome 7. Sci Rep 2020; 10:3972. [PMID: 32132582 PMCID: PMC7055265 DOI: 10.1038/s41598-020-60931-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/19/2020] [Indexed: 01/24/2023] Open
Abstract
Deletion of dystrobrevin binding protein 1 has been linked to Hermansky-Pudlak syndrome type 7 (HPS-7), a rare disease characterized by oculocutaneous albinism and retinal dysfunction. We studied dysbindin-1 null mutant mice (Dys−/−) to shed light on retinal neurodevelopment defects in HPS-7. We analyzed the expression of a focused set of miRNAs in retina of wild type (WT), Dys+/− and Dys−/− mice. We also investigated the retinal function of these mice through electroretinography (ERG). We found that miR-101-3p, miR-137, miR-186-5p, miR-326, miR-382-5p and miR-876-5p were up-regulated in Dys−/−mice retina. Dys−/− mice showed significant increased b-wave in ERG, compared to WT mice. Bioinformatic analysis highlighted that dysregulated miRNAs target synaptic plasticity and dopaminergic signaling pathways, affecting retinal functions of Dys−/− mice. Overall, the data indicate potential mechanisms in retinal neurodevelopment of Dys−/− mice, which may have translational significance in HSP-7 patients, both in terms of diagnostic/prognostic biomarkers and novel pharmacological targets.
Collapse
|
9
|
Abstract
The zebrafish (Danio rerio) has emerged as a widely used model system during the last four decades. The fact that the zebrafish larva is transparent enables sophisticated in vivo imaging, including calcium imaging of intracellular transients in many different tissues. While being a vertebrate, the reduced complexity of its nervous system and small size make it possible to follow large-scale activity in the whole brain. Its genome is sequenced and many genetic and molecular tools have been developed that simplify the study of gene function in health and disease. Since the mid 90's, the development and neuronal function of the embryonic, larval, and later, adult zebrafish have been studied using calcium imaging methods. This updated chapter is reviewing the advances in methods and research findings of zebrafish calcium imaging during the last decade. The choice of calcium indicator depends on the desired number of cells to study and cell accessibility. Synthetic calcium indicators, conjugated to dextrans and acetoxymethyl (AM) esters, are still used to label specific neuronal cell types in the hindbrain and the olfactory system. However, genetically encoded calcium indicators, such as aequorin and the GCaMP family of indicators, expressed in various tissues by the use of cell-specific promoters, are now the choice for most applications, including brain-wide imaging. Calcium imaging in the zebrafish has contributed greatly to our understanding of basic biological principles during development and adulthood, and the function of disease-related genes in a vertebrate system.
Collapse
|
10
|
Xie J, Jusuf PR, Bui BV, Goodbourn PT. Experience-dependent development of visual sensitivity in larval zebrafish. Sci Rep 2019; 9:18931. [PMID: 31831839 PMCID: PMC6908733 DOI: 10.1038/s41598-019-54958-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
The zebrafish (Danio rerio) is a popular vertebrate model for studying visual development, especially at the larval stage. For many vertebrates, post-natal visual experience is essential to fine-tune visual development, but it is unknown how experience shapes larval zebrafish vision. Zebrafish swim with a moving texture; in the wild, this innate optomotor response (OMR) stabilises larvae in moving water, but it can be exploited in the laboratory to assess zebrafish visual function. Here, we compared spatial-frequency tuning inferred from OMR between visually naïve and experienced larvae from 5 to 7 days post-fertilisation. We also examined development of synaptic connections between neurons by quantifying post-synaptic density 95 (PSD-95) in larval retinae. PSD-95 is closely associated with N-methyl-D-aspartate (NMDA) receptors, the neurotransmitter-receptor proteins underlying experience-dependent visual development. We found that rather than following an experience-independent genetic programme, developmental changes in visual spatial-frequency tuning at the larval stage required visual experience. Exposure to motion evoking OMR yielded no greater improvement than exposure to static form, suggesting that increased sensitivity as indexed by OMR was driven not by motor practice but by visual experience itself. PSD-95 density varied with visual sensitivity, suggesting that experience may have up-regulated clustering of PSD-95 for synaptic maturation in visual development.
Collapse
Affiliation(s)
- Jiaheng Xie
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - Patricia R Jusuf
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Patrick T Goodbourn
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
11
|
Yin C, Li X, Du J. Optic tectal superficial interneurons detect motion in larval zebrafish. Protein Cell 2018; 10:238-248. [PMID: 30421356 PMCID: PMC6418075 DOI: 10.1007/s13238-018-0587-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Detection of moving objects is an essential skill for animals to hunt prey, recognize conspecifics and avoid predators. The zebrafish, as a vertebrate model, primarily uses its elaborate visual system to distinguish moving objects against background scenes. The optic tectum (OT) receives and integrates inputs from various types of retinal ganglion cells (RGCs), including direction-selective (DS) RGCs and size-selective RGCs, and is required for both prey capture and predator avoidance. However, it remains largely unknown how motion information is processed within the OT. Here we performed in vivo whole-cell recording and calcium imaging to investigate the role of superficial interneurons (SINs), a specific type of optic tectal neurons, in motion detection of larval zebrafish. SINs mainly receive excitatory synaptic inputs, exhibit transient ON- or OFF-type of responses evoked by light flashes, and possess a large receptive field (RF). One fifth of SINs are DS and classified into two subsets with separate preferred directions. Furthermore, SINs show size-dependent responses to moving dots. They are efficiently activated by moving objects but not static ones, capable of showing sustained responses to moving objects and having less visual adaptation than periventricular neurons (PVNs), the principal tectal cells. Behaviorally, ablation of SINs impairs prey capture, which requires local motion detection, but not global looming-evoked escape. Finally, starvation enhances the gain of SINs' motion responses while maintaining their size tuning and DS. These results indicate that SINs serve as a motion detector for sensing and localizing sized moving objects in the visual field.
Collapse
Affiliation(s)
- Chen Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoquan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
12
|
Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors. Nat Commun 2016; 7:12650. [PMID: 27586999 PMCID: PMC5025778 DOI: 10.1038/ncomms12650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. Retinal waves are important for visual system development. However, the mechanism involved in their generation remains largely unknown. Here using in vivo two-photon imaging the authors identify the presence of retinal waves in zebrafish larvae and find that they are initiated at bipolar cells via presynaptic NMDARs.
Collapse
|
13
|
Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neuroscience 2016; 332:53-60. [PMID: 27373906 DOI: 10.1016/j.neuroscience.2016.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022]
Abstract
Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways.
Collapse
|
14
|
Dhindsa RS, Goldstein DB. Genetic Discoveries Drive Molecular Analyses and Targeted Therapeutic Options in the Epilepsies. Curr Neurol Neurosci Rep 2016; 15:70. [PMID: 26319171 DOI: 10.1007/s11910-015-0587-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epilepsy is a serious neurological disease with substantial genetic contribution. We have recently made major advances in understanding the genetics and etiology of the epilepsies. However, current antiepileptic drugs are ineffective in nearly one third of patients. Most of these drugs were developed without knowledge of the underlying causes of the epilepsy to be treated; thus, it seems reasonable to assume that further improvements require a deeper understanding of epilepsy pathophysiology. Although once the rate-limiting step, gene discovery is now occurring at an unprecedented rapid rate, especially in the epileptic encephalopathies. However, to place these genetic findings in a biological context and discover treatment options for patients, we must focus on developing an efficient framework for functional evaluation of the mutations that cause epilepsy. In this review, we discuss guidelines for gene discovery, emerging functional assays and models, and novel therapeutics to highlight the developing framework of precision medicine in the epilepsies.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Institute for Genomic Medicine, Columbia University, Hammer Building, 701 West 168th Street, Box 149, New York, NY, 10032, USA,
| | | |
Collapse
|
15
|
Bicskei B, Taggart JB, Glover KA, Bron JE. Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression. Genet Sel Evol 2016; 48:20. [PMID: 26987528 PMCID: PMC4797325 DOI: 10.1186/s12711-016-0200-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to selective breeding, domesticated and wild Atlantic salmon are genetically diverged, which raises concerns about farmed escapees having the potential to alter the genetic composition of wild populations and thereby disrupting local adaptation. Documenting transcriptional differences between wild and domesticated stocks under controlled conditions is one way to explore the consequences of domestication and selection. We compared the transcriptomes of wild and domesticated Atlantic salmon embryos, by using a custom 44k oligonucleotide microarray to identify perturbed gene pathways between the two stocks, and to document the inheritance patterns of differentially-expressed genes by examining gene expression in their reciprocal hybrids. RESULTS Data from 24 array interrogations were analysed: four reciprocal cross types (W♀ × W♂, D♀ × W♂; W♀ × D♂, D♀ × D♂) × six biological replicates. A common set of 31,491 features on the microarrays passed quality control, of which about 62 % were assigned a KEGG Orthology number. A total of 6037 distinct genes were identified for gene-set enrichment/pathway analysis. The most highly enriched functional groups that were perturbed between the two stocks were cellular signalling and immune system, ribosome and RNA transport, and focal adhesion and gap junction pathways, relating to cell communication and cell adhesion molecules. Most transcripts that were differentially expressed between the stocks were governed by additive gene interaction (33 to 42 %). Maternal dominance and over-dominance were also prevalent modes of inheritance, with no convincing evidence for a stock effect. CONCLUSIONS Our data indicate that even at this relatively early developmental stage, transcriptional differences exist between the two stocks and affect pathways that are relevant to wild versus domesticated environments. Many of the identified differentially perturbed pathways are involved in organogenesis, which is expected to be an active process at the eyed egg stage. The dominant effects are more largely due to the maternal line than to the origin of the stock. This finding is particularly relevant in the context of potential introgression between farmed and wild fish, since female escapees tend to have a higher spawning success rate compared to males.
Collapse
Affiliation(s)
- Beatrix Bicskei
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Kevin A Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
16
|
Yao Y, Li X, Zhang B, Yin C, Liu Y, Chen W, Zeng S, Du J. Visual Cue-Discriminative Dopaminergic Control of Visuomotor Transformation and Behavior Selection. Neuron 2016; 89:598-612. [PMID: 26804989 DOI: 10.1016/j.neuron.2015.12.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/01/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023]
Abstract
Animals behave differently in response to visual cues with distinct ethological meaning, a process usually thought to be achieved through differential visual processing. Using a defined zebrafish escape circuit as a model, we found that behavior selection can be implemented at the visuomotor transformation stage through a visually responsive dopaminergic-inhibitory circuit module. In response to non-threatening visual stimuli, hypothalamic dopaminergic neurons and their positively regulated hindbrain inhibitory interneurons increase activity, suppressing synaptic transmission from the visual center to the escape circuit. By contrast, threatening visual stimuli inactivate some of these neurons, resulting in dis-inhibition of the visuomotor transformation and escape generation. The distinct patterns of dopaminergic-inhibitory neural module's visual responses account for this stimulus-specific visuomotor transformation and behavioral control. Thus, our study identifies a behavioral relevance-dependent mechanism that controls visuomotor transformation and behavior selection and reveals that neuromodulation can be tuned by visual cues to help animals generate appropriate responses.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiaoquan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Baibing Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Chen Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yafeng Liu
- Britton Chance Center for Biomedical Photonics and Department of Biomedical Engineering, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | - Weiyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics and Department of Biomedical Engineering, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
17
|
Kim MH, von Gersdorff H. Postsynaptic Plasticity Triggered by Ca²⁺-Permeable AMPA Receptor Activation in Retinal Amacrine Cells. Neuron 2016; 89:507-20. [PMID: 26804991 DOI: 10.1016/j.neuron.2015.12.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/18/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023]
Abstract
Amacrine cells are thought to be a major locus for mechanisms of light adaptation and contrast enhancement in the retina. However, the potential for plasticity in their AMPA receptor currents remains largely unknown. Using paired patch-clamp recordings between bipolar cell terminals and amacrine cells, we have simultaneously measured presynaptic membrane capacitance changes and EPSCs. Repetitive bipolar cell depolarizations, designed to maintain the same amount of exocytosis, nevertheless significantly potentiated evoked EPSCs in a subpopulation of amacrine cells. Likewise, repetitive iontophoresis (or puffs) of glutamate (or AMPA) onto the dendrites of amacrine cells also significantly potentiated evoked currents and [Ca(2+)]i rises. However, strong postsynaptic Ca(2+) buffering with BAPTA abolished the potentiation and selective antagonists of Ca(2+)-permeable AMPA receptors also blocked the potentiation of AMPA-mediated currents. Together these results suggest that Ca(2+) influx via Ca(2+)-permeable AMPA receptors can elicit a rapid form of postsynaptic plasticity in a subgroup of amacrine cell dendrites.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
18
|
|
19
|
Abstract
Zebrafish (Danio rerio) is a newly emerged vertebrate animal model with a conserved gross architecture of the brain and a rich repertoire of behaviors. Due to the optical transparency and structural simplicity of its brain, larval zebrafish has become an ideal in vivo model for dissecting neural mechanisms of brain functions at a whole-brain scale based on a strategy that spans scales from synapses, neurons, and circuits to behaviors. Whole-cell patch-clamp recording is an indispensable approach for studying synaptic and circuit mechanisms of brain functions. Due to the small size of neurons in the zebrafish brain, it is challenging to get whole-cell recordings from these cells. Here, we describe a protocol for obtaining in vivo whole-cell patch-clamp recordings from neurons in larval zebrafish.
Collapse
|
20
|
Tao C, Zhang G, Xiong Y, Zhou Y. Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience. Front Neural Circuits 2015; 9:23. [PMID: 26052270 PMCID: PMC4440909 DOI: 10.3389/fncir.2015.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.
Collapse
Affiliation(s)
- Can Tao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Guangwei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| |
Collapse
|
21
|
Menezes FP, Rico EP, Da Silva RS. Tolerance to seizure induced by kainic acid is produced in a specific period of zebrafish development. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:109-12. [PMID: 24743104 DOI: 10.1016/j.pnpbp.2014.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 01/07/2023]
Abstract
During brain development, the electrical disturbance promoted by a seizure can have several consequences, because it can disturb a set of steps extremely regulated needed to the correct brain maturation. Animal modeling of seizure is invaluable to contribute to the mechanistic understanding of punctual seizure event, and those that triggered in an immature neural network could alter the mature brain physiology. In the present study we observed that the exposure to kainic acid diluted directly in water of zebrafish decreased the locomotor activity at 7 days post-fertilization (dpf) animals and increased at 15 dpf, despite the absence of more specific seizure features. Pre-exposure to kainic acid (500 μM) diluted in water at 7 dpf animals reduced the susceptibility to a second exposure 2 months later by intraperitoneal injection. The current data suggest that these different responses are associated with neuronal maturation process and open a question about the window of development that are crucial to long lasting effects related to seizure in this animal model.
Collapse
Affiliation(s)
- Fabiano Peres Menezes
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Pacheco Rico
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Liu S, Wang MX, Mao CJ, Cheng XY, Wang CT, Huang J, Zhong ZM, Hu WD, Wang F, Hu LF, Wang H, Liu CF. Expression and functions of ASIC1 in the zebrafish retina. Biochem Biophys Res Commun 2014; 455:353-7. [DOI: 10.1016/j.bbrc.2014.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
23
|
Yao C, Vanderpool KG, Delfiner M, Eddy V, Lucaci AG, Soto-Riveros C, Yasumura T, Rash JE, Pereda AE. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol 2014; 112:2102-13. [PMID: 25080573 PMCID: PMC4274921 DOI: 10.1152/jn.00397.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022] Open
Abstract
In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable "mixed" (electrical and chemical) auditory synaptic contacts known as "club endings" on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages.
Collapse
Affiliation(s)
- Cong Yao
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Matthew Delfiner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Vanessa Eddy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Alexander G Lucaci
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Carolina Soto-Riveros
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and
| | - John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
24
|
Tooker RE, Lipin MY, Leuranguer V, Rozsa E, Bramley JR, Harding JL, Reynolds MM, Vigh J. Nitric oxide mediates activity-dependent plasticity of retinal bipolar cell output via S-nitrosylation. J Neurosci 2013; 33:19176-93. [PMID: 24305814 PMCID: PMC3850041 DOI: 10.1523/jneurosci.2792-13.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 11/21/2022] Open
Abstract
Coding a wide range of light intensities in natural scenes poses a challenge for the retina: adaptation to bright light should not compromise sensitivity to dim light. Here we report a novel form of activity-dependent synaptic plasticity, specifically, a "weighted potentiation" that selectively increases output of Mb-type bipolar cells in the goldfish retina in response to weak inputs but leaves the input-output ratio for strong stimuli unaffected. In retinal slice preparation, strong depolarization of bipolar terminals significantly lowered the threshold for calcium spike initiation, which originated from a shift in activation of voltage-gated calcium currents (ICa) to more negative potentials. The process depended upon glutamate-evoked retrograde nitric oxide (NO) signaling as it was eliminated by pretreatment with an NO synthase blocker, TRIM. The NO-dependent ICa modulation was cGMP independent but could be blocked by N-ethylmaleimide (NEM), indicating that NO acted via an S-nitrosylation mechanism. Importantly, the NO action resulted in a weighted potentiation of Mb output in response to small (≤-30 mV) depolarizations. Coincidentally, light flashes with intensity ≥ 2.4 × 10(8) photons/cm(2)/s lowered the latency of scotopic (≤ 2.4 × 10(8) photons/cm(2)/s) light-evoked calcium spikes in Mb axon terminals in an NEM-sensitive manner, but light responses above cone threshold (≥ 3.5 × 10(9) photons/cm(2)/s) were unaltered. Under bright scotopic/mesopic conditions, this novel form of Mb output potentiation selectively amplifies dim retinal inputs at Mb → ganglion cell synapses. We propose that this process might counteract decreases in retinal sensitivity during light adaptation by preventing the loss of visual information carried by dim scotopic signals.
Collapse
Affiliation(s)
| | | | | | - Eva Rozsa
- Department of Biomedical Sciences and
| | | | | | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523
| | | |
Collapse
|
25
|
Zhang RW, Zhang SY, Du JL. KCC2-dependent subcellular E(Cl) difference of ON-OFF retinal ganglion cells in larval zebrafish. Front Neural Circuits 2013; 7:103. [PMID: 23754987 PMCID: PMC3664767 DOI: 10.3389/fncir.2013.00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/11/2013] [Indexed: 11/13/2022] Open
Abstract
Subcellular difference in the reversal potential of Cl(-) (ECl) has been found in many types of neurons. As local ECl largely determines the action of nearby GABAergic/glycinergic synapses, subcellular ECl difference can effectively regulate neuronal computation. The ON-OFF retinal ganglion cell (RGC) processes both ON and OFF visual signals via its ON and OFF dendrites, respectively. It is thus interesting to investigate whether the ON and OFF dendrites of single RGCs exhibit different local ECl. Here, using in vivo gramicidin-perforated patch recording in larval zebrafish ON-OFF RGCs, we examine local ECl at the ON and OFF dendrites, and soma through measuring light-evoked ON and OFF inhibitory responses, and GABA-induced response at the soma, respectively. We find there are subcellular ECl differences between the soma and dendrite, as well as between the ON and OFF dendrites of single RGCs. These somato-dendritic and inter-dendritic ECl differences are dependent on the Cl(-) extruder, K(+)/Cl(-) co-transporter (KCC2), because they are largely diminished by down-regulating kcc2 expression with morpholino oligonucleotides (MOs) or by blocking KCC2 function with furosemide. Thus, our findings indicate that there exists KCC2-dependent ECl difference between the ON and OFF dendrites of individual ON-OFF RGCs that may differentially affect visual processing in the ON and OFF pathways.
Collapse
Affiliation(s)
- Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | | | - Jiu-lin Du
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
26
|
Lukyanets IA, Lukyanetz EA. Modulation of calcium signalling by the endoplasmic reticulum in Carassius neurons. Biochem Biophys Res Commun 2013; 433:591-4. [DOI: 10.1016/j.bbrc.2013.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
|
27
|
Muto A, Ohkura M, Abe G, Nakai J, Kawakami K. Real-time visualization of neuronal activity during perception. Curr Biol 2013; 23:307-11. [PMID: 23375894 DOI: 10.1016/j.cub.2012.12.040] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/23/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
To understand how the brain perceives the external world, it is desirable to observe neuronal activity in the brain in real time during perception. The zebrafish is a suitable model animal for fluorescence imaging studies to visualize neuronal activity because its body is transparent through the embryonic and larval stages. Imaging studies have been carried out to monitor neuronal activity in the larval spinal cord and brain using Ca(2+) indicator dyes and DNA-encoded Ca(2+) indicators, such as Cameleon, GFP-aequorin, and GCaMPs. However, temporal and spatial resolution and sensitivity of these tools are still limited, and imaging of brain activity during perception of a natural object has not yet been demonstrated. Here we demonstrate visualization of neuronal activity in the optic tectum of larval zebrafish by genetically expressing the new version of GCaMP. First, we demonstrate Ca(2+) transients in the tectum evoked by a moving spot on a display and identify direction-selective neurons. Second, we show tectal activity during perception of a natural object, a swimming paramecium, revealing a functional visuotopic map. Finally, we image the tectal responses of a free-swimming larval fish to a paramecium and thereby correlate neuronal activity in the brain with prey capture behavior.
Collapse
Affiliation(s)
- Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|