1
|
Kalva SK, Özbek A, Reiss M, Deán-Ben XL, Razansky D. Spiral volumetric optoacoustic and ultrasound (SVOPUS) tomography of mice. PHOTOACOUSTICS 2024; 40:100659. [PMID: 39553382 PMCID: PMC11568778 DOI: 10.1016/j.pacs.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Optoacoustic (OA) tomography is a powerful noninvasive preclinical imaging tool enabling high resolution whole-body visualization of biodistribution and dynamics of molecular agents. The technique yet lacks endogenous soft-tissue contrast, which often hampers anatomical navigation. Herein, we devise spiral volumetric optoacoustic and ultrasound (SVOPUS) tomography for concurrent OA and pulse-echo ultrasound (US) imaging of whole mice. To this end, a spherical array transducer featuring a central curvilinear segment is employed. Full rotation of the array renders transverse US and OA views, while additional translation facilitates volumetric whole-body imaging with high spatial resolution down to 150 µm and 110 µm in the OA and US modes, respectively. OA imaging revealed blood-filled, vascular organs like heart, liver, spleen, kidneys, and surrounding vasculature, whilst complementary details of bones, lungs, and skin boundaries were provided by the US. The dual-modal capability of SVOPUS for label-free imaging of tissue morphology and function is poised to facilitate pharmacokinetic studies, disease monitoring, and image-guided therapies.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ali Özbek
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
2
|
Kurnikov A, Sanin A, Ben XLD, Razansky D, Subochev P. Ultrawideband sub-pascal sensitivity piezopolymer detectors. ULTRASONICS 2024; 141:107349. [PMID: 38788335 DOI: 10.1016/j.ultras.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Piezoelectric detectors are integral part of modern ultrasound imaging systems. Their utility has also been extended beyond the established methodologies into the emerging realm of hybrid optoacoustic imaging. Conventional piezoceramic detectors, however, struggle to combine high detection sensitivity with ultrawide bandwidth, both considered critical for attaining optimal optoacoustic imaging performance. Our research, both theoretical and empirical, unveils that damped piezopolymer detectors fabricated from PVDF-TrFE are markedly capable of achieving a synergistic blend between broad bandwidth and superb sensitivity. Experimental evaluations reflected an average sensitivity of 15.5 µV/Pa within a 1-10 MHz band for a 120 µm thick detector and 6.4 µV/Pa within a 1-30 MHz band for a 20 µm thick detector, thus outperforming conventional piezoelectric analogues. The resultant noise equivalent pressure (NEPs) values were 0.3 Pa and 1.2 Pa for the 20 µm and 120 µm detectors, respectively. Our findings herald a significant stride towards enhancing the efficacy of ultrawideband ultrasound and optoacoustic imaging systems.
Collapse
Affiliation(s)
- Alexey Kurnikov
- Institute of Applied Physics named after A.V. Gaponov-Grekhov, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia; University of Nizhny Novgorod, Department of Radiophysics, Gagarin Ave. 23, Nizhny Novgorod 603022, Russia
| | - Anatoly Sanin
- Institute of Applied Physics named after A.V. Gaponov-Grekhov, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Xose Luis Dean Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland.
| | - Pavel Subochev
- Institute of Applied Physics named after A.V. Gaponov-Grekhov, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
3
|
Chen Y, Yang H, Luo Y, Niu Y, Yu M, Deng S, Wang X, Deng H, Chen H, Gao L, Li X, Xu P, Xue F, Miao J, Shi SH, Zhong Y, Ma C, Lei B. Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN) for cross-modal individual analysis of the whole brain. Nat Commun 2024; 15:4228. [PMID: 38762498 PMCID: PMC11102525 DOI: 10.1038/s41467-024-48393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Haoyu Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Yijun Niu
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
| | - Muzhou Yu
- School of Computer Science, Xi'an Jiaotong University, Xi'an, 713599, PR China
| | - Shanjun Deng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanhao Wang
- Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou, 311100, PR China
| | - Handi Deng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Haichao Chen
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, PR China
| | - Pingyong Xu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Fudong Xue
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jing Miao
- Canterbury School, New Milford, CT, 06776, USA
| | - Song-Hai Shi
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China.
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China.
| | - Bo Lei
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Chang KW, Belekov E, Wang X, Wong KY, Oralkan Ö, Xu G. Photoacoustic imaging of visually evoked cortical and subcortical hemodynamic activity in mouse brain: feasibility study with piezoelectric and capacitive micromachined ultrasonic transducer (CMUT) arrays. BIOMEDICAL OPTICS EXPRESS 2023; 14:6283-6290. [PMID: 38420324 PMCID: PMC10898584 DOI: 10.1364/boe.503475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 03/02/2024]
Abstract
This study investigates the feasibility of capturing visually evoked hemodynamic responses in the mouse brain using photoacoustic tomography (PAT) and ultrasound (US) dual-modality imaging. A commercial piezoelectric transducer array and a capacitive micromachined ultrasonic transducer (CMUT) array were compared using a programmable PAT-US imaging system. The system resolution was measured by imaging phantoms. We also tested the ability of the system to capture visually evoked hemodynamic responses in the superior colliculus as well as the primary visual cortex in wild-type mice. Results show that the piezoelectric transducer array and the CMUT array exhibit comparable imaging performance, and both arrays can capture visually evoked hemodynamic responses in subcortical as well as cortical regions of the mouse brain.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ermek Belekov
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kwoon Y. Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Ömer Oralkan
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
5
|
Ergen PH, Shorter S, Ntziachristos V, Ovsepian SV. Neurotoxin-Derived Optical Probes for Biological and Medical Imaging. Mol Imaging Biol 2023; 25:799-814. [PMID: 37468801 PMCID: PMC10598172 DOI: 10.1007/s11307-023-01838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The superb specificity and potency of biological toxins targeting various ion channels and receptors are of major interest for the delivery of therapeutics to distinct cell types and subcellular compartments. Fused with reporter proteins or labelled with fluorophores and nanocomposites, animal toxins and their detoxified variants also offer expanding opportunities for visualisation of a range of molecular processes and functions in preclinical models, as well as clinical studies. This article presents state-of-the-art optical probes derived from neurotoxins targeting ion channels, with discussions of their applications in basic and translational biomedical research. It describes the design and production of probes and reviews their applications with advantages and limitations, with prospects for future improvements. Given the advances in imaging tools and expanding research areas benefiting from the use of optical probes, described here resources should assist the discovery process and facilitate high-precision interrogation and therapeutic interventions.
