1
|
Mladenić T, Wagner J, Kadivnik M, Pereza N, Ostojić S, Peterlin B, Dević Pavlić S. Protective Effect of EBF Transcription Factor 1 ( EBF1) Polymorphism in Sporadic and Familial Spontaneous Preterm Birth: Insights from a Case-Control Study. Int J Mol Sci 2024; 25:11192. [PMID: 39456973 PMCID: PMC11508472 DOI: 10.3390/ijms252011192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the potential role of specific single-nucleotide polymorphisms (SNPs) in the genes Astrotactin 1 (ASTN1), EBF Transcription Factor 1 (EBF1), Eukaryotic Elongation Factor, Selenocysteine-tRNA Specific (EEFSEC), Microtubule-Associated Serine/Threonine Kinase 1 (MAST1), and Tumor Necrosis Factor Alpha (TNF-α) to assess whether these genetic variants contribute to the risk of spontaneous preterm birth (sPTB). A case-control study was conducted involving 573 women from Croatia and Slovenia: 248 with sporadic sPTB (positive personal and negative family history of sPTB before 37 weeks' gestation), 44 with familial sPTB (positive personal and family history of sPTB before 37 weeks' gestation), and 281 control women. The analysis of ASTN1 rs146756455, EBF1 rs2963463, EBF1 rs2946169, EEFSEC rs201450565, MAST1 rs188343966, and TNF-α rs1800629 SNPs was performed using TaqMan real-time PCR. p-values were Bonferroni-adjusted for multiple comparisons. EBF1 SNP rs2963463 was significantly associated with sPTB (p adj = 0.03). Women carrying the CC genotype had a 3-4-times lower risk of sPTB (p adj < 0.0001). In addition, a significant difference in the frequency of the minor C allele was observed when comparing familial sPTB cases with controls (p adj < 0.0001). All other associations were based on unadjusted p-values. The minor T allele of EBF1 SNP rs2946169 was more frequent in sPTB cases overall than in controls, especially in sporadic sPTB (p = 0.045). Similarly, the CC genotype of ASTN1 SNP rs146756455 was more frequent in sporadic sPTB cases compared to controls (p = 0.019). Finally, the TNF-α SNP rs1800629 minor A allele and AA genotype were more common in the familial sPTB group compared to sporadic sPTB and controls (p < 0.05). The EBF1 SNP rs2963463 polymorphism showed a protective effect in the pathogenesis of sPTB, particularly in women carrying the CC genotype. Moreover, EBF1 SNP rs2946169 and ASTN1 SNP rs146756455, as well as TNF-α SNP rs1800629, were associated with an increased risk of sPTB, representing suggestive potential risk factors for sporadic and familial sPTB, respectively.
Collapse
Affiliation(s)
- Tea Mladenić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia;
| | - Mirta Kadivnik
- Department of Obstetrics and Gynecology, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia;
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Nina Pereza
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| |
Collapse
|
2
|
Pan Y, Wang X, Sun J, Liu C, Peng J, Li Q. Multimodal joint deconvolution and integrative signature selection in proteomics. Commun Biol 2024; 7:493. [PMID: 38658803 PMCID: PMC11043077 DOI: 10.1038/s42003-024-06155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Deconvolution is an efficient approach for detecting cell-type-specific (cs) transcriptomic signals without cellular segmentation. However, this type of methods may require a reference profile from the same molecular source and tissue type. Here, we present a method to dissect bulk proteome by leveraging tissue-matched transcriptome and proteome without using a proteomics reference panel. Our method also selects the proteins contributing to the cellular heterogeneity shared between bulk transcriptome and proteome. The deconvoluted result enables downstream analyses such as cs-protein Quantitative Trait Loci (cspQTL) mapping. We benchmarked the performance of this multimodal deconvolution approach through CITE-seq pseudo bulk data, a simulation study, and the bulk multi-omics data from human brain normal tissues and breast cancer tumors, individually, showing robust and accurate cell abundance quantification across different datasets. This algorithm is implemented in a tool MICSQTL that also provides cspQTL and multi-omics integrative visualization, available at https://bioconductor.org/packages/MICSQTL .
Collapse
Affiliation(s)
- Yue Pan
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Genetics, Genomics & Informatics, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Jiao Sun
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Qian Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Jacinto JGP, Häfliger IM, Letko A, Weber J, Freick M, Gentile A, Drögemüller C, Agerholm JS. Multiple independent de novo mutations are associated with the development of schistosoma reflexum, a lethal syndrome in cattle. Vet J 2024; 304:106069. [PMID: 38281659 DOI: 10.1016/j.tvjl.2024.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Schistosoma reflexum (SR) is a lethal congenital syndrome characterized by U-shaped dorsal retroflexion of the spine and exposure of abdominal viscera. SR is usually associated with severe dystocia. The syndrome is thought to be inherited as a Mendelian trait. We collected a series of 23 SR-affected calves from four breeds (20 Holstein, one Red Danish, one Limousin, one Romagnola) and performed whole-genome sequencing (WGS). WGS was performed on 51 cattle, including 14 cases with parents (trio-based; Group 1) and nine single cases (solo-based; Group 2). Sequencing-based genome-wide association studies with 20 Holstein cases and 154 controls showed no association (above Bonferroni threshold; P-value<3 ×10-09). Assuming a monogenic recessive inheritance, no region of shared homozygosity was observed, suggesting heterogeneity. Alternatively, the presence of possible dominant acting de novo mutations were assessed. In Group 1, heterozygous private variants, absent in both parents, were found in seven cases. These involved the ACTL6A, FLNA, GLG1, IQSEC2, MAST3, MBTPS2, and MLLT1 genes. In addition, heterozygous private variants affecting the genes DYNC1LI1, PPP2R2B, SCAF8, SUGP1, and UBP1 were identified in five cases from Group 2. The detected frameshift and missense variants are predicted to cause haploinsufficiency. Each of these 12 affected genes belong to the class of haploinsufficient loss-of-function genes or are involved in embryonic and pre-weaning lethality or are known to be associated with severe malformation syndromes in humans and/or mice. This study presents for the first time a detailed genomic evaluation of bovine SR, suggesting that independent de novo mutations may explain the sporadic occurrence of SR in cattle.
Collapse
Affiliation(s)
- J G P Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (Bologna), Italy; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - I M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - A Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - J Weber
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - M Freick
- Faculty of Agriculture/Environment/Chemistry, HTW Dresden-University of Applied Sciences, 01326 Dresden, Germany
| | - A Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (Bologna), Italy
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland.
| | - J S Agerholm
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Allé 5A, 2630 Taastrup, Denmark
| |
Collapse
|
4
|
Yi S, Tang X, Chen F, Wang L, Chen J, Yang Z, Huang M, Yi S, Huang L, Yang Q, Yang S, Pan P, Qin Z, Luo J. A genetic variant in the MAST1 gene is associated with mega-corpus-callosum syndrome with hypoplastic cerebellar vermis, in a fetus. Mol Genet Genomic Med 2024; 12:e2358. [PMID: 38284444 PMCID: PMC10785557 DOI: 10.1002/mgg3.2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations is a rare neurological disorder that is associated with typical clinical and imaging features. The syndrome is caused by pathogenic variants in the MAST1 gene, which encodes a microtubule-associated protein that is predominantly expressed in postmitotic neurons in the developing nervous system. METHODS Fetal DNA from umbilical cord blood samples and genomic DNA from peripheral blood lymphocytes were subjected to whole-exome sequencing. The potential causative variants were verified by Sanger sequencing. RESULTS A 26-year-old primigravid woman was referred to our prenatal center at 25 weeks of gestation due to abnormal ultrasound findings in the brain of the fetus. The brain abnormalities included wide cavum septum pellucidum, shallow and incomplete bilateral lateral fissure cistern, bilateral dilated lateral ventricles, hyperplastic corpus callosum, lissencephaly, and cortical dysplasia. No obvious abnormalities were observed in the brainstem or cerebellum hemispheres, but the cerebellum vermis was small. Whole-exome sequencing identified a de novo, heterozygous missense variant, c.695T>C(p.Leu232Pro), in the MAST1 gene and a genetic diagnosis of mega-corpus-callosum syndrome was considered. CONCLUSION This study is the first prenatal case of MAST1-related disorder reported in the Chinese population and has expanded the mutation spectrum of the MAST1 gene.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Linlin Wang
- Department of ObstetricsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Junjie Chen
- Department of RadiologyMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zuojian Yang
- Department of UltrasoundMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Minpan Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Shuihua Yang
- Department of UltrasoundMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Pingshan Pan
- Department of ObstetricsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention InstituteMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
5
|
Heide M, Huttner WB. Causes of microcephaly in human-theoretical considerations. Front Neurosci 2023; 17:1306166. [PMID: 38075281 PMCID: PMC10701273 DOI: 10.3389/fnins.2023.1306166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023] Open
Abstract
As is evident from the theme of the Research Topic “Small Size, Big Problem: Understanding the Molecular Orchestra of Brain Development from Microcephaly,” the pathomechanisms leading to mirocephaly in human are at best partially understood. As molecular cell biologists and developmental neurobiologists, we present here a treatise with theoretical considerations that systematically dissect possible causes of microcephaly, which we believe is timely. Our considerations address the cell types affected in microcephaly, that is, the cortical stem and progenitor cells as well as the neurons and macroglial cell generated therefrom. We discuss issues such as progenitor cell types, cell lineages, modes of cell division, cell proliferation and cell survival. We support our theoretical considerations by discussing selected examples of factual cases of microcephaly, in order to point out that there is a much larger range of possible pathomechanisms leading to microcephaly in human than currently known.
Collapse
Affiliation(s)
- Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
6
|
Martínez-Rubio D, Hinarejos I, Argente-Escrig H, Marco-Marín C, Lozano MA, Gorría-Redondo N, Lupo V, Martí-Carrera I, Miranda C, Vázquez-López M, García-Pérez A, Marco-Hernández AV, Tomás-Vila M, Aguilera-Albesa S, Espinós C. Genetic Heterogeneity Underlying Phenotypes with Early-Onset Cerebellar Atrophy. Int J Mol Sci 2023; 24:16400. [PMID: 38003592 PMCID: PMC10671053 DOI: 10.3390/ijms242216400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | - Isabel Hinarejos
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | | | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - María Ana Lozano
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Nerea Gorría-Redondo
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Vincenzo Lupo
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Itxaso Martí-Carrera
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Donostia, 20014 Donostia, Spain
| | - Concepción Miranda
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - María Vázquez-López
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - Asunción García-Pérez
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari Doctor, Peset, 46017 València, Spain
| | - Miguel Tomás-Vila
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari i Politècnic La Fe, 46026 València, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Biotechnology Department, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
7
|
Sloboda N, Renard E, Lambert L, Bonnet C, Leheup B, Todosi C, Schmitt E, Feillet F, Feigerlova E, Piton A, Journeau P, Klein M, Maillard L, Chelly J, Renaud M. MAST1-related mega-corpus-callosum syndrome with central hypogonadism. Eur J Med Genet 2023; 66:104853. [PMID: 37758169 DOI: 10.1016/j.ejmg.2023.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/20/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Heterozygous variations in microtubule-associated serine/threonine kinase 1 gene (MAST1) were recently described in the mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM, MIM 618273), revealing the importance of the MAST genes family in global brain development. To date, patients with MAST1 gene mutations were mostly young children with central nervous system involvement, impaired motor function, speech delay, and brain magnetic resonance imaging (MRI) abnormalities. Here, we report the clinical presentation of an adult patient with a rare and de novo MAST1 mutation with central hypogonadism that could extend this phenotype. METHODS A panel of 333 genes involved in epilepsy or cortical development was sequenced in the described patient. Routine biochemical analyses were performed, and hormonal status was investigated. RESULT We report a 22-year-old man with a de novo, heterozygous missense variant in MAST1 (Chr19(GRCh37):g.12975903G > A, NP_055790.1:p.Gly517Ser). He presented with an epileptic encephalopathy associated with cerebral malformations, short stature, hypogonadotropic hypogonadism, and secondary osteopenia. CONCLUSION This is the first patient with MAST1 gene mutation described with central hypogonadism, which may be associated with the phenotype of MCCCHCM syndrome.
Collapse
Affiliation(s)
- Natacha Sloboda
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France
| | - Emeline Renard
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France; Service de MédecineInfantile, Centre Hospitalier Régional Universitaire, Nancy, France.
| | - Laetitia Lambert
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| | - Céline Bonnet
- Laboratoire de Génétique, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Bruno Leheup
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| | - Calina Todosi
- Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Laboratoire de Génétique, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Emmanuelle Schmitt
- Service de Neuroradiologie, Centre Hospitalier Régional Universitaire, Nancy, France
| | - François Feillet
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France; Service de MédecineInfantile, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Eva Feigerlova
- Service d'Endocrinologie, Centre Hospitalier Régional Universitaire, Nancy, France; INSERM UMR_S 1116 - DCAC, Medical Faculty, Université de Lorraine, Nancy, France
| | - Amélie Piton
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091, Strasbourg, France
| | - Pierre Journeau
- Service de Chirurgie Orthopédique Infantile, Hôpital d'Enfants, Vandoeuvre les Nancy, France
| | - Marc Klein
- Service d'Endocrinologie, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Louis Maillard
- Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Service de Neurologie, Centre Hospitalier Régional Universitaire, Nancy, France; CNRS UMR7039,CRAN, Université de Lorraine, Nancy, France
| | - Jamel Chelly
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091, Strasbourg, France
| | - Mathilde Renaud
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| |
Collapse
|
8
|
Medvedev KE, Schaeffer RD, Pei J, Grishin NV. Pathogenic mutation hotspots in protein kinase domain structure. Protein Sci 2023; 32:e4750. [PMID: 37572333 PMCID: PMC10464295 DOI: 10.1002/pro.4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Control of eukaryotic cellular function is heavily reliant on the phosphorylation of proteins at specific amino acid residues, such as serine, threonine, tyrosine, and histidine. Protein kinases that are responsible for this process comprise one of the largest families of evolutionarily related proteins. Dysregulation of protein kinase signaling pathways is a frequent cause of a large variety of human diseases including cancer, autoimmune, neurodegenerative, and cardiovascular disorders. In this study, we mapped all pathogenic mutations in 497 human protein kinase domains from the ClinVar database to the reference structure of Aurora kinase A (AURKA) and grouped them by the relevance to the disease type. Our study revealed that the majority of mutation hotspots associated with cancer are situated within the catalytic and activation loops of the kinase domain, whereas non-cancer-related hotspots tend to be located outside of these regions. Additionally, we identified a hotspot at residue R371 of the AURKA structure that has the highest number of exclusively non-cancer-related pathogenic mutations (21) and has not been previously discussed.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - R. Dustin Schaeffer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Nick V. Grishin
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
9
|
Akula SK, Chen AY, Neil JE, Shao DD, Mo A, Hylton NK, DiTroia S, Ganesh VS, Smith RS, O’Kane K, Yeh RC, Marciano JH, Kirkham S, Kenny CJ, Song JHT, Al Saffar M, Millan F, Harris DJ, Murphy AV, Klemp KC, Braddock SR, Brand H, Wong I, Talkowski ME, O’Donnell-Luria A, Lai A, Hill RS, Mochida GH, Doan RN, Barkovich AJ, Yang E, Amrom D, Andermann E, Poduri A, Walsh CA. Exome Sequencing and the Identification of New Genes and Shared Mechanisms in Polymicrogyria. JAMA Neurol 2023; 80:980-988. [PMID: 37486637 PMCID: PMC10366952 DOI: 10.1001/jamaneurol.2023.2363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/23/2023] [Indexed: 07/25/2023]
Abstract
Importance Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.
Collapse
Affiliation(s)
- Shyam K. Akula
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
- Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, Massachusetts
| | - Allen Y. Chen
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Division of Rheumatology, Hospital for Special Surgery, New York, New York
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Diane D. Shao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Alisa Mo
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Norma K. Hylton
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
- Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, Massachusetts
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Center for Genomic Medicine, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Vijay S. Ganesh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Richard S. Smith
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Katherine O’Kane
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Jack H. Marciano
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Samantha Kirkham
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Connor J. Kenny
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Janet H. T. Song
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Muna Al Saffar
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics and Genomics, United Arab Emirates University, United Arab Emirates
| | | | - David J. Harris
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Andrea V. Murphy
- Division of Medical Genetics, Our Lady of the Lake Health System, Baton Rouge, Louisiana
| | - Kara C. Klemp
- Division of Medical Genetics, Department of Pediatrics Saint Louis University School of Medicine, St Louis, Missouri
| | - Stephen R. Braddock
- Division of Medical Genetics, Department of Pediatrics Saint Louis University School of Medicine, St Louis, Missouri
| | - Harrison Brand
- Program in Medical and Population Genetics, Center for Genomic Medicine, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Isaac Wong
- Program in Medical and Population Genetics, Center for Genomic Medicine, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Michael E. Talkowski
- Program in Medical and Population Genetics, Center for Genomic Medicine, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Anne O’Donnell-Luria
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Program in Medical and Population Genetics, Center for Genomic Medicine, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Abbe Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Robert Sean Hill
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Ganeshwaran H. Mochida
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
| | - Ryan N. Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
| | - A. James Barkovich
- Benioff Children’s Hospital, Departments of Radiology, Pediatrics, Neurology, and Neurological Surgery, University of California, San Francisco, San Francisco
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
| | - Dina Amrom
- Neurogenetics Unit, Montreal Neurological Hospital and Institute, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Neurology, Queen Fabiola Children’s University Hospital, Brussels, Belgium
- Pediatric Neurology Unit, Centre Hospitalier de Luxembourg, Grand-Duchy of Luxembourg
| | - Eva Andermann
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Pediatric Neurology Unit, Centre Hospitalier de Luxembourg, Grand-Duchy of Luxembourg
- Epilepsy Research Group, Montreal Neurological Hospital and Institute, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Annapurna Poduri
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, and Allen Discovery Center for Human Brain Evolution, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts
- Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, Massachusetts
- Program in Medical and Population Genetics, Center for Genomic Medicine, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
10
|
Liu H, Wang L, Xu H, Tan B, Yi Q, Deng H, Chen Y, He B, Tian J, Zhu J. Quantitative proteomic and phosphoproteomic analysis reveal the relationship between mitochondrial dysfunction and cytoskeletal remodeling in hiPSC-CMs deficient in PINK1. J Transl Med 2023; 21:581. [PMID: 37649075 PMCID: PMC10466879 DOI: 10.1186/s12967-023-04467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are seed cells that can be used for alternative treatment of myocardial damage. However, their immaturity limits their clinical application. Mitochondrial development accompanies cardiomyocyte maturation, and PINK1 plays an important role in the regulation of mitochondrial quality. However, the role and mechanism of PINK1 in cardiomyocyte development remain unclear. METHODS We used proteomic and phosphoproteomic to identify protein and phosphosite changes in hiPSC-CMs deficient in PINK1. Bioinformatics analysis was performed to identify the potential biological functions and regulatory mechanisms of these differentially expressed proteins and validate potential downstream mechanisms. RESULTS Deletion of PINK1 resulted in mitochondrial structural breakdown and dysfunction, accompanied by disordered myofibrils arrangement. hiPSC-CMs deficient in PINK1 exhibited significantly decreased expression of mitochondrial ATP synthesis proteins and inhibition of the oxidative phosphorylation pathway. In contrast, the expression of proteins related to cardiac pathology was increased, and the phosphoproteins involved in cytoskeleton construction were significantly altered. Mechanistically, PINK1 deletion damaged the mitochondrial cristae of hiPSC-CMs and reduced the efficiency of mitochondrial respiratory chain assembly. CONCLUSION The significantly differentially expressed proteins identified in this study highlight the important role of PINK1 in regulating mitochondrial quality in hiPSC-CMs. PINK1-mediated mitochondrial respiratory chain assembly is the basis for mitochondrial function. Whereas the cytoskeleton may be adaptively altered in response to mitochondrial dysfunction caused by PINK1 deletion, inadequate energy supply hinders myocardial development. These findings facilitate the exploration of the mechanism of PINK1 in cardiomyocyte development and guide efforts to promote the maturation of hiPSC-CMs.
Collapse
Affiliation(s)
- Huiwen Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Xu
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Deng
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bolin He
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Blood Transfusion, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Rumpf M, Pautz S, Drebes B, Herberg FW, Müller HAJ. Microtubule-Associated Serine/Threonine (MAST) Kinases in Development and Disease. Int J Mol Sci 2023; 24:11913. [PMID: 37569286 PMCID: PMC10419289 DOI: 10.3390/ijms241511913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Microtubule-Associated Serine/Threonine (MAST) kinases represent an evolutionary conserved branch of the AGC protein kinase superfamily in the kinome. Since the discovery of the founding member, MAST2, in 1993, three additional family members have been identified in mammals and found to be broadly expressed across various tissues, including the brain, heart, lung, liver, intestine and kidney. The study of MAST kinases is highly relevant for unraveling the molecular basis of a wide range of different human diseases, including breast and liver cancer, myeloma, inflammatory bowel disease, cystic fibrosis and various neuronal disorders. Despite several reports on potential substrates and binding partners of MAST kinases, the molecular mechanisms that would explain their involvement in human diseases remain rather obscure. This review will summarize data on the structure, biochemistry and cell and molecular biology of MAST kinases in the context of biomedical research as well as organismal model systems in order to provide a current profile of this field.
Collapse
Affiliation(s)
- Marie Rumpf
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Sabine Pautz
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Benedikt Drebes
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Hans-Arno J. Müller
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| |
Collapse
|
12
|
Ying Z, Ge M, Yang W, Cai Y, Zhang N. Pineal anlage tumor: a case report and the literature review. Childs Nerv Syst 2023; 39:353-358. [PMID: 36471063 DOI: 10.1007/s00381-022-05763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Pineal anlage tumor is an extremely rare tumor which was considered as a subtype of pineovlatoma with an overall poor prognosis. This case-based review further summarize the clinical profile. METHODS A patient with pineal anlage tumor was reported, her clinical data and gene analysis results were recorded. RESULTS An 8-month-old girl, with an obvious enhancing pineal occupancy and obstructive hydrocephalus. Her histological and immunohistochemical findings contained rhabdomyoblastic, melanin pigment and cartilage island. The wholeexpme sequencing and genome-wide copy number variation sequencing were performed, no mutations associated with pineoblatoma as well as copy number variants were identified. In terms of treatment, our patient underwent subtotal resection without radiotherapy or chemotherapy, and the residual tumor enlarged 4 months after surgery. We have followed her up for 10 months, and the child is still alive. CONCLUSION Surgery combined radiotherapy and chemotherapy is still the best treatment currently,and genetic testing for patients is necessary.
Collapse
Affiliation(s)
- Zesheng Ying
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yingjie Cai
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Zhang X, Xiao N, Cao Y, Peng Y, Lian A, Chen Y, Wang P, Gu W, Xiao B, Yu J, Wang H, Shu L. De novo variants in MAST4 related to neurodevelopmental disorders with developmental delay and infantile spasms: Genotype-phenotype association. Front Mol Neurosci 2023; 16:1097553. [PMID: 36910266 PMCID: PMC9992645 DOI: 10.3389/fnmol.2023.1097553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Objective This study aims to prove that the de novo variants in MAST4 gene are associated with neurodevelopmental disorders (NDD) with developmental delay (DD) and infantile spasm (IS) and to determine the genotype-phenotype correlations. Methods Trio-based exome sequencing (ES) was performed on the four families enrolled in this study. We collected and systematically reviewed the four probands' clinical data, magnetic resonance images (MRI), and electroencephalography (EEG). We also carried out bioinformatics analysis by integrating published exome/genome sequencing data and human brain transcriptomic data. Results We described four patients whose median age of seizure onset was 5 months. The primary manifestation was infantile spasms with typical hypsarrhythmia on EEG. Developmental delays or intellectual disabilities varied among the four individuals. Three de novo missense variants in MAST4 gene were identified from four families, including chr5:66438324 (c.2693T > C: p.Ile898Thr) z, chr5:66459419 (c.4412C > T: p.Thr1471Ile), and chr5:66462662 (c.7655C > G:p.Ser2552Trp). The missense variant p.Ile898Thr is mapped to the AGC-kinase C-terminal with phosphatase activity. The other variant p.Ser2552Trp is located in a phosphoserine-modified residue which may affect cell membrane stability and signal transduction. Besides, the variant p.Thr1471Ile is a recurrent site screened out in two unrelated patients. Compared to private mutations (found only in a single family or a small population) of MAST4 in the gnomAD non-neuro subset, all de novo variants were predicted to be damaging or probably damaging through different bioinformatic analyses. Significantly higher CADD scores of the variant p.Thr1471Ile indicate more deleteriousness of the recurrent site. And the affected amino acids are highly conserved across multiple species. According to the Brainspan Atlas database, MAST4 is expressed primarily in the mediodorsal nucleus of the thalamus and medial prefrontal cortex during the prenatal period, potentially contributing to embryonic brain development. Conclusion Our results revealed that the variants of MAST4 gene might lead to neurodevelopmental disorders with developmental delay and infantile spasm. Thus, MAST4 variants should be considered the potential candidate gene in patients with neurodevelopmental disorders clinically marked by infantile spasms.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Neng Xiao
- Department of Pediatric Neurology, Chenzhou First People's Hospital, Chenzhou, China
| | - Yang Cao
- Department of Radiology, Chenzhou First People's Hospital, Chenzhou, China
| | - Ying Peng
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Aojie Lian
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Clinical Research Center for Placental Medicine in Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yuanlu Chen
- Department of Pharmacy, Chenzhou First People's Hospital, Chenzhou, China
| | - Pengchao Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Yu
- Department of Neurology, Children's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, Changsha, China
| | - Li Shu
- Department of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Cushion TD, Leca I, Keays DA. MAPping tubulin mutations. Front Cell Dev Biol 2023; 11:1136699. [PMID: 36875768 PMCID: PMC9975266 DOI: 10.3389/fcell.2023.1136699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Microtubules are filamentous structures that play a critical role in a diverse array of cellular functions including, mitosis, nuclear translocation, trafficking of organelles and cell shape. They are composed of α/β-tubulin heterodimers which are encoded by a large multigene family that has been implicated in an umbrella of disease states collectively known as the tubulinopathies. De novo mutations in different tubulin genes are known to cause lissencephaly, microcephaly, polymicrogyria, motor neuron disease, and female infertility. The diverse clinical features associated with these maladies have been attributed to the expression pattern of individual tubulin genes, as well as their distinct Functional repertoire. Recent studies, however, have highlighted the impact of tubulin mutations on microtubule-associated proteins (MAPs). MAPs can be classified according to their effect on microtubules and include polymer stabilizers (e.g., tau, MAP2, doublecortin), destabilizers (e.g., spastin, katanin), plus-end binding proteins (e.g., EB1-3, XMAP215, CLASPs) and motor proteins (e.g., dyneins, kinesins). In this review we analyse mutation-specific disease mechanisms that influence MAP binding and their phenotypic consequences, and discuss methods by which we can exploit genetic variation to identify novel MAPs.
Collapse
Affiliation(s)
- Thomas D Cushion
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - David A Keays
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
15
|
Tsumagari K, Sato Y, Shimozawa A, Aoyagi H, Okano H, Kuromitsu J. Co-expression network analysis of human tau-transgenic mice reveals protein modules associated with tau-induced pathologies. iScience 2022; 25:104832. [PMID: 35992067 PMCID: PMC9382322 DOI: 10.1016/j.isci.2022.104832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormally accumulated tau protein aggregates are one of the hallmarks of neurodegenerative diseases, including Alzheimer's disease (AD). In order to investigate proteomic alteration driven by tau aggregates, we implemented quantitative proteomics to analyze disease model mice expressing human MAPT P301S transgene (hTau-Tg) and quantified more than 9,000 proteins in total. We applied the weighted gene co-expression analysis (WGCNA) algorithm to the datasets and explored protein co-expression modules that were associated with the accumulation of tau aggregates and were preserved in proteomes of AD brains. This led us to identify four modules with functions related to neuroinflammatory responses, mitochondrial energy production processes (including the tricarboxylic acid cycle and oxidative phosphorylation), cholesterol biosynthesis, and postsynaptic density. Furthermore, a phosphoproteomics study uncovered phosphorylation sites that were highly correlated with these modules. Our datasets represent resources for understanding the molecular basis of tau-induced neurodegeneration, including AD.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshiaki Sato
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| | - Aki Shimozawa
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirofumi Aoyagi
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Junro Kuromitsu
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
16
|
Shu L, Xiao N, Qin J, Tian Q, Zhang Y, Li H, Liu J, Li Q, Gu W, Wang P, Wang H, Mao X. The Role of Microtubule Associated Serine/Threonine Kinase 3 Variants in Neurodevelopmental Diseases: Genotype-Phenotype Association. Front Mol Neurosci 2022; 14:775479. [PMID: 35095415 PMCID: PMC8790505 DOI: 10.3389/fnmol.2021.775479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To prove microtubule associated serine/threonine kinase 3 (MAST3) gene is associated with neurodevelopmental diseases (NDD) and the genotype-phenotype correlation.Methods: Trio exome sequencing (trio ES) was performed on four NDD trios. Bioinformatic analysis was conducted based on large-scale genome sequencing data and human brain transcriptomic data. Further in vivo zebrafish studies were performed.Results: In our study, we identified four de novo MAST3 variants (NM_015016.1: c.302C > T:p.Ser101Phe; c.311C > T:p.Ser104Leu; c.1543G > A:p.Gly515Ser; and c.1547T > C:p.Leu516Pro) in four patients with developmental and epileptic encephalopathy (DEE) separately. Clinical heterogeneities were observed in patients carrying variants in domain of unknown function (DUF) and serine-threonine kinase (STK) domain separately. Using the published large-scale exome sequencing data, higher CADD scores of missense variants in DUF domain were found in NDD cohort compared with gnomAD database. In addition, we obtained an excess of missense variants in DUF domain when compared autistic spectrum disorder (ASD) cohort with gnomAD database, similarly an excess of missense variants in STK domain when compared DEE cohort with gnomAD database. Based on Brainspan datasets, we showed that MAST3 expression was significantly upregulated in ASD and DEE-related brain regions and was functionally linked with DEE genes. In zebrafish model, abnormal morphology of central nervous system was observed in mast3a/b crispants.Conclusion: Our results support the possibility that MAST3 is a novel gene associated with NDD which could expand the genetic spectrum for NDD. The genotype-phenotype correlation may contribute to future genetic counseling.
Collapse
Affiliation(s)
- Li Shu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Department of School of Life Sciences, Central South University, Changsha, China
| | - Neng Xiao
- Department of Pediatric Neurology, Chenzhou First People’s Hospital, Chenzhou, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Qi Tian
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yanghui Zhang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haoxian Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | | | - