1
|
Nawrocka WI, Cheng S, Hao B, Rosen MC, Cortés E, Baltrusaitis EE, Aziz Z, Kovács IA, Özkan E. Nematode Extracellular Protein Interactome Expands Connections between Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602367. [PMID: 39026773 PMCID: PMC11257444 DOI: 10.1101/2024.07.08.602367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematode C. elegans is a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report our C. elegans extracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.
Collapse
Affiliation(s)
- Wioletta I. Nawrocka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Bingjie Hao
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Matthew C. Rosen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Cortés
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elana E. Baltrusaitis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Zainab Aziz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - István A. Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Bustillo ME, Douthit J, Astigarraga S, Treisman JE. Two distinct mechanisms of Plexin A function in Drosophila optic lobe lamination and morphogenesis. Development 2024; 151:dev202237. [PMID: 38738602 PMCID: PMC11190435 DOI: 10.1242/dev.202237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.
Collapse
Affiliation(s)
- Maria E. Bustillo
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Jessica Douthit
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Sergio Astigarraga
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Jessica E. Treisman
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| |
Collapse
|
3
|
Agi E, Reifenstein ET, Wit C, Schneider T, Kauer M, Kehribar M, Kulkarni A, von Kleist M, Hiesinger PR. Axonal self-sorting without target guidance in Drosophila visual map formation. Science 2024; 383:1084-1092. [PMID: 38452066 DOI: 10.1126/science.adk3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
The idea of guidance toward a target is central to axon pathfinding and brain wiring in general. In this work, we show how several thousand axonal growth cones self-pattern without target-dependent guidance during neural superposition wiring in Drosophila. Ablation of all target lamina neurons or loss of target adhesion prevents the stabilization but not the development of the pattern. Intravital imaging at the spatiotemporal resolution of growth cone dynamics in intact pupae and data-driven dynamics simulations reveal a mechanism by which >30,000 filopodia do not explore potential targets, but instead simultaneously generate and navigate a dynamic filopodial meshwork that steers growth directions. Hence, a guidance mechanism can emerge from the interactions of the axons being guided, suggesting self-organization as a more general feature of brain wiring.
Collapse
Affiliation(s)
- Egemen Agi
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Eric T Reifenstein
- Department of Mathematics, Free University of Berlin, 14195 Berlin, Germany
| | - Charlotte Wit
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Teresa Schneider
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Monika Kauer
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Melinda Kehribar
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Abhishek Kulkarni
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics, Free University of Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| |
Collapse
|
4
|
Bustillo ME, Douthit J, Astigarraga S, Treisman JE. Two distinct mechanisms of Plexin A function in Drosophila optic lobe lamination and morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552282. [PMID: 37609142 PMCID: PMC10441316 DOI: 10.1101/2023.08.07.552282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of Semaphorin function indicates that Semaphorin 1a, provided by cells that include Tm5 neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A does not disrupt the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles. Summary statement The axon guidance molecule Plexin A has two functions in Drosophila medulla development; morphogenesis of the neuropil requires its cytoplasmic domain, but establishing synaptic layers through Semaphorin 1a does not.
Collapse
|
5
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Semaphorin 1a-mediated dendritic wiring of the Drosophila mushroom body extrinsic neurons. Proc Natl Acad Sci U S A 2022; 119:e2111283119. [PMID: 35286204 PMCID: PMC8944846 DOI: 10.1073/pnas.2111283119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adult Drosophila mushroom body (MB) is one of the most extensively studied neural circuits. However, how its circuit organization is established during development is unclear. In this study, we provide an initial characterization of the assembly process of the extrinsic neurons (dopaminergic neurons and MB output neurons) that target the vertical MB lobes. We probe the cellular mechanisms guiding the neurite targeting of these extrinsic neurons and demonstrate that Semaphorin 1a is required in several MB output neurons for their dendritic innervations to three specific MB lobe zones. Our study reveals several intriguing molecular and cellular principles governing assembly of the MB circuit. The Drosophila mushroom body (MB) is composed of parallel axonal fibers from intrinsic Kenyon cells (KCs). The parallel fibers are bundled into five MB lobes innervated by extrinsic neurons, including dopaminergic neurons (DANs) and MB output neurons (MBONs) that project axons or dendrites to the MB lobes, respectively. Each DAN and MBON innervates specific regions in the lobes and collectively subdivides them into 15 zones. How such modular circuit architecture is established remains unknown. Here, we followed the development of the DANs and MBONs targeting the vertical lobes of the adult MB. We found that these extrinsic neurons innervate the lobes sequentially and their neurite arborizations in the MB lobe zones are independent of each other. Ablation of DAN axons or MBON dendrites in a zone had a minimal effect on other extrinsic neurites in the same or neighboring zones, suggesting that these neurons do not use tiling mechanisms to establish zonal borders. In contrast, KC axons are necessary for the development of extrinsic neurites. Dendrites of some vertical lobe-innervating MBONs were redirected to specific zones in the horizontal lobes when their normal target lobes were missing, indicating a hierarchical organization of guidance signals for the MBON dendrites. We show that Semaphorin 1a is required in MBONs to innervate three specific MB zones, and overexpression of semaphorin 1a is sufficient to redirect DAN dendrites to these zones. Our study provides an initial characterization of the cellular and molecular mechanisms underlying the assembly process of MB extrinsic neurons.
Collapse
|
7
|
Uçkun E, Wolfstetter G, Anthonydhason V, Sukumar SK, Umapathy G, Molander L, Fuchs J, Palmer RH. In vivo Profiling of the Alk Proximitome in the Developing Drosophila Brain. J Mol Biol 2021; 433:167282. [PMID: 34624297 DOI: 10.1016/j.jmb.2021.167282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Anaplastic lymphoma kinase (Alk) is an evolutionary conserved receptor tyrosine kinase belonging to the insulin receptor superfamily. In addition to its well-studied role in cancer, numerous studies have revealed that Alk signaling is associated with a variety of complex traits such as: regulation of growth and metabolism, hibernation, regulation of neurotransmitters, synaptic coupling, axon targeting, decision making, memory formation and learning, alcohol use disorder, as well as steroid hormone metabolism. In this study, we used BioID-based in vivo proximity labeling to identify molecules that interact with Alk in the Drosophila central nervous system (CNS). To do this, we used CRISPR/Cas9 induced homology-directed repair (HDR) to modify the endogenous Alk locus to produce first and next generation Alk::BioID chimeras. This approach allowed identification of Alk proximitomes under physiological conditions and without overexpression. Our results show that the next generation of BioID proteins (TurboID and miniTurbo) outperform the first generation BirA* fusion in terms of labeling speed and efficiency. LC-MS3-based BioID screening of AlkTurboID and AlkminiTurbo larval brains revealed an extensive neuronal Alk proximitome identifying numerous potential components of Alk signaling complexes. Validation of Alk proximitome candidates further revealed co-expression of Stardust (Sdt), Discs large 1 (Dlg1), Syntaxin (Syx) and Rugose (Rg) with Alk in the CNS and identified the protein-tyrosine-phosphatase Corkscrew (Csw) as a modulator of Alk signaling.
Collapse
Affiliation(s)
- Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden. https://twitter.com/@uckunezgii
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden. https://twitter.com/@sanjayssukumar
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
8
|
Douthit J, Hairston A, Lee G, Morrison CA, Holguera I, Treisman JE. R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners. eLife 2021; 10:65895. [PMID: 34003117 PMCID: PMC8205486 DOI: 10.7554/elife.65895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
As neural circuits form, growing processes select the correct synaptic partners through interactions between cell surface proteins. The presence of such proteins on two neuronal processes may lead to either adhesion or repulsion; however, the consequences of mismatched expression have rarely been explored. Here, we show that the Drosophila CUB-LDL protein Lost and found (Loaf) is required in the UV-sensitive R7 photoreceptor for normal axon targeting only when Loaf is also present in its synaptic partners. Although targeting occurs normally in loaf mutant animals, removing loaf from photoreceptors or expressing it in their postsynaptic neurons Tm5a/b or Dm9 in a loaf mutant causes mistargeting of R7 axons. Loaf localizes primarily to intracellular vesicles including endosomes. We propose that Loaf regulates the trafficking or function of one or more cell surface proteins, and an excess of these proteins on the synaptic partners of R7 prevents the formation of stable connections.
Collapse
Affiliation(s)
- Jessica Douthit
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Ariel Hairston
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Gina Lee
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Carolyn A Morrison
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Isabel Holguera
- Department of Biology, New York University, New York, United States
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
9
|
Drosophila Fezf functions as a transcriptional repressor to direct layer-specific synaptic connectivity in the fly visual system. Proc Natl Acad Sci U S A 2021; 118:2025530118. [PMID: 33766917 PMCID: PMC8020669 DOI: 10.1073/pnas.2025530118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functionally relevant neuronal connections are often organized within discrete layers of neuropil to ensure proper connectivity and information processing. While layer-specific assembly of neuronal connectivity is a dynamic process involving stepwise interactions between different neuron types, the mechanisms underlying this critical developmental process are not well understood. Here, we investigate the role of the transcription factor dFezf in layer selection within the Drosophila visual system, which is important for synaptic specificity. Our findings show that dFezf functions as a transcriptional repressor governing the precise temporal expression pattern of downstream genes, including other transcription factors required for proper connectivity. Layer-specific assembly of neuronal connectivity in the fly visual system is thus orchestrated by precise, temporally controlled transcriptional cascades. The layered compartmentalization of synaptic connections, a common feature of nervous systems, underlies proper connectivity between neurons and enables parallel processing of neural information. However, the stepwise development of layered neuronal connections is not well understood. The medulla neuropil of the Drosophila visual system, which comprises 10 discrete layers (M1 to M10), where neural computations underlying distinct visual features are processed, serves as a model system for understanding layered synaptic connectivity. The first step in establishing layer-specific connectivity in the outer medulla (M1 to M6) is the innervation by lamina (L) neurons of one of two broad, primordial domains that will subsequently expand and transform into discrete layers. We previously found that the transcription factor dFezf cell-autonomously directs L3 lamina neurons to their proper primordial broad domain before they form synapses within the developing M3 layer. Here, we show that dFezf controls L3 broad domain selection through temporally precise transcriptional repression of the transcription factor slp1 (sloppy paired 1). In wild-type L3 neurons, slp1 is transiently expressed at a low level during broad domain selection. When dFezf is deleted, slp1 expression is up-regulated, and ablation of slp1 fully rescues the defect of broad domain selection in dFezf-null L3 neurons. Although the early, transient expression of slp1 is expendable for broad domain selection, it is surprisingly necessary for the subsequent L3 innervation of the M3 layer. DFezf thus functions as a transcriptional repressor to coordinate the temporal dynamics of a transcriptional cascade that orchestrates sequential steps of layer-specific synapse formation.
Collapse
|
10
|
Parallel Synaptic Acetylcholine Signals Facilitate Large Monopolar Cell Repolarization and Modulate Visual Behavior in Drosophila. J Neurosci 2021; 41:2164-2176. [PMID: 33468565 DOI: 10.1523/jneurosci.2388-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
Appropriate termination of the photoresponse in image-forming photoreceptors and downstream neurons is critical for an animal to achieve high temporal resolution. Although the cellular and molecular mechanisms of termination in image-forming photoreceptors have been extensively studied in Drosophila, the underlying mechanism of termination in their downstream large monopolar cells remains less explored. Here, we show that synaptic ACh signaling, from both amacrine cells (ACs) and L4 neurons, facilitates the rapid repolarization of L1 and L2 neurons. Intracellular recordings in female flies show that blocking synaptic ACh output from either ACs or L4 neurons leads to slow repolarization of L1 and L2 neurons. Genetic and electrophysiological studies in both male and female flies determine that L2 neurons express ACh receptors and directly receive ACh signaling. Moreover, our results demonstrate that synaptic ACh signaling from both ACs and L4 neurons simultaneously facilitates ERG termination. Finally, visual behavior studies in both male and female flies show that synaptic ACh signaling, from either ACs or L4 neurons to L2 neurons, is essential for the optomotor response of the flies in high-frequency light stimulation. Our study identifies parallel synaptic ACh signaling for repolarization of L1 and L2 neurons and demonstrates that synaptic ACh signaling facilitates L1 and L2 neuron repolarization to maintain the optomotor response of the fly on high-frequency light stimulation.SIGNIFICANCE STATEMENT The image-forming photoreceptor downstream neurons receive multiple synaptic inputs from image-forming photoreceptors and various types of interneurons. It remains largely unknown how these synaptic inputs modulate the neural activity and function of image-forming photoreceptor downstream neurons. We show that parallel synaptic ACh signaling from both amacrine cells and L4 neurons facilitates rapid repolarization of large monopolar cells in Drosophila and maintains the optomotor response of the fly on high-frequency light stimulation. This work is one of the first reports showing how parallel synaptic signaling modulates the activity of large monopolar cells and motion vision simultaneously.
Collapse
|
11
|
Wei B, He H, Hao K, Gao L, Tang XS. Visual interaction networks: A novel bio-inspired computational model for image classification. Neural Netw 2020; 130:100-110. [PMID: 32652433 DOI: 10.1016/j.neunet.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
Inspired by biological mechanisms and structures in neuroscience, many biologically inspired visual computational models have been presented to provide new solutions for visual recognition task. For example, convolutional neural network (CNN) was proposed according to the hierarchical structure of biological vision, which could achieve superior performance in large-scale image classification. In this paper, we propose a new framework called visual interaction networks (VIN-Net), which is inspired by visual interaction mechanisms. More specifically, self-interaction, mutual-interaction, multi-interaction, and adaptive interaction are proposed in VIN-Net, forming the first interactive completeness of the visual interaction model. To further enhance the representation ability of visual features, the adaptive adjustment mechanism is integrated into the VIN-Net model. Finally, our model is evaluated on three benchmark datasets and two self-built textile defect datasets. The experimental results demonstrate that the proposed model exhibits its efficiency on visual classification tasks. Furthermore, a textile industrial application shows that the proposed architecture outperforms the state-of-the-art approaches in classification performance.
Collapse
Affiliation(s)
- Bing Wei
- Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China; College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
| | - Haibo He
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Kuangrong Hao
- Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China; College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
| | - Lei Gao
- Business School, Shandong Normal University, Ji'nan 250014, China; Commonwealth Scientific and Industrial Research Organization (CSIRO), SA 5064, Australia
| | - Xue-Song Tang
- Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China; College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Expression of Genes Involved in Axon Guidance: How Much Have We Learned? Int J Mol Sci 2020; 21:ijms21103566. [PMID: 32443632 PMCID: PMC7278939 DOI: 10.3390/ijms21103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuronal axons are guided to their target during the development of the brain. Axon guidance allows the formation of intricate neural circuits that control the function of the brain, and thus the behavior. As the axons travel in the brain to find their target, they encounter various axon guidance cues, which interact with the receptors on the tip of the growth cone to permit growth along different signaling pathways. Although many scientists have performed numerous studies on axon guidance signaling pathways, we still have an incomplete understanding of the axon guidance system. Lately, studies on axon guidance have shifted from studying the signal transduction pathways to studying other molecular features of axon guidance, such as the gene expression. These new studies present evidence for different molecular features that broaden our understanding of axon guidance. Hence, in this review we will introduce recent studies that illustrate different molecular features of axon guidance. In particular, we will review literature that demonstrates how axon guidance cues and receptors regulate local translation of axonal genes and how the expression of guidance cues and receptors are regulated both transcriptionally and post-transcriptionally. Moreover, we will highlight the pathological relevance of axon guidance molecules to specific diseases.
Collapse
|
13
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
14
|
Hong YG, Kang B, Lee S, Lee Y, Ju BG, Jeong S. Identification of cis -Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System. Mol Cells 2020; 43:228-235. [PMID: 32024353 PMCID: PMC7103886 DOI: 10.14348/molcells.2019.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/27/2022] Open
Abstract
The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.
Collapse
Affiliation(s)
- Young Gi Hong
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
| | - Bongsu Kang
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Sangyun Jeong
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
15
|
Luo J, Ting CY, Li Y, McQueen P, Lin TY, Hsu CP, Lee CH. Antagonistic regulation by insulin-like peptide and activin ensures the elaboration of appropriate dendritic field sizes of amacrine neurons. eLife 2020; 9:50568. [PMID: 32175842 PMCID: PMC7075694 DOI: 10.7554/elife.50568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023] Open
Abstract
Establishing appropriate sizes and shapes of dendritic arbors is critical for proper wiring of the central nervous system. Here we report that Insulin-like Peptide 2 (DILP2) locally activates transiently expressed insulin receptors in the central dendrites of Drosophila Dm8 amacrine neurons to positively regulate dendritic field elaboration. We found DILP2 was expressed in L5 lamina neurons, which have axonal terminals abutting Dm8 dendrites. Proper Dm8 dendrite morphogenesis and synapse formation required insulin signaling through TOR (target of rapamycin) and SREBP (sterol regulatory element-binding protein), acting in parallel with previously identified negative regulation by Activin signaling to provide robust control of Dm8 dendrite elaboration. A simulation of dendritic growth revealed trade-offs between dendritic field size and robustness when branching and terminating kinetic parameters were constant, but dynamic modulation of the parameters could mitigate these trade-offs. We suggest that antagonistic DILP2 and Activin signals from different afferents appropriately size Dm8 dendritic fields.
Collapse
Affiliation(s)
- Jiangnan Luo
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Philip McQueen
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
16
|
Xu C, Theisen E, Maloney R, Peng J, Santiago I, Yapp C, Werkhoven Z, Rumbaut E, Shum B, Tarnogorska D, Borycz J, Tan L, Courgeon M, Griffin T, Levin R, Meinertzhagen IA, de Bivort B, Drugowitsch J, Pecot MY. Control of Synaptic Specificity by Establishing a Relative Preference for Synaptic Partners. Neuron 2019; 103:865-877.e7. [PMID: 31300277 PMCID: PMC6728174 DOI: 10.1016/j.neuron.2019.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
The ability of neurons to identify correct synaptic partners is fundamental to the proper assembly and function of neural circuits. Relative to other steps in circuit formation such as axon guidance, our knowledge of how synaptic partner selection is regulated is severely limited. Drosophila Dpr and DIP immunoglobulin superfamily (IgSF) cell-surface proteins bind heterophilically and are expressed in a complementary manner between synaptic partners in the visual system. Here, we show that in the lamina, DIP mis-expression is sufficient to promote synapse formation with Dpr-expressing neurons and that disrupting DIP function results in ectopic synapse formation. These findings indicate that DIP proteins promote synapses to form between specific cell types and that in their absence, neurons synapse with alternative partners. We propose that neurons have the capacity to synapse with a broad range of cell types and that synaptic specificity is achieved by establishing a preference for specific partners.
Collapse
Affiliation(s)
- Chundi Xu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| | - Emma Theisen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ryan Maloney
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Jing Peng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ivan Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Clarence Yapp
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Werkhoven
- Center for Brain Science and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elijah Rumbaut
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Bryan Shum
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Dorota Tarnogorska
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jolanta Borycz
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Liming Tan
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maximilien Courgeon
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tessa Griffin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Raina Levin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Benjamin de Bivort
- Center for Brain Science and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Matthew Y Pecot
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Stedden CG, Menegas W, Zajac AL, Williams AM, Cheng S, Özkan E, Horne-Badovinac S. Planar-Polarized Semaphorin-5c and Plexin A Promote the Collective Migration of Epithelial Cells in Drosophila. Curr Biol 2019; 29:908-920.e6. [PMID: 30827914 PMCID: PMC6424623 DOI: 10.1016/j.cub.2019.01.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
Collective migration of epithelial cells is essential for morphogenesis, wound repair, and the spread of many cancers, yet how individual cells signal to one another to coordinate their movements is largely unknown. Here, we introduce a tissue-autonomous paradigm for semaphorin-based regulation of collective cell migration. Semaphorins typically regulate the motility of neuronal growth cones and other migrating cell types by acting as repulsive cues within the migratory environment. Studying the follicular epithelial cells of Drosophila, we discovered that the transmembrane semaphorin, Sema-5c, promotes collective cell migration by acting within the migrating cells themselves, not the surrounding environment. Sema-5c is planar polarized at the basal epithelial surface such that it is enriched at the leading edge of each cell. This location places it in a prime position to send a repulsive signal to the trailing edge of the cell ahead to communicate directional information between neighboring cells. Our data show that Sema-5c can signal across cell-cell boundaries to suppress protrusions in neighboring cells and that Plexin A is the receptor that transduces this signal. Finally, we present evidence that Sema-5c antagonizes the activity of Lar, another transmembrane guidance cue that operates along leading-trailing cell-cell interfaces in this tissue, via a mechanism that appears to be independent of Plexin A. Together, our results suggest that multiple transmembrane guidance cues can be deployed in a planar-polarized manner across an epithelium and work in concert to coordinate individual cell movements for collective migration.
Collapse
Affiliation(s)
- Claire G Stedden
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - William Menegas
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Allison L Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Audrey M Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Akin O, Bajar BT, Keles MF, Frye MA, Zipursky SL. Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation. Neuron 2019; 101:894-904.e5. [PMID: 30711355 DOI: 10.1016/j.neuron.2019.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
Abstract
Stereotyped synaptic connections define the neural circuits of the brain. In vertebrates, stimulus-independent activity contributes to neural circuit formation. It is unknown whether this type of activity is a general feature of nervous system development. Here, we report patterned, stimulus-independent neural activity in the Drosophila visual system during synaptogenesis. Using in vivo calcium, voltage, and glutamate imaging, we found that all neurons participate in this spontaneous activity, which is characterized by brain-wide periodic active and silent phases. Glia are active in a complementary pattern. Each of the 15 of over 100 specific neuron types in the fly visual system examined exhibited a unique activity signature. The activity of neurons that are synaptic partners in the adult was highly correlated during development. We propose that this cell-type-specific activity coordinates the development of the functional circuitry of the adult brain.
Collapse
Affiliation(s)
- Orkun Akin
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Bryce T Bajar
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet F Keles
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Interactions between the Ig-Superfamily Proteins DIP-α and Dpr6/10 Regulate Assembly of Neural Circuits. Neuron 2018; 100:1369-1384.e6. [PMID: 30467079 PMCID: PMC7501880 DOI: 10.1016/j.neuron.2018.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Drosophila Dpr (21 paralogs) and DIP proteins (11 paralogs) are cell recognition molecules of the immunoglobulin superfamily (IgSF) that form a complex protein interaction network. DIP and Dpr proteins are expressed in a synaptic layer-specific fashion in the visual system. How interactions between these proteins regulate layer-specific synaptic circuitry is not known. Here we establish that DIP-α and its interacting partners Dpr6 and Dpr10 regulate multiple processes, including arborization within layers, synapse number, layer specificity, and cell survival. We demonstrate that heterophilic binding between Dpr6/10 and DIP-α and homophilic binding between DIP-α proteins promote interactions between processes in vivo. Knockin mutants disrupting the DIP/Dpr binding interface reveal a role for these proteins during normal development, while ectopic expression studies support an instructive role for interactions between DIPs and Dprs in circuit development. These studies support an important role for the DIP/Dpr protein interaction network in regulating cell-type-specific connectivity patterns.
Collapse
|
20
|
Li J, Guajardo R, Xu C, Wu B, Li H, Li T, Luginbuhl DJ, Xie X, Luo L. Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels. eLife 2018; 7:39088. [PMID: 30136927 PMCID: PMC6118820 DOI: 10.7554/elife.39088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/22/2018] [Indexed: 01/13/2023] Open
Abstract
The precise assembly of a neural circuit involves many consecutive steps. The conflict between a limited number of wiring molecules and the complexity of the neural network impels each molecule to execute multiple functions at different steps. Here, we examined the cell-type specific distribution of endogenous levels of axon guidance receptor Plexin B (PlexB) in the developing antennal lobe, the first olfactory processing center in Drosophila. We found that different classes of olfactory receptor neurons (ORNs) express PlexB at different levels in two wiring steps – axonal trajectory choice and subsequent target selection. In line with its temporally distinct patterns, the proper levels of PlexB control both steps in succession. Genetic interactions further revealed that the effect of high-level PlexB is antagonized by its canonical partner Sema2b. Thus, PlexB plays a multifaceted role in instructing the assembly of the Drosophila olfactory circuit through temporally-regulated expression patterns and expression level-dependent effects.
Collapse
Affiliation(s)
- Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Bing Wu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Xiaojun Xie
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
21
|
Millard SS, Pecot MY. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev 2018; 13:11. [PMID: 29875010 PMCID: PMC5991427 DOI: 10.1186/s13064-018-0106-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022] Open
Abstract
A striking feature of neural circuit structure is the arrangement of neurons into regularly spaced ensembles (i.e. columns) and neural connections into parallel layers. These patterns of organization are thought to underlie precise synaptic connectivity and provide a basis for the parallel processing of information. In this article we discuss in detail specific findings that contribute to a framework for understanding how columns and layers are assembled in the Drosophila visual system, and discuss their broader implications.
Collapse
Affiliation(s)
- S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew Y. Pecot
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
22
|
Peng J, Santiago IJ, Ahn C, Gur B, Tsui CK, Su Z, Xu C, Karakhanyan A, Silies M, Pecot MY. Drosophila Fezf coordinates laminar-specific connectivity through cell-intrinsic and cell-extrinsic mechanisms. eLife 2018. [PMID: 29513217 PMCID: PMC5854465 DOI: 10.7554/elife.33962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.
Collapse
Affiliation(s)
- Jing Peng
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ivan J Santiago
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Curie Ahn
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Burak Gur
- European Neuroscience Institute, Göttingen, Germany
| | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, United States
| | - Zhixiao Su
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chundi Xu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Aziz Karakhanyan
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Matthew Y Pecot
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
23
|
Regulated Alternative Splicing of Drosophila Dscam2 Is Necessary for Attaining the Appropriate Number of Photoreceptor Synapses. Genetics 2017; 208:717-728. [PMID: 29208630 DOI: 10.1534/genetics.117.300432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
How the brain makes trillions of synaptic connections using a genome of only 20,000 genes is a major question in modern neuroscience. Alternative splicing is one mechanism that can increase the number of proteins produced by each gene, but its role in regulating synapse formation is poorly understood. In Drosophila, photoreceptors form a synapse with multiple postsynaptic elements including lamina neurons L1 and L2. L1 and L2 express distinct isoforms of the homophilic repulsive protein Dscam2, and since these isoforms cannot bind to each other, cell-specific expression has been proposed to be necessary for preventing repulsive interactions that could disrupt the synapse. Here, we show that the number of synapses are reduced in flies that express only one isoform, and L1 and L2 dendritic morphology is perturbed. We propose that these defects result from inappropriate interactions between L1 and L2 dendrites. We conclude that regulated Dscam2 alternative splicing is necessary for the proper assembly of photoreceptor synapses.
Collapse
|
24
|
Hernandez-Fleming M, Rohrbach EW, Bashaw GJ. Sema-1a Reverse Signaling Promotes Midline Crossing in Response to Secreted Semaphorins. Cell Rep 2017; 18:174-184. [PMID: 28052247 DOI: 10.1016/j.celrep.2016.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 11/26/2022] Open
Abstract
Commissural axons must cross the midline to form functional midline circuits. In the invertebrate nerve cord and vertebrate spinal cord, midline crossing is mediated in part by Netrin-dependent chemoattraction. Loss of crossing, however, is incomplete in mutants for Netrin or its receptor Frazzled/DCC, suggesting the existence of additional pathways. We identified the transmembrane Semaphorin, Sema-1a, as an important regulator of midline crossing in the Drosophila CNS. We show that in response to the secreted Semaphorins Sema-2a and Sema-2b, Sema-1a functions as a receptor to promote crossing independently of Netrin. In contrast to other examples of reverse signaling where Sema1a triggers repulsion through activation of Rho in response to Plexin binding, in commissural neurons Sema-1a acts independently of Plexins to inhibit Rho to promote attraction to the midline. These findings suggest that Sema-1a reverse signaling can elicit distinct axonal responses depending on differential engagement of distinct ligands and signaling effectors.
Collapse
Affiliation(s)
- Melissa Hernandez-Fleming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ethan W Rohrbach
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Borgen MA, Wang D, Grill B. RPM-1 regulates axon termination by affecting growth cone collapse and microtubule stability. Development 2017; 144:4658-4672. [PMID: 29084805 DOI: 10.1242/dev.154187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022]
Abstract
Axon termination is essential for efficient and accurate nervous system construction. At present, relatively little is known about how growth cone collapse occurs prior to axon termination in vivo Using the mechanosensory neurons of C. elegans, we found collapse prior to axon termination is protracted, with the growth cone transitioning from a dynamic to a static state. Growth cone collapse prior to termination is facilitated by the signaling hub RPM-1. Given the prominence of the cytoskeleton in growth cone collapse, we assessed the relationship between RPM-1 and regulators of actin dynamics and microtubule stability. Our results reveal several important findings about how axon termination is orchestrated: (1) RPM-1 functions in parallel to RHO-1 and CRMP/UNC-33, but is suppressed by the Rac isoform MIG-2; (2) RPM-1 opposes the function of microtubule stabilizers, including tubulin acetyltransferases; and (3) genetic epistasis suggests the microtubule-stabilizing protein Tau/PTL-1 potentially inhibits RPM-1. These findings provide insight into how growth cone collapse is regulated during axon termination in vivo, and suggest that RPM-1 signaling destabilizes microtubules to facilitate growth cone collapse and axon termination.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| |
Collapse
|
26
|
Plazaola-Sasieta H, Fernández-Pineda A, Zhu Q, Morey M. Untangling the wiring of the Drosophila visual system: developmental principles and molecular strategies. J Neurogenet 2017; 31:231-249. [DOI: 10.1080/01677063.2017.1391249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haritz Plazaola-Sasieta
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Alejandra Fernández-Pineda
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Qi Zhu
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Lovick JK, Omoto JJ, Ngo KT, Hartenstein V. Development of the anterior visual input pathway to the Drosophila central complex. J Comp Neurol 2017; 525:3458-3475. [PMID: 28675433 DOI: 10.1002/cne.24277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The anterior visual pathway (AVP) conducts visual information from the medulla of the optic lobe via the anterior optic tubercle (AOTU) and bulb (BU) to the ellipsoid body (EB) of the central complex. The anatomically defined neuron classes connecting the AOTU, BU, and EB represent discrete lineages, genetically and developmentally specified sets of cells derived from common progenitors (Omoto et al., Current Biology, 27, 1098-1110, 2017). In this article, we have analyzed the formation of the AVP from early larval to adult stages. The immature fiber tracts of the AVP, formed by secondary neurons of lineages DALcl1/2 and DALv2, assemble into structurally distinct primordia of the AOTU, BU, and EB within the late larval brain. During the early pupal period (P6-P48) these primordia grow in size and differentiate into the definitive subcompartments of the AOTU, BU, and EB. The primordium of the EB has a complex composition. DALv2 neurons form the anterior EB primordium, which starts out as a bilateral structure, then crosses the midline between P6 and P12, and subsequently bends to adopt the ring shape of the mature EB. Columnar neurons of the central complex, generated by the type II lineages DM1-4, form the posterior EB primordium. Starting out as an integral part of the fan-shaped body primordium, the posterior EB primordium moves forward and merges with the anterior EB primordium. We document the extension of neuropil glia around the nascent EB and BU, and analyze the relationship of primary and secondary neurons of the AVP lineages.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
28
|
Xie X, Tabuchi M, Brown MP, Mitchell SP, Wu MN, Kolodkin AL. The laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections. eLife 2017. [PMID: 28632130 PMCID: PMC5511011 DOI: 10.7554/elife.25328] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-field and large-field neurons and that early developing EB neurons play an important regulatory role in EB laminae formation. The transmembrane proteins semaphorin-1a (Sema-1a) and plexin A function together to regulate R axon lamination. R neurons recruit both GABA and GABA-A receptors to their axon terminals in the EB, and optogenetic stimulation coupled with electrophysiological recordings show that Sema-1a-dependent R axon lamination is required for preventing the spread of synaptic inhibition between adjacent EB lamina. These results provide direct evidence that EB lamination is critical for local pre-synaptic inhibitory circuit organization. DOI:http://dx.doi.org/10.7554/eLife.25328.001 The human brain contains around one hundred billion nerve cells, or neurons, which are interconnected and organized into distinct layers within different brain regions. Electrical impulses pass along a cable-like part of each neuron, known as the axon, to reach other neurons in different layers of various brain structures. The brain of a fruit fly contains fewer neurons – about 100 thousand in total – but it still establishes precise connections among neurons in different brain layers. In both flies and humans, axons grow along set paths to reach their targets by following guidance cues. Many of these cues are conserved between insects and mammals, including proteins belonging to the semaphorin family. These proteins work together to steer growing axons towards their proper targets and repel them away from the incorrect ones. However, how neurons establish connections in specific layers remains poorly understood. In the middle of the fruit fly brain lies a donut-shaped structure called the ellipsoid body, which the fly needs to navigate the world around it. The ellipsoid body contains a group of neurons that extend their axons to form multiple concentric rings. Xie et al. have now asked how the different “ring neurons” are organized in the ellipsoid body and how this sort of organization affects the connections between the neurons. Imaging techniques were used to visualize the layered organization of different ring neurons and to track their growing axons. Further work showed that this organization depends on semaphorin signaling, because when this pathway was disrupted, the layered pattern did not develop properly. This in turn, caused the axons of the ring neuron to wander out of their correct concentric ring and connect with the wrong targets in adjacent rings. Together these findings show that neurons rely on evolutionarily conserved semaphorins to correctly organize themselves into layers and connect with the appropriate targets. Further work is now needed to identify additional proteins that are critical for fly brains to form layered structures, and to understand how this layered organization influences how an animal behaves. DOI:http://dx.doi.org/10.7554/eLife.25328.002
Collapse
Affiliation(s)
- Xiaojun Xie
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Masashi Tabuchi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Matthew P Brown
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah P Mitchell
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mark N Wu
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
29
|
Kolodkin AL, Hiesinger PR. Wiring visual systems: common and divergent mechanisms and principles. Curr Opin Neurobiol 2017; 42:128-135. [PMID: 28064004 PMCID: PMC5316370 DOI: 10.1016/j.conb.2016.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
The study of visual systems has a rich history, leading to the discovery and understanding of basic principles underlying the elaboration of neuronal connectivity. Recent work in model organisms such as fly, fish and mouse has yielded a wealth of new insights into visual system wiring. Here, we consider how axonal and dendritic patterning in columns and laminae influence synaptic partner selection in these model organisms. We highlight similarities and differences among disparate visual systems with the goal of identifying common and divergent principles for visual system wiring.
Collapse
Affiliation(s)
- Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - P Robin Hiesinger
- Division of Neurobiology of the Institute for Biology, Free University Berlin, Germany.
| |
Collapse
|
30
|
Yoo SK, Pascoe HG, Pereira T, Kondo S, Jacinto A, Zhang X, Hariharan IK. Plexins function in epithelial repair in both Drosophila and zebrafish. Nat Commun 2016; 7:12282. [PMID: 27452696 PMCID: PMC4962468 DOI: 10.1038/ncomms12282] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. Plexins are semaphorin receptors and are well known for their roles in neuronal pathfinding. Here the authors describe a role for Plexin A in healing damaged epithelia in Drosophila and zebrafish. In Drosophila, Plexin A inhibits the GTPase Rap1 to allow epithelial remodelling to facilitate wound repair.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.,The Miller Institute, University of California, Berkeley, California 94720, USA.,Physiological Genetics Laboratory, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Telmo Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Antonio Jacinto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Perez-Branguli F, Zagar Y, Shanley DK, Graef IA, Chédotal A, Mitchell KJ. Reverse Signaling by Semaphorin-6A Regulates Cellular Aggregation and Neuronal Morphology. PLoS One 2016; 11:e0158686. [PMID: 27392094 PMCID: PMC4938514 DOI: 10.1371/journal.pone.0158686] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/20/2016] [Indexed: 12/28/2022] Open
Abstract
The transmembrane semaphorin, Sema6A, has important roles in axon guidance, cell migration and neuronal connectivity in multiple regions of the nervous system, mediated by context-dependent interactions with plexin receptors, PlxnA2 and PlxnA4. Here, we demonstrate that Sema6A can also signal cell-autonomously, in two modes, constitutively, or in response to higher-order clustering mediated by either PlxnA2-binding or chemically induced multimerisation. Sema6A activation stimulates recruitment of Abl to the cytoplasmic domain of Sema6A and phos¡phorylation of this cytoplasmic tyrosine kinase, as well as phosphorylation of additional cytoskeletal regulators. Sema6A reverse signaling affects the surface area and cellular complexity of non-neuronal cells and aggregation and neurite formation of primary neurons in vitro. Sema6A also interacts with PlxnA2 in cis, which reduces binding by PlxnA2 of Sema6A in trans but not vice versa. These experiments reveal the complex nature of Sema6A biochemical functions and the molecular logic of the context-dependent interactions between Sema6A and PlxnA2.
Collapse
Affiliation(s)
- Francesc Perez-Branguli
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Yvrick Zagar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S968, CNRS_UMR7210, Institut de la Vision, Paris, France
| | - Daniel K. Shanley
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Isabella A. Graef
- Department of Pathology, Stanford University Medical School, Stanford, California, United States of America
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S968, CNRS_UMR7210, Institut de la Vision, Paris, France
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- * E-mail:
| |
Collapse
|
32
|
Tadros W, Xu S, Akin O, Yi CH, Shin GJE, Millard SS, Zipursky SL. Dscam Proteins Direct Dendritic Targeting through Adhesion. Neuron 2016; 89:480-93. [PMID: 26844831 DOI: 10.1016/j.neuron.2015.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/11/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022]
Abstract
Cell recognition molecules are key regulators of neural circuit assembly. The Dscam family of recognition molecules in Drosophila has been shown to regulate interactions between neurons through homophilic repulsion. This is exemplified by Dscam1 and Dscam2, which together repel dendrites of lamina neurons, L1 and L2, in the visual system. By contrast, here we show that Dscam2 directs dendritic targeting of another lamina neuron, L4, through homophilic adhesion. Through live imaging and genetic mosaics to dissect interactions between specific cells, we show that Dscam2 is required in L4 and its target cells for correct dendritic targeting. In a genetic screen, we identified Dscam4 as another regulator of L4 targeting which acts with Dscam2 in the same pathway to regulate this process. This ensures tiling of the lamina neuropil through heterotypic interactions. Thus, different combinations of Dscam proteins act through distinct mechanisms in closely related neurons to pattern neural circuits.
Collapse
Affiliation(s)
- Wael Tadros
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shuwa Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orkun Akin
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline H Yi
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Grace Ji-Eun Shin
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Tan L, Zhang KX, Pecot MY, Nagarkar-Jaiswal S, Lee PT, Takemura SY, McEwen JM, Nern A, Xu S, Tadros W, Chen Z, Zinn K, Bellen HJ, Morey M, Zipursky SL. Ig Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila. Cell 2016; 163:1756-69. [PMID: 26687360 DOI: 10.1016/j.cell.2015.11.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/27/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
Information processing relies on precise patterns of synapses between neurons. The cellular recognition mechanisms regulating this specificity are poorly understood. In the medulla of the Drosophila visual system, different neurons form synaptic connections in different layers. Here, we sought to identify candidate cell recognition molecules underlying this specificity. Using RNA sequencing (RNA-seq), we show that neurons with different synaptic specificities express unique combinations of mRNAs encoding hundreds of cell surface and secreted proteins. Using RNA-seq and protein tagging, we demonstrate that 21 paralogs of the Dpr family, a subclass of immunoglobulin (Ig)-domain containing proteins, are expressed in unique combinations in homologous neurons with different layer-specific synaptic connections. Dpr interacting proteins (DIPs), comprising nine paralogs of another subclass of Ig-containing proteins, are expressed in a complementary layer-specific fashion in a subset of synaptic partners. We propose that pairs of Dpr/DIP paralogs contribute to layer-specific patterns of synaptic connectivity.
Collapse
Affiliation(s)
- Liming Tan
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelvin Xi Zhang
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Y Pecot
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human Genetics, HHMI, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jason M McEwen
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Shuwa Xu
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wael Tadros
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenqing Chen
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, HHMI, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marta Morey
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona 08028, Spain.
| | - S Lawrence Zipursky
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Abstract
UNLABELLED A hallmark of the nervous system is the presence of precise patterns of connections between different types of neurons. Many mechanisms can be used to establish specificity, including homophilic adhesion and synaptic refinement, but the range of strategies used across the nervous system remains unclear. To broaden the understanding of how neurons find their targets, we studied the developing murine cochlea, where two classes of spiral ganglion neurons (SGNs), type I and type II, navigate together to the sensory epithelium and then diverge to contact inner hair cells (IHCs) or outer hair cells (OHCs), respectively. Neurons with type I and type II morphologies are apparent before birth, suggesting that target selection might be accomplished by excluding type I processes from the OHC region. However, because type I processes appear to overshoot into type II territory postnatally, specificity may also depend on elimination of inappropriate synapses. To resolve these differences, we analyzed the morphology and dynamic behaviors of individual fibers and their branches as they interact with potential partners. We found that SGN processes continue to be segregated anatomically in the postnatal cochlea. Although type I-like fibers branched locally, few branches contacted OHCs, arguing against synaptic elimination. Instead, time-lapse imaging studies suggest a prominent role for retraction, first positioning processes to the appropriate region and then corralling branches during a subsequent period of exuberant growth and refinement. Thus, sequential stages of retraction can help to achieve target specificity, adding to the list of mechanisms available for sculpting neural circuits. SIGNIFICANCE STATEMENT During development, different types of neurons must form connections with specific synaptic targets, thereby creating the precise wiring diagram necessary for adult function. Although studies have revealed multiple mechanisms for target selection, we still know little about how different strategies are used to produce each circuit's unique pattern of connectivity. Here we combined neurite-tracing and time-lapse imaging to define the events that lead to the simple binary wiring specificity of the cochlea. A better understanding of how the cochlea is innervated will broaden our knowledge of target selection across the nervous system, offer new insights into the developmental origins of deafness, and guide efforts to restore connectivity in the damaged cochlea.
Collapse
|
35
|
Kulkarni A, Ertekin D, Lee CH, Hummel T. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife 2016; 5:e13715. [PMID: 26987017 PMCID: PMC4846375 DOI: 10.7554/elife.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Collapse
Affiliation(s)
| | - Deniz Ertekin
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Syed DS, Gowda SBM, Reddy OV, Reichert H, VijayRaghavan K. Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking. eLife 2016; 5:e11572. [PMID: 26926907 PMCID: PMC4805548 DOI: 10.7554/elife.11572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/28/2016] [Indexed: 12/29/2022] Open
Abstract
Motoneurons developmentally acquire appropriate cellular architectures that ensure connections with postsynaptic muscles and presynaptic neurons. In Drosophila, leg motoneurons are organized as a myotopic map, where their dendritic domains represent the muscle field. Here, we investigate mechanisms underlying development of aspects of this myotopic map, required for walking. A behavioral screen identified roles for Semaphorins (Sema) and Plexins (Plex) in walking behavior. Deciphering this phenotype, we show that PlexA/Sema1a mediates motoneuron axon branching in ways that differ in the proximal femur and distal tibia, based on motoneuronal birth order. Importantly, we show a novel role for glia in positioning dendrites of specific motoneurons; PlexB/Sema2a is required for dendritic positioning of late-born motoneurons but not early-born motoneurons. These findings indicate that communication within motoneurons and between glia and motoneurons, mediated by the combined action of different Plexin/Semaphorin signaling systems, are required for the formation of a functional myotopic map. DOI:http://dx.doi.org/10.7554/eLife.11572.001 Nerve cells enable us to both sense the world around us and to move about it. The nerves responsible for movement are called motor neurons. While one end of a motor neuron stimulates the muscle it is connected to, the other end receives signals from nerves in the spinal cord that relay messages about movement from the brain. Motor neuron connections in the spinal cord, or its equivalent in insects, the ventral nerve cord, are organized into an arrangement known as a myotopic map, which reflects the anatomical arrangement of the muscles in the body. Much remains to be learnt about how these maps form. Syed et al. have investigated how the myotopic map develops for motor neurons in the legs of fruit flies by reducing the function of chosen genes in the ventral nerve cord and asking how this affects the myotopic map. The experiments disrupted a signaling system called the Semaphorin signaling pathway that guides motor neurons to the right target muscle and consists of different receptor-signaling molecule pairs. By looking for flies with an abnormal walk and with disrupted motor neuron organization, Syed et al. identified receptor-signal pairs that guide motor neurons to different leg muscles. Specific receptor-signal pairs also guide the organisation of motor neurons in the ventral nerve cord. This guidance depends on when neurons are ‘born’. While a receptor-signal pair targets early born neurons to one leg muscle, the same receptor-signal pair regulates a different aspect of guidance in late-born neurons. Cells called glia, which are related to neurons, also help to position the connections of late-born motor neurons in the ventral nerve cord. Overall, the Semaphorin signaling system assists communication both within motor neurons and between glia cells and motor neurons during the formation of the myotopic map for leg motor neurons. These discoveries open new avenues of investigation into how else these cells communicate with each other to aid the development and organization of motor neurons. DOI:http://dx.doi.org/10.7554/eLife.11572.002
Collapse
Affiliation(s)
- Durafshan Sakeena Syed
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Swetha B M Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Manipal University, Manipal, India
| | - O Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
37
|
Abstract
During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions.
Collapse
Affiliation(s)
- Raunak Basu
- a Department of Neurobiology and Anatomy ; University of Utah ; Salt Lake City , UT USA
| | | | | |
Collapse
|
38
|
Lah GJE, Li JSS, Millard SS. Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring. Neuron 2014; 83:1376-88. [PMID: 25175881 DOI: 10.1016/j.neuron.2014.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 01/11/2023]
Abstract
How a finite number of genes specify a seemingly infinite number of neuronal connections is a central question in neurobiology. Alternative splicing has been proposed to increase proteome diversity in the brain. Here we show that cell-specific alternative splicing of a cell-surface protein is crucial for neuronal wiring. Down syndrome cell adhesion molecule 2 (Dscam2) is a conserved homophilic binding protein that can induce repulsion between opposing neurons. In the fly visual system, L1 and L2 neurons both require Dscam2 repulsion, but paradoxically, they also physically contact each other. We found that the cell-specific expression of two biochemically distinct alternative isoforms of Dscam2 prevents these cells from repelling each other. Phenotypes were observed in the axon terminals of L1 and L2 when they expressed the incorrect isoform, demonstrating a requirement for distinct isoforms. We conclude that cell-specific alternative splicing is a mechanism for achieving proper connectivity between neurons.
Collapse
Affiliation(s)
- Grace Ji-Eun Lah
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joshua Shing Shun Li
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
39
|
Abstract
Precise connectivity in neuronal circuits is a prerequisite for proper brain function. The dauntingly complex environment encountered by axons and dendrites, even after navigation to their target area, prompts the question of how specificity of synaptic connections arises during development. We review developmental strategies and molecular mechanisms that are used by neurons to ensure their precise matching of pre- and postsynaptic elements. The emerging theme is that each circuit uses a combination of simple mechanisms to achieve its refined, often complex connectivity pattern. At increasing levels of resolution, from lamina choice to subcellular targeting, similar signaling concepts are reemployed to narrow the choice of potential matches. Temporal control over synapse development and synapse elimination further ensures the specificity of connections in the nervous system.
Collapse
Affiliation(s)
- Shaul Yogev
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305;
| | | |
Collapse
|
40
|
Mysore K, Flannery E, Leming MT, Tomchaney M, Shi L, Sun L, O'Tousa JE, Severson DW, Duman-Scheel M. Role of semaphorin-1a in the developing visual system of the disease vector mosquito Aedes aegypti. Dev Dyn 2014; 243:1457-69. [PMID: 25045063 DOI: 10.1002/dvdy.24168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Despite the devastating impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology, including development of the mosquito visual system. Mosquitoes possess functional adult compound eyes as larvae, a trait that makes them an interesting model in which to study comparative developmental genetics. Here, we functionally characterize visual system development in the dengue and yellow fever vector mosquito Aedes aegypti, in which we use chitosan/siRNA nanoparticles to target the axon guidance gene semaphorin-1a (sema1a). RESULTS Immunohistochemical analyses revealed the progression of visual sensory neuron targeting that results in generation of the retinotopic map in the mosquito optic lobe. Loss of sema1a function led to optic lobe phenotypes, including defective targeting of visual sensory neurons and failed formation of the retinotopic map. These sema1a knockdown phenotypes correlated with behavioral defects in larval photoavoidance. CONCLUSIONS The results of this investigation indicate that Sema1a is required for optic lobe development in A. aegypti and highlight the behavioral importance of a functioning visual system in preadult mosquitoes.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, South Bend, Indiana; Eck Institute for Global Health, Brownson Hall, University of Notre Dame, Notre Dame, Indiana
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pecot MY, Chen Y, Akin O, Chen Z, Tsui CYK, Zipursky SL. Sequential axon-derived signals couple target survival and layer specificity in the Drosophila visual system. Neuron 2014; 82:320-33. [PMID: 24742459 PMCID: PMC4304384 DOI: 10.1016/j.neuron.2014.02.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Abstract
Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1-R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer specificity. We show that Jelly belly (Jeb) produced by R1-R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system.
Collapse
Affiliation(s)
- Matthew Y Pecot
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Chen
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orkun Akin
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenqing Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - C Y Kimberly Tsui
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Lüthy K, Ahrens B, Rawal S, Lu Z, Tarnogorska D, Meinertzhagen IA, Fischbach KF. The irre cell recognition module (IRM) protein Kirre is required to form the reciprocal synaptic network of L4 neurons in the Drosophila lamina. J Neurogenet 2014; 28:291-301. [PMID: 24697410 DOI: 10.3109/01677063.2014.883390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Each neuropil module, or cartridge, in the fly's lamina has a fixed complement of cells. Of five types of monopolar cell interneurons, only L4 has collaterals that invade neighboring cartridges. In the proximal lamina, these collaterals form reciprocal synapses with both the L2 of their own cartridge and the L4 collateral branches from two other neighboring cartridges. During synaptogenesis, L4 collaterals strongly express the cell adhesion protein Kirre, a member of the irre cell recognition module (IRM) group of proteins ( Fischbach et al., 2009 , J Neurogenet, 23, 48-67). The authors show by mutant analysis and gene knockdown techniques that L4 neurons develop their lamina collaterals in the absence of this cell adhesion protein. Using electron microscopy (EM), the authors demonstrate, however, that without Kirre protein these L4 collaterals selectively form fewer synapses. The collaterals of L4 neurons of various genotypes reconstructed from serial-section EM revealed that the number of postsynaptic sites was dramatically reduced in the absence of Kirre, almost eliminating any synaptic input to L4 neurons. A significant reduction of presynaptic sites was also detected in kirre(0) mutants and gene knockdown flies using RNA interference. L4 neuron reciprocal synapses are thus almost eliminated. A presynaptic marker, Brp-short(GFP) confirmed these data using confocal microscopy. This study reveals that removing Kirre protein specifically disrupts the functional L4 synaptic network in the Drosophila lamina.
Collapse
Affiliation(s)
- Kevin Lüthy
- Faculty of Biology, Albert-Ludwigs University Freiburg , Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen Y, Akin O, Nern A, Tsui CYK, Pecot MY, Zipursky SL. Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination. Neuron 2014; 81:280-93. [PMID: 24462095 PMCID: PMC4025979 DOI: 10.1016/j.neuron.2013.12.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2013] [Indexed: 11/19/2022]
Abstract
The study of synaptic specificity and plasticity in the CNS is limited by the inability to efficiently visualize synapses in identified neurons using light microscopy. Here, we describe synaptic tagging with recombination (STaR), a method for labeling endogenous presynaptic and postsynaptic proteins in a cell-type-specific fashion. We modified genomic loci encoding synaptic proteins within bacterial artificial chromosomes such that these proteins, expressed at endogenous levels and with normal spatiotemporal patterns, were labeled in an inducible fashion in specific neurons through targeted expression of site-specific recombinases. Within the Drosophila visual system, the number and distribution of synapses correlate with electron microscopy studies. Using two different recombination systems, presynaptic and postsynaptic specializations of synaptic pairs can be colabeled. STaR also allows synapses within the CNS to be studied in live animals noninvasively. In principle, STaR can be adapted to the mammalian nervous system.
Collapse
Affiliation(s)
- Yi Chen
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orkun Akin
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aljoscha Nern
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147-2408, USA
| | - C Y Kimberly Tsui
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Y Pecot
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Nguyen-Ba-Charvet KT, Chédotal A. Development of retinal layers. C R Biol 2014; 337:153-9. [PMID: 24702841 DOI: 10.1016/j.crvi.2013.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 11/26/2022]
Abstract
A noticeable characteristic of nervous systems is the arrangement of synapses into distinct layers. Such laminae are fundamental for the spatial organisation of synaptic connections transmitting different kinds of information. A major example of this is the inner plexiform layer (IPL) of the vertebrate retina, which is subdivided into at least ten sublayers. Another noticeable characteristic of these retina layers is that neurons are displayed in the horizontal plane in a non-random array termed as mosaic patterning. Recent studies of vertebrate and invertebrate systems have identified molecules that mediate these interactions. Here, we review the last mechanisms and molecules mediating retinal layering.
Collapse
Affiliation(s)
- Kim Tuyen Nguyen-Ba-Charvet
- Institut national de la santé et de la recherche médicale, UMR S968, CNRS UMR 7210, Université Pierre et Marie Curie (Paris-6), Institut de la vision, 17, rue Moreau, 75012 Paris, France
| | - Alain Chédotal
- Institut national de la santé et de la recherche médicale, UMR S968, CNRS UMR 7210, Université Pierre et Marie Curie (Paris-6), Institut de la vision, 17, rue Moreau, 75012 Paris, France.
| |
Collapse
|
45
|
Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr Opin Neurobiol 2014; 27:1-7. [PMID: 24598309 DOI: 10.1016/j.conb.2014.02.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 01/13/2023]
Abstract
Semaphorins are phylogenetically conserved proteins expressed in most organ systems, including the nervous system. Following their description as axon guidance cues, semaphorins have been implicated in multiple aspects of nervous system development. Semaphorins are key regulators of neural circuit assembly, neuronal morphogenesis, assembly of excitatory and inhibitory synapses, and synaptic refinement. Semaphorins contribute to the balance between excitatory and inhibitory synaptic transmission, and electrical activity can modulate semaphorin signaling in neurons. This interplay between guidance cue signaling and electrical activity has the potential to sculpt the wiring of neural circuits and to modulate their function.
Collapse
|
46
|
Zarin AA, Asadzadeh J, Hokamp K, McCartney D, Yang L, Bashaw GJ, Labrador JP. A transcription factor network coordinates attraction, repulsion, and adhesion combinatorially to control motor axon pathway selection. Neuron 2014; 81:1297-1311. [PMID: 24560702 DOI: 10.1016/j.neuron.2014.01.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel McCartney
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Long Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
47
|
Ting CY, McQueen PG, Pandya N, Lin TY, Yang M, Reddy OV, O'Connor MB, McAuliffe M, Lee CH. Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron 2014; 81:830-846. [PMID: 24462039 DOI: 10.1016/j.neuron.2013.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 01/10/2023]
Abstract
How neurons form appropriately sized dendritic fields to encounter their presynaptic partners is poorly understood. The Drosophila medulla is organized in layers and columns and innervated by medulla neuron dendrites and photoreceptor axons. Here, we show that three types of medulla projection (Tm) neurons extend their dendrites in stereotyped directions and to distinct layers within a single column for processing retinotopic information. In contrast, the Dm8 amacrine neurons form a wide dendritic field to receive ∼16 R7 photoreceptor inputs. R7- and R8-derived Activin selectively restricts the dendritic fields of their respective postsynaptic partners, Dm8 and Tm20, to the size appropriate for their functions. Canonical Activin signaling promotes dendritic termination without affecting dendritic routing direction or layer. Tm20 neurons lacking Activin signaling expanded their dendritic fields and aberrantly synapsed with neighboring photoreceptors. We suggest that afferent-derived Activin regulates the dendritic field size of their postsynaptic partners to ensure appropriate synaptic partnership.
Collapse
Affiliation(s)
- Chun-Yuan Ting
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip G McQueen
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nishith Pandya
- Biomedical Imaging Research Services Section, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tzu-Yang Lin
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meiluen Yang
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - O Venkateswara Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN 55455, USA
| | - Matthew McAuliffe
- Biomedical Imaging Research Services Section, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Schwabe T, Neuert H, Clandinin TR. A network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity. Cell 2013; 154:351-64. [PMID: 23870124 DOI: 10.1016/j.cell.2013.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/02/2013] [Accepted: 06/07/2013] [Indexed: 01/17/2023]
Abstract
Neuronal growth cones select synaptic partners through interactions with multiple cell surfaces in their environment. Many of these interactions are adhesive, yet it is unclear how growth cones integrate adhesive cues to direct their movements. Here, we examine the mechanisms that enable photoreceptors in the Drosophila visual system to choose synaptic partners. We demonstrate that the classical cadherin, N-cadherin, and an atypical cadherin, Flamingo, act redundantly to instruct the targeting choices made by every photoreceptor axon. These molecules gradually bias the spatial distribution of growth cone filopodia, polarizing each growth cone toward its future synaptic target before direct contact with the target occurs. We demonstrate that these molecules are localized to distinct subcellular domains and create a network of adhesive interactions distributed across many growth cones. Because this network comprises multiple redundant interactions, a complex wiring diagram can be constructed with extraordinary fidelity, suggesting a general principle.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
49
|
The cell biology of synaptic specificity during development. Curr Opin Neurobiol 2013; 23:1018-26. [PMID: 23932598 DOI: 10.1016/j.conb.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 02/05/2023]
Abstract
Proper circuit connectivity is critical for nervous system function. Connectivity derives from the interaction of two interdependent modules: synaptic specificity and synaptic assembly. Specificity involves both targeting of neurons to specific laminar regions and the formation of synapses onto defined subcellular areas. In this review, we focus discussion on recently elucidated molecular mechanisms that control synaptic specificity and link them to synapse assembly. We use these molecular pathways to underscore fundamental cell biological concepts that underpin, and help explain, the rules governing synaptic specificity.
Collapse
|
50
|
Sato M, Suzuki T, Nakai Y. Waves of differentiation in the fly visual system. Dev Biol 2013; 380:1-11. [PMID: 23603492 DOI: 10.1016/j.ydbio.2013.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022]
Abstract
Sequential progression of differentiation in a tissue or in multiple tissues in a synchronized manner plays important roles in development. Such waves of differentiation are especially important in the development of the Drosophila visual system, which is composed of the retina and the optic lobe of the brain. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe, which is composed of lamina, medulla, lobula and lobula plate. In the developing retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the lamina progresses in the same direction, behind the lamina furrow. This is not just a coincidence: differentiated photoreceptor neurons in the retina sequentially send axons to the developing lamina and trigger differentiation of lamina neurons to ensure the progression of the lamina furrow just like the furrow in the retina. Similarly, development of the medulla accompanies a wave of differentiation called the proneural wave. Thus, the waves of differentiation play important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by multiple waves of differentiation.
Collapse
Affiliation(s)
- Makoto Sato
- Brain/Liver Interface Medicine Research Center, Graduate School of Medical Sciences, Lab of Developmental Neurobiology, Kanazawa University, Japan.
| | | | | |
Collapse
|