Collapse
Affiliation(s)
- Pinar Helin Ergen
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom.
| |
Collapse
|
6
|
Gezginer I, Chen Z, Yoshihara HA, Deán-Ben XL, Razansky D. Volumetric registration framework for multimodal functional magnetic resonance and optoacoustic tomography of the rodent brain. PHOTOACOUSTICS 2023; 31:100522. [PMID: 37362869 PMCID: PMC10285284 DOI: 10.1016/j.pacs.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Optoacoustic tomography (OAT) provides a non-invasive means to characterize cerebral hemodynamics across an entire murine brain while attaining multi-parametric readouts not available with other modalities. This unique capability can massively impact our understanding of brain function. However, OAT largely lacks the soft tissue contrast required for unambiguous identification of brain regions. Hence, its accurate registration to a reference brain atlas is paramount for attaining meaningful functional readings. Herein, we capitalized on the simultaneously acquired bi-modal data from the recently-developed hybrid magnetic resonance optoacoustic tomography (MROT) scanner in order to devise an image coregistration paradigm that facilitates brain parcellation and anatomical referencing. We evaluated the performance of the proposed methodology by coregistering OAT data acquired with a standalone system using different registration methods. The enhanced performance is further demonstrated for functional OAT data analysis and characterization of stimulus-evoked brain responses. The suggested approach enables better consolidation of the research findings thus facilitating wider acceptance of OAT as a powerful neuroimaging tool to study brain functions and diseases.
Collapse
Affiliation(s)
- Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Hikari A.I. Yoshihara
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
7
|
Negi D, Granak S, Shorter S, O'Leary VB, Rektor I, Ovsepian SV. Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases. Neurotherapeutics 2023; 20:767-778. [PMID: 36884195 PMCID: PMC10275849 DOI: 10.1007/s13311-023-01355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.
Collapse
Affiliation(s)
- Deepika Negi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Simon Granak
- National Institute of Mental Health, Topolova 748, Klecany, 25067, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague, 10000, Czech Republic
| | - Ivan Rektor
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
8
|
Soloukey S, Vincent AJPE, Smits M, De Zeeuw CI, Koekkoek SKE, Dirven CMF, Kruizinga P. Functional imaging of the exposed brain. Front Neurosci 2023; 17:1087912. [PMID: 36845427 PMCID: PMC9947297 DOI: 10.3389/fnins.2023.1087912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
When the brain is exposed, such as after a craniotomy in neurosurgical procedures, we are provided with the unique opportunity for real-time imaging of brain functionality. Real-time functional maps of the exposed brain are vital to ensuring safe and effective navigation during these neurosurgical procedures. However, current neurosurgical practice has yet to fully harness this potential as it pre-dominantly relies on inherently limited techniques such as electrical stimulation to provide functional feedback to guide surgical decision-making. A wealth of especially experimental imaging techniques show unique potential to improve intra-operative decision-making and neurosurgical safety, and as an added bonus, improve our fundamental neuroscientific understanding of human brain function. In this review we compare and contrast close to twenty candidate imaging techniques based on their underlying biological substrate, technical characteristics and ability to meet clinical constraints such as compatibility with surgical workflow. Our review gives insight into the interplay between technical parameters such sampling method, data rate and a technique's real-time imaging potential in the operating room. By the end of the review, the reader will understand why new, real-time volumetric imaging techniques such as functional Ultrasound (fUS) and functional Photoacoustic Computed Tomography (fPACT) hold great clinical potential for procedures in especially highly eloquent areas, despite the higher data rates involved. Finally, we will highlight the neuroscientific perspective on the exposed brain. While different neurosurgical procedures ask for different functional maps to navigate surgical territories, neuroscience potentially benefits from all these maps. In the surgical context we can uniquely combine healthy volunteer studies, lesion studies and even reversible lesion studies in in the same individual. Ultimately, individual cases will build a greater understanding of human brain function in general, which in turn will improve neurosurgeons' future navigational efforts.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
9
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
10
|
Wang Y, Tsai CH, Chu TS, Hung YT, Lee MY, Chen HH, Chen LT, Ger TR, Wang YH, Chiang NJ, Liao LD. Revisiting the cerebral hemodynamics of awake, freely moving rats with repeated ketamine self-administration using a miniature photoacoustic imaging system. NEUROPHOTONICS 2022; 9:045003. [PMID: 36338453 PMCID: PMC9623815 DOI: 10.1117/1.nph.9.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. AIM We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. APPROACH The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). RESULTS We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. CONCLUSIONS The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.
Collapse
Affiliation(s)
- Yuhling Wang
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Tsung-Sheng Chu
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yun-Ting Hung
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Yi Lee
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Hwei-Hsien Chen
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Tzong-Rong Ger
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yung-Hsuan Wang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Nai-Jung Chiang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
- Taipei Veterans General Hospital, Department of Oncology, Taipei City, Taiwan
| | - Lun-De Liao
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
11
|
Wang Z, Zhou Y, Hu S. Sparse Coding-Enabled Low-Fluence Multi-Parametric Photoacoustic Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:805-814. [PMID: 34710042 PMCID: PMC9036083 DOI: 10.1109/tmi.2021.3124124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Uniquely capable of simultaneous imaging of the hemoglobin concentration, blood oxygenation, and flow speed at the microvascular level in vivo, multi-parametric photoacoustic microscopy (PAM) has shown considerable impact in biomedicine. However, the multi-parametric PAM acquisition requires dense sampling and thus a high laser pulse repetition rate (up to MHz), which sets a strict limit on the applicable pulse energy due to safety considerations. A similar limitation is shared by high-speed PAM, which also uses lasers with high pulse repetition rates. To achieve high quantitative accuracy besides good structural visualization at low levels of laser fluence in PAM, we have developed a new, sparse coding-based two-step denoising technique. In the setting of intravital brain imaging, we demonstrated that this unsupervised learning approach enabled the reduction of the laser fluence in PAM by 5 times without compromise of the image quality (structural similarity index measure or SSIM: >0.92) and the quantitative accuracy (errors: <4.9%). Offering a significant relaxation in the requirement of PAM on laser fluence while maintaining the quality of structural imaging and accuracy of quantitative measurements, this sparse coding-based approach is expected to facilitate the application and clinical translation of multi-parametric PAM and high-speed PAM, which have a tight photon budget due to either safety considerations or laser source limitations.
Collapse
|
12
|
Kim HK, Zhao Y, Raghuram A, Veeraraghavan A, Robinson J, Hielscher AH. Ultrafast and Ultrahigh-Resolution Diffuse Optical Tomography for Brain Imaging with Sensitivity Equation based Noniterative Sparse Optical Reconstruction (SENSOR). JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 2021; 276:107939. [PMID: 34966190 PMCID: PMC8713562 DOI: 10.1016/j.jqsrt.2021.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We introduce a novel image reconstruction method for time-resolved diffuse optical tomography (DOT) that yields submillimeter resolution in less than a second. This opens the door to high-resolution real-time DOT in imaging of the brain activity. We call this approach the sensitivity equation based noniterative sparse optical reconstruction (SENSOR) method. The high spatial resolution is achieved by implementing an asymptotic l 0-norm operator that guarantees to obtain sparsest representation of reconstructed targets. The high computational speed is achieved by employing the nontruncated sensitivity equation based noniterative inverse formulation combined with reduced sensing matrix and parallel computing. We tested the new method with numerical and experimental data. The results demonstrate that the SENSOR algorithm can achieve 1 mm3 spatial-resolution optical tomographic imaging at depth of ∼60 mean free paths (MFPs) in 20∼30 milliseconds on an Intel Core i9 processor.
Collapse
Affiliation(s)
- Hyun Keol Kim
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY 10032
- Department of Biomedical Engineering, New York University – Tandon School of Engineering, New York, NY 10010
| | - Yongyi Zhao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Ankit Raghuram
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Ashok Veeraraghavan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Jacob Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Andreas H. Hielscher
- Department of Biomedical Engineering, New York University – Tandon School of Engineering, New York, NY 10010
| |
Collapse
|
13
|
Sciortino VM, Tran A, Sun N, Cao R, Sun T, Sun YY, Yan P, Zhong F, Zhou Y, Kuan CY, Lee JM, Hu S. Longitudinal cortex-wide monitoring of cerebral hemodynamics and oxygen metabolism in awake mice using multi-parametric photoacoustic microscopy. J Cereb Blood Flow Metab 2021; 41:3187-3199. [PMID: 34304622 PMCID: PMC8669277 DOI: 10.1177/0271678x211034096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm2), light-weight (2 g), dual-transparency (i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases.
Collapse
Affiliation(s)
- Vincent M Sciortino
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Angela Tran
- Department of Biology, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Naidi Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Rui Cao
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Tao Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Yo Sun
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ping Yan
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yifeng Zhou
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Yi Kuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Song Hu
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
14
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Ni R, Villois A, Dean-Ben XL, Chen Z, Vaas M, Stavrakis S, Shi G, deMello A, Ran C, Razansky D, Arosio P, Klohs J. In-vitro and in-vivo characterization of CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of amyloid-beta deposits in Alzheimer mice. PHOTOACOUSTICS 2021; 23:100285. [PMID: 34354924 PMCID: PMC8321919 DOI: 10.1016/j.pacs.2021.100285] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 05/02/2023]
Abstract
The abnormal deposition of fibrillar beta-amyloid (Aβ) deposits in the brain is one of the major histopathological hallmarks of Alzheimer's disease (AD). Here, we characterized curcumin-derivative CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of brain Aβ deposits in the arcAβ mouse model of AD cerebral amyloidosis. CRANAD-2 showed a specific and quantitative detection of Aβ fibrils in vitro, even in complex mixtures, and it is capable of distinguishing between monomeric and fibrillar forms of Aβ. In vivo epi-fluorescence microscopy and optoacoustic tomography after intravenous CRANAD-2 administration demonstrated higher cortical retention in arcAβ compared to non-transgenic littermate mice. Immunohistochemistry showed co-localization of CRANAD-2 and Aβ deposits in arcAβ mouse brain sections, thus verifying the specificity of the probe. In conclusion, we demonstrate suitability of CRANAD-2 for optical detection of Aβ deposits in animal models of AD pathology, which facilitates mechanistic studies and the monitoring of putative treatments targeting Aβ deposits.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Corresponding authors at: Institute for Biomedical Engineering, ETH & University of Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| | - Alessia Villois
- Institute for Chemical and Bioengineering, Department of Chemistry, ETH Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Markus Vaas
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry, ETH Zurich, Zurich, Switzerland
| | - Gloria Shi
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry, ETH Zurich, Zurich, Switzerland
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel Razansky
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, Department of Chemistry, ETH Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Corresponding authors at: Institute for Biomedical Engineering, ETH & University of Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
16
|
Ozsoy C, Cossettini A, Ozbek A, Vostrikov S, Hager P, Dean-Ben XL, Benini L, Razansky D. LightSpeed: A Compact, High-Speed Optical-Link-Based 3D Optoacoustic Imager. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2023-2029. [PMID: 33798077 DOI: 10.1109/tmi.2021.3070833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wide-scale adoption of optoacoustic imaging in biology and medicine critically depends on availability of affordable scanners combining ease of operation with optimal imaging performance. Here we introduce LightSpeed: a low-cost real-time volumetric handheld optoacoustic imager based on a new compact software-defined ultrasound digital acquisition platform and a pulsed laser diode. It supports the simultaneous signal acquisition from up to 192 ultrasound channels and provides a hig-bandwidth direct optical link (2x 100G Ethernet) to the host-PC for ultra-high frame rate image acquisitions. We demonstrate use of the system for ultrafast (500Hz) 3D human angiography with a rapidly moving handheld probe. LightSpeed attained image quality comparable with a conventional optoacoustic imaging systems employing bulky acquisition electronics and a Q-switched pulsed laser. Our results thus pave the way towards a new generation of compact, affordable and high-performance optoacoustic scanners.
Collapse
|
17
|
Na S, Wang LV. Photoacoustic computed tomography for functional human brain imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:4056-4083. [PMID: 34457399 PMCID: PMC8367226 DOI: 10.1364/boe.423707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 05/02/2023]
Abstract
The successes of magnetic resonance imaging and modern optical imaging of human brain function have stimulated the development of complementary modalities that offer molecular specificity, fine spatiotemporal resolution, and sufficient penetration simultaneously. By virtue of its rich optical contrast, acoustic resolution, and imaging depth far beyond the optical transport mean free path (∼1 mm in biological tissues), photoacoustic computed tomography (PACT) offers a promising complementary modality. In this article, PACT for functional human brain imaging is reviewed in its hardware, reconstruction algorithms, in vivo demonstration, and potential roadmap.
Collapse
Affiliation(s)
- Shuai Na
- Caltech Optical Imaging Laboratory, Andrew
and Peggy Cherng Department of Medical Engineering,
California Institute of Technology, 1200
East California Boulevard, Pasadena, CA 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew
and Peggy Cherng Department of Medical Engineering,
California Institute of Technology, 1200
East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory,
Department of Electrical Engineering, California
Institute of Technology, 1200 East California Boulevard,
Pasadena, CA 91125, USA
| |
Collapse
|
18
|
Bernier LP, Brunner C, Cottarelli A, Balbi M. Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Front Cell Neurosci 2021; 15:696540. [PMID: 34276312 PMCID: PMC8277940 DOI: 10.3389/fncel.2021.696540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Interuniversity Microeletronics Centre, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Matilde Balbi
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Abstract
Photoacoustic tomography (PAT) that integrates the molecular contrast of optical imaging with the high spatial resolution of ultrasound imaging in deep tissue has widespread applications in basic biological science, preclinical research, and clinical trials. Recently, tremendous progress has been made in PAT regarding technical innovations, preclinical applications, and clinical translations. Here, we selectively review the recent progresses and advances in PAT, including the development of advanced PAT systems for small-animal and human imaging, newly engineered optical probes for molecular imaging, broad-spectrum PAT for label-free imaging of biological tissues, high-throughput snapshot photoacoustic topography, and integration of machine learning for image reconstruction and processing. We envision that PAT will have further technical developments and more impactful applications in biomedicine.
Collapse
Affiliation(s)
- Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
21
|
Dendritic spine remodeling and plasticity under general anesthesia. Brain Struct Funct 2021; 226:2001-2017. [PMID: 34061250 PMCID: PMC8166894 DOI: 10.1007/s00429-021-02308-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.
Collapse
|
22
|
Qiu T, Lan Y, Gao W, Zhou M, Liu S, Huang W, Zeng S, Pathak JL, Yang B, Zhang J. Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant Imaging Med Surg 2021; 11:2169-2186. [PMID: 33936997 DOI: 10.21037/qims-20-845] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging strategy with a unique combination of rich optical contrasts, high ultrasound spatial resolution, and deep penetration depth without ionizing radiation. Taking advantage of the features mentioned above, PAI has been widely applied to preclinical studies in diverse fields, such as vascular biology, cardiology, neurology, ophthalmology, dermatology, gastroenterology, and oncology. Among various biomedical applications, photoacoustic brain imaging has great importance due to the brain's complex anatomy and the variability of brain disease. In this review, we aimed to introduce a novel and effective imaging modality for diagnosing brain diseases. Firstly, a brief overview of two major types of PAI system was provided. Then, PAI's major preclinical applications in brain diseases were introduced, including early diagnosis of brain tumors, subtle changes in the chemotherapy response, epileptic activity and brain injury, foreign body, and brain plaque. Finally, a perspective of the remaining challenges of PAI was given for future advancements.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenyan Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Sujuan Zeng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Bin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
23
|
Li M, Shi J, Yiu CCY, Li C, Wong KKY, Wang L. Near-infrared double-illumination optical-resolution photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000392. [PMID: 33205905 DOI: 10.1002/jbio.202000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Label-free chemical bond imaging is of great importance in biology and medicine. Photoacoustic imaging at the third near-infrared windows (1600-1870 nm, near-infrared-III) provides a stable molecular vibrational imaging tool for lipid-rich tissue owing to the first overtone transition of the CH bond at 1.7 μm. However, lacking high-energy pulsed laser sources at 1.7 μm and the strong water absorption significantly limit the signal-to-noise ratio of the lipid imaging, especially for thin lipid tissues. To circumvent this barrier, we develop near-infrared-III double-illumination optical-resolution photoacoustic microscopy (DIOR-PAM) for improving the sensitivity of label-free lipid imaging. Using the same laser, DIOR-PAM can enhance the sensitivity by nearly 100%, which we prove in the Monte Carlo simulation. We experimentally demonstrated 50% ~ 100% sensitivity enhancements on nonbiological and biological lipid-rich samples.
Collapse
Affiliation(s)
- Mingsheng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiawei Shi
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Canice Chun-Yin Yiu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Can Li
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
| | - Kenneth Kin-Yip Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
24
|
Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imaging 2021; 48:4152-4170. [PMID: 33594473 PMCID: PMC8566397 DOI: 10.1007/s00259-021-05207-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
Collapse
Affiliation(s)
- Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
- Institute for Regenerative Medicine, Uiversity of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Huang J, Wang C, Lin M, Zeng F, Wu S. Synthesis of NQO1-activatable Optoacoustic Probe and Its Imaging of Breast Cancer. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20100459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, Ling B, Shapiro MG. Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron 2020; 108:93-110. [PMID: 33058769 PMCID: PMC7577369 DOI: 10.1016/j.neuron.2020.09.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Visualizing and perturbing neural activity on a brain-wide scale in model animals and humans is a major goal of neuroscience technology development. Established electrical and optical techniques typically break down at this scale due to inherent physical limitations. In contrast, ultrasound readily permeates the brain, and in some cases the skull, and interacts with tissue with a fundamental resolution on the order of 100 μm and 1 ms. This basic ability has motivated major efforts to harness ultrasound as a modality for large-scale brain imaging and modulation. These efforts have resulted in already-useful neuroscience tools, including high-resolution hemodynamic functional imaging, focused ultrasound neuromodulation, and local drug delivery. Furthermore, recent breakthroughs promise to connect ultrasound to neurons at the genetic level for biomolecular imaging and sonogenetic control. In this article, we review the state of the art and ongoing developments in ultrasonic neurotechnology, building from fundamental principles to current utility, open questions, and future potential.
Collapse
Affiliation(s)
- Claire Rabut
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zhiyang Jin
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hongyi Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongsun Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
27
|
Regeneration of the neurogliovascular unit visualized in vivo by transcranial live-cell imaging. J Neurosci Methods 2020; 343:108808. [DOI: 10.1016/j.jneumeth.2020.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
28
|
A Translational Study on Acute Traumatic Brain Injury: High Incidence of Epileptiform Activity on Human and Rat Electrocorticograms and Histological Correlates in Rats. Brain Sci 2020; 10:brainsci10090570. [PMID: 32825101 PMCID: PMC7565553 DOI: 10.3390/brainsci10090570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Background: In humans, early pathological activity on invasive electrocorticograms (ECoGs) and its putative association with pathomorphology in the early period of traumatic brain injury (TBI) remains obscure. Methods: We assessed pathological activity on scalp electroencephalograms (EEGs) and ECoGs in patients with acute TBI, early electrophysiological changes after lateral fluid percussion brain injury (FPI), and electrophysiological correlates of hippocampal damage (microgliosis and neuronal loss), a week after TBI in rats. Results: Epileptiform activity on ECoGs was evident in 86% of patients during the acute period of TBI, ECoGs being more sensitive to epileptiform and periodic discharges. A “brush-like” ECoG pattern superimposed over rhythmic delta activity and periodic discharge was described for the first time in acute TBI. In rats, FPI increased high-amplitude spike incidence in the neocortex and, most expressed, in the ipsilateral hippocampus, induced hippocampal microgliosis and neuronal loss, ipsilateral dentate gyrus being most vulnerable, a week after TBI. Epileptiform spike incidence correlated with microglial cell density and neuronal loss in the ipsilateral hippocampus. Conclusion: Epileptiform activity is frequent in the acute period of TBI period and is associated with distant hippocampal damage on a microscopic level. This damage is probably involved in late consequences of TBI. The FPI model is suitable for exploring pathogenetic mechanisms of post-traumatic disorders.
Collapse
|
29
|
Olefir I, Ghazaryan A, Yang H, Malekzadeh-Najafabadi J, Glasl S, Symvoulidis P, O'Leary VB, Sergiadis G, Ntziachristos V, Ovsepian SV. Spatial and Spectral Mapping and Decomposition of Neural Dynamics and Organization of the Mouse Brain with Multispectral Optoacoustic Tomography. Cell Rep 2020; 26:2833-2846.e3. [PMID: 30840901 PMCID: PMC6403416 DOI: 10.1016/j.celrep.2019.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
In traditional optical imaging, limited light penetration constrains high-resolution interrogation to tissue surfaces. Optoacoustic imaging combines the superb contrast of optical imaging with deep penetration of ultrasound, enabling a range of new applications. We used multispectral optoacoustic tomography (MSOT) for functional and structural neuroimaging in mice at resolution, depth, and specificity unattainable by other neuroimaging modalities. Based on multispectral readouts, we computed hemoglobin gradient and oxygen saturation changes related to processing of somatosensory signals in different structures along the entire subcortical-cortical axis. Using temporal correlation analysis and seed-based maps, we reveal the connectivity between cortical, thalamic, and sub-thalamic formations. With the same modality, high-resolution structural tomography of intact mouse brain was achieved based on endogenous contrasts, demonstrating near-perfect matches with anatomical features revealed by histology. These results extend the limits of noninvasive observations beyond the reach of standard high-resolution neuroimaging, verifying the suitability of MSOT for small-animal studies.
Collapse
Affiliation(s)
- Ivan Olefir
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Ara Ghazaryan
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hong Yang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jaber Malekzadeh-Najafabadi
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Panagiotis Symvoulidis
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic
| | - George Sergiadis
- Department of Electrical and Computer Engineering, Aristotle University, 54124 Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany.
| | - Saak V Ovsepian
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic.
| |
Collapse
|
30
|
Knauer N, Dean-Ben XL, Razansky D. Spatial Compounding of Volumetric Data Enables Freehand Optoacoustic Angiography of Large-Scale Vascular Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1160-1169. [PMID: 31581078 DOI: 10.1109/tmi.2019.2945297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Optoacoustic tomography systems have attained unprecedented volumetric imaging speeds, thus enabling insights into rapid biological dynamics and marking a milestone in the clinical translation of this modality. Fast imaging performance often comes at the cost of limited field-of-view, which may hinder potential applications looking at larger tissue volumes. The imaged field-of-view can potentially be expanded via scanning and using additional hardware to track the position of the imaging probe. However, this approach turns impractical for high-resolution volumetric scans performed in a freehand mode along arbitrary trajectories. We have developed an accurate framework for spatial compounding of time-lapse optoacoustic data. The method exploits the frequency-domain properties of vascular networks in optoacoustic images and estimates the relative motion and orientation of the imaging probe. This allows rapidly combining sequential volumetric frames into large area scans without additional tracking hardware. The approach is universally applicable for compounding volumetric data acquired with calibrated scanning systems but also in a freehand mode with up to six degrees of freedom. Robust performance is demonstrated for whole-body mouse imaging with spiral volumetric optoacoustic tomography and for freehand visualization of vascular networks in humans using volumetric imaging probes. The newly introduced capability for angiographic observations at multiple spatial and temporal scales is expected to greatly facilitate the use of optoacoustic imaging technology in pre-clinical research and clinical diagnostics. The technique can equally benefit other biomedical imaging modalities, such as scanning fluorescence microscopy, optical coherence tomography or ultrasonography, thus optimizing their trade-offs between fast imaging performance and field-of-view.
Collapse
|
31
|
Ovsepian SV, Jiang Y, Sardella TC, Malekzadeh-Najafabadi J, Burton NC, Yu X, Ntziachristos V. Visualizing cortical response to optogenetic stimulation and sensory inputs using multispectral handheld optoacoustic imaging. PHOTOACOUSTICS 2020; 17:100153. [PMID: 32154103 PMCID: PMC7052434 DOI: 10.1016/j.pacs.2019.100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
To date, the vast majority of intra-vital neuroimaging systems applied in clinic and diagnostics is stationary with a rigid scanning element, requires specialized facilities and costly infrastructure. Here, we describe a simple yet radical approach for optoacoustic (photoacoustic) brain imaging in vivo using a light-weight handheld probe. It enables multispectral video-rate visualization of hemoglobin gradient changes in the cortex of adult rats induced by whisker and forelimb sensory inputs, as well as by optogenetic stimulation of intra-cortical connections. With superb penetration and molecular specificity, described here in method holds major promises for future applications in research, routine ambulatory neuroimaging, and diagnostics.
Collapse
Affiliation(s)
- Saak V. Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Munich School of Bioengineering and Chair of Biological Imaging at Technical University Munich, Munich, Germany
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Praha 10, Czech Republic
| | - Yuanyuan Jiang
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | | | - Jaber Malekzadeh-Najafabadi
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Munich School of Bioengineering and Chair of Biological Imaging at Technical University Munich, Munich, Germany
| | | | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Munich School of Bioengineering and Chair of Biological Imaging at Technical University Munich, Munich, Germany
| |
Collapse
|
32
|
Subochev P, Smolina E, Sergeeva E, Kirillin M, Orlova A, Kurakina D, Emyanov D, Razansky D. Toward whole-brain in vivo optoacoustic angiography of rodents: modeling and experimental observations. BIOMEDICAL OPTICS EXPRESS 2020; 11:1477-1488. [PMID: 32206423 PMCID: PMC7075595 DOI: 10.1364/boe.377670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 05/18/2023]
Abstract
Cerebrovascular imaging of rodents is one of the trending applications of optoacoustics aimed at studying brain activity and pathology. Imaging of deep brain structures is often hindered by sub-optimal arrangement of the light delivery and acoustic detection systems. In our work we revisit the physics behind opto-acoustic signal generation for theoretical evaluation of optimal laser wavelengths to perform cerebrovascular optoacoustic angiography of rodents beyond the penetration barriers imposed by light diffusion in highly scattering and absorbing brain tissues. A comprehensive model based on diffusion approximation was developed to simulate optoacoustic signal generation using optical and acoustic parameters closely mimicking a typical murine brain. The model revealed three characteristic wavelength ranges in the visible and near-infrared spectra optimally suited for imaging cerebral vasculature of different size and depth. The theoretical conclusions are confirmed by numerical simulations while in vivo imaging experiments further validated the ability to accurately resolve brain vasculature at depths ranging between 0.7 and 7 mm.
Collapse
Affiliation(s)
- Pavel Subochev
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod, Russia
| | - Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod, Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod, Russia
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod, Russia
| | - Daniil Emyanov
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod, Russia
| | - Daniel Razansky
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
33
|
Optoacoustic brain stimulation at submillimeter spatial precision. Nat Commun 2020; 11:881. [PMID: 32060282 PMCID: PMC7021819 DOI: 10.1038/s41467-020-14706-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/17/2020] [Indexed: 02/08/2023] Open
Abstract
Low-intensity ultrasound is an emerging modality for neuromodulation. Yet, transcranial neuromodulation using low-frequency piezo-based transducers offers poor spatial confinement of excitation volume, often bigger than a few millimeters in diameter. In addition, the bulky size limits their implementation in a wearable setting and prevents integration with other experimental modalities. Here, we report spatially confined optoacoustic neural stimulation through a miniaturized Fiber-Optoacoustic Converter (FOC). The FOC has a diameter of 600 μm and generates omnidirectional ultrasound wave locally at the fiber tip through the optoacoustic effect. We show that the acoustic wave generated by FOC can directly activate individual cultured neurons and generate intracellular Ca2+ transients. The FOC activates neurons within a radius of 500 μm around the fiber tip, delivering superior spatial resolution over conventional piezo-based low-frequency transducers. Finally, we demonstrate direct and spatially confined neural stimulation of mouse brain and modulation of motor activity in vivo. Low-intensity ultrasound can be used for neuromodulation in vivo, but it has poor spatial confinement and can result in unwanted cochlear pathway activation. Here the authors use the optoacoustic effect to generate spatially confined ultrasound waves to activate neurons within a 500 μm radius in the mouse brain.
Collapse
|
34
|
Lee CR, Najafizadeh L, Margolis DJ. Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Struct Funct 2020; 225:467-480. [PMID: 32006147 DOI: 10.1007/s00429-019-02001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from diverse brain regions that have been enabled by chronic in vivo cellular imaging. Insight into the neural basis of learning and decision-making, in particular, benefit from the ability to acquire longitudinal data from genetically identified neuronal populations, deep brain areas, and subcellular structures. We propose that combining chronic imaging with further experimental and computational innovations will advance our understanding of the neural circuit mechanisms of brain function.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
35
|
Zhao T, Desjardins AE, Ourselin S, Vercauteren T, Xia W. Minimally invasive photoacoustic imaging: Current status and future perspectives. PHOTOACOUSTICS 2019; 16:100146. [PMID: 31871889 PMCID: PMC6909166 DOI: 10.1016/j.pacs.2019.100146] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 09/30/2019] [Indexed: 05/09/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging modality that is based on optical absorption contrast, capable of revealing distinct spectroscopic signatures of tissue at high spatial resolution and large imaging depths. However, clinical applications of conventional non-invasive PAI systems have been restricted to examinations of tissues at depths less than a few cm due to strong light attenuation. Minimally invasive photoacoustic imaging (miPAI) has greatly extended the landscape of PAI by delivering excitation light within tissue through miniature fibre-optic probes. In the past decade, various miPAI systems have been developed with demonstrated applicability in several clinical fields. In this article, we present an overview of the current status of miPAI and our thoughts on future perspectives.
Collapse
Affiliation(s)
- Tianrui Zhao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Wenfeng Xia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
36
|
Ovsepian SV, Olefir I, Ntziachristos V. Advances in Optoacoustic Neurotomography of Animal Models. Trends Biotechnol 2019; 37:1315-1326. [PMID: 31662189 DOI: 10.1016/j.tibtech.2019.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Unlike traditional optical methods, optoacoustic imaging is less sensitive to scattering of ballistic photons, so it is capable of high-resolution interrogation at a greater depth. By integrating video-rate visualization with multiplexing and sensing a range of endogenous and exogenous chromophores, optoacoustic imaging has matured into a versatile noninvasive investigation modality with rapidly expanding use in biomedical research. We review the principal features of the technology and discuss recent advances it has enabled in structural, functional, and molecular neuroimaging in small-animal models. In extending the boundaries of noninvasive observation beyond the reach of customary photonic methods, the latest developments in optoacoustics have substantially advanced neuroimaging inquiry, with promising implications for basic and translational studies.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, 116 36 Prague, Czech Republic.
| | - Ivan Olefir
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany.
| |
Collapse
|
37
|
Chapman CAR, Smith TM, Kelly M, Avery J, Rouanet T, Aristovich K, Chew DJ, Holder DS. Optimisation of bioimpedance measurements of neuronal activity with an ex vivo preparation of Cancer pagurus peripheral nerves. J Neurosci Methods 2019; 327:108322. [PMID: 31419473 DOI: 10.1016/j.jneumeth.2019.108322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND In mammals, fast neural Electrical Impedance Tomography (EIT) can image the myelinated component of the compound action potentials (CAP) using a nerve cuff. If applied to unmyelinated fibres this has great potential to improve selective neuromodulation ("electroceuticals") to avoid off-target effects. Previously, bioimpedance recordings were averaged from unmyelinated crab leg nerve fibres, but the signal to noise ratio (SNR) needs improving. NEW METHOD Currently, functional non-invasive neuronal imaging is accomplished through surface electrodes or genetically expressed indicators that provide good spatial, but poor temporal, resolution. Here is an improved method for bioimpedance measurements from a model of unmyelinated fibres to enable optimisation through improvement of the 1) signal processing measurement paradigm, 2) neurophysiology, and 3) electrode-nerve interface. RESULTS For bioimpedance recordings, the recruitment and necessity of the CAP was quantified and saline significantly improved the SNR. An improved protocol resulted in averaging not being required, as sequentially recorded traces produced bioimpedance changes of -0.232 ± 0.064% that did not show phase or timing related artefacts. COMPARISON WITH EXISTING METHOD Here, two bioimpedance traces displayed an SNR of ≥3:1, while previously over >100 averages were required with greater inter-experimental variability. 10 paired traces were averaged for an SNR of ≥9:1, or near real-time measurement. CONCLUSIONS This method facilitates further studies aiming to enable non-invasive localization of fascicular activity in unmyelinated fibres within peripheral nerves. This technique could ultimately produce the first 3-D tomographic images to help guide selective neuromodulation using bioelectric devices.
Collapse
Affiliation(s)
- Christopher A R Chapman
- EIT Group, Department of Medical Physics & Biomedical Engineering, University College London, WC1E 6BT, UK
| | - Trevor M Smith
- EIT Group, Department of Medical Physics & Biomedical Engineering, University College London, WC1E 6BT, UK.
| | - Max Kelly
- EIT Group, Department of Medical Physics & Biomedical Engineering, University College London, WC1E 6BT, UK
| | - James Avery
- EIT Group, Department of Medical Physics & Biomedical Engineering, University College London, WC1E 6BT, UK
| | - Theo Rouanet
- EIT Group, Department of Medical Physics & Biomedical Engineering, University College London, WC1E 6BT, UK
| | - Kirill Aristovich
- EIT Group, Department of Medical Physics & Biomedical Engineering, University College London, WC1E 6BT, UK
| | - Daniel J Chew
- Galvani Bioelectronics, Neuromodulation Devices Team, Hertfordshire, Stevenage, SG1 2NY, UK
| | - David S Holder
- EIT Group, Department of Medical Physics & Biomedical Engineering, University College London, WC1E 6BT, UK
| |
Collapse
|
38
|
Xu Z, Sun N, Cao R, Li Z, Liu Q, Hu S. Cortex-wide multiparametric photoacoustic microscopy based on real-time contour scanning. NEUROPHOTONICS 2019; 6:035012. [PMID: 31548975 PMCID: PMC6752259 DOI: 10.1117/1.nph.6.3.035012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
Large-scale, high-resolution imaging of cerebral hemodynamics is essential for brain research. Uniquely capable of comprehensive quantification of cerebral hemodynamics and oxygen metabolism in rodents based on the endogenous hemoglobin contrast, multiparametric photoacoustic microscopy (PAM) is ideally suited for this purpose. However, the out-of-focus issue due to the uneven surface of the rodent brain results in inaccurate PAM measurements and presents a significant challenge to cortex-wide multiparametric recording. We report a large-scale, high-resolution, multiparametric PAM system based on real-time surface contour extraction and scanning, which avoids the prescan and offline calculation of the contour map required by previously reported contour-scanning strategies. The performance of this system has been demonstrated in both phantoms and the live mouse brain through a thinned-skull window. Side-by-side comparison shows that the real-time contour scanning not only improves the quality of structural images by addressing the out-of-focus issue but also ensures accurate measurements of the concentration of hemoglobin ( C Hb ), oxygen saturation of hemoglobin ( sO 2 ), and cerebral blood flow (CBF) over the entire mouse cortex. Furthermore, quantitative analysis reveals how the out-of-focus issue impairs the measurements of C Hb , sO 2 , and CBF.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Wuhan University of Technology, School of Information Engineering, Wuhan, China
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
| | - Naidi Sun
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
| | - Rui Cao
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
| | - Zhengying Li
- Wuhan University of Technology, School of Information Engineering, Wuhan, China
| | - Quan Liu
- Wuhan University of Technology, School of Information Engineering, Wuhan, China
| | - Song Hu
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
- Address all correspondence to Song Hu, E-mail:
| |
Collapse
|
39
|
Liu Y, Liu H, Yan H, Liu Y, Zhang J, Shan W, Lai P, Li H, Ren L, Li Z, Nie L. Aggregation-Induced Absorption Enhancement for Deep Near-Infrared II Photoacoustic Imaging of Brain Gliomas In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801615. [PMID: 31016108 PMCID: PMC6469237 DOI: 10.1002/advs.201801615] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/10/2018] [Indexed: 05/18/2023]
Abstract
The delineation of brain gliomas margins still poses challenges to precise imaging and targeted therapy, mainly due to strong light attenuation of the skull and high background interference. With deep penetration and high sensitivity, photoacoustic (PA) imaging (PAI) in the second near-infrared (NIR II) window holds great potential for brain gliomas imaging. Herein, mesoionic dye A1094 encapsulated in Arg-Gly-Asp-modified hepatitis B virus core protein (RGD-HBc) is designed and synthesized for effective NIR II PAI of brain gliomas. An aggregation-induced absorption enhancement mechanism is discovered in vitro and in vivo. It is also demonstrated that A1094@RGD-HBc, with an enhanced absorption in the NIR II window, displays ninefold PA signal amplification in vivo, allowing for precise PAI of the brain gliomas at a depth up to 5.9 mm. In addition, with the application of abovementioned agent, high-resolution PAI and ultrasensitive single photon emission computed tomography images of brain gliomas are acquired with accurate co-localization. Collectively, the results suggest great promise of A1094@RGD-HBc for diagnostic imaging and precise delineation of brain gliomas in clinical applications.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Huixiang Yan
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhen518020China
| | - Yingchao Liu
- Department of NeurosurgeryProvincial Hospital Affiliated to Shandong UniversityShandong250021China
| | - Jinsen Zhang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Wenjun Shan
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen361005China
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Honghui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Lei Ren
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen361005China
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
40
|
Mishra K, Fuenzalida-Werner JP, Ntziachristos V, Stiel AC. Photocontrollable Proteins for Optoacoustic Imaging. Anal Chem 2019; 91:5470-5477. [PMID: 30933491 DOI: 10.1021/acs.analchem.9b01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photocontrollable proteins revolutionized life-science imaging due to their contribution to subdiffraction-resolution optical microscopy. They might have yet another lasting impact on photo- or optoacoustic imaging (OA). OA combines optical contrast with ultrasound detection enabling high-resolution real-time in vivo imaging well-beyond the typical penetration depth of optical methods. While OA already showed numerous applications relying on endogenous contrast from blood hemoglobin or lipids, its application in the life-science was limited by a lack of labels overcoming the strong signal from the aforementioned endogenous absorbers. Here, a number of recent studies showed that photocontrollable proteins provide the means to overcome this barrier eventually enabling OA to image small cell numbers in a complete organism in vivo. In this Feature article, we introduce the key photocontrollable proteins, explain the basic concepts, and highlight achievements that have been already made.
Collapse
Affiliation(s)
- Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI) , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | | | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI) , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM) , Technische Universität München , 81675 Munich , Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI) , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| |
Collapse
|
41
|
Ren W, Skulason H, Schlegel F, Rudin M, Klohs J, Ni R. Automated registration of magnetic resonance imaging and optoacoustic tomography data for experimental studies. NEUROPHOTONICS 2019; 6:025001. [PMID: 30989087 PMCID: PMC6446211 DOI: 10.1117/1.nph.6.2.025001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/01/2019] [Indexed: 05/07/2023]
Abstract
Multimodal imaging combining optoacoustic tomography (OAT) with magnetic resonance imaging (MRI) enables spatiotemporal resolution complementarity, improves accurate quantification, and thus yields more insights into physiology and pathophysiology. However, only manual landmark based coregistration of OAT-MRI has been used so far. We developed a toolbox (RegOA), which frames an automated registration pipeline to align OAT with high-field MR images based on mutual information. We assessed the performance of the registration method using images acquired on one phantom with fiducial markers and in vivo/ex vivo data of mouse heads/brain. The accuracy and robustness of the registration are improved using a two-step registration method with preprocessing of OAT and MRI data. The major advantages of our approach are minimal user input and quantitative assessment of the registration error. The registration with MR and standard reference atlas enables regional information extraction, facilitating the accurate, objective, and rapid analysis of large groups of rodent OAT and MR images.
Collapse
Affiliation(s)
- Wuwei Ren
- University of Zurich and ETH Zurich, Institute for Biomedical Engineering, Zurich, Switzerland
- University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Hlynur Skulason
- University of Zurich and ETH Zurich, Institute for Biomedical Engineering, Zurich, Switzerland
| | - Felix Schlegel
- University of Zurich and ETH Zurich, Institute for Biomedical Engineering, Zurich, Switzerland
| | - Markus Rudin
- University of Zurich and ETH Zurich, Institute for Biomedical Engineering, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
| | - Jan Klohs
- University of Zurich and ETH Zurich, Institute for Biomedical Engineering, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
| | - Ruiqing Ni
- University of Zurich and ETH Zurich, Institute for Biomedical Engineering, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
- Address all correspondence to Ruiqing Ni, E-mail:
| |
Collapse
|
42
|
Song C, Jin T, Yan R, Qi W, Huang T, Ding H, Tan SH, Nguyen NT, Xi L. Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels. LAB ON A CHIP 2018; 18:1292-1297. [PMID: 29619468 DOI: 10.1039/c8lc00106e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports a novel method, opto-acousto-fluidic microscopy, for label-free detection of droplets and cells in microfluidic networks. Leveraging the optoacoustic effect, the microscopic system possesses capabilities of visualizing flowing droplets, analyzing droplet contents, and detecting cell populations encapsulated in droplets via the sensing of acoustic waves induced by the intrinsic light-absorbance of matter.
Collapse
Affiliation(s)
- Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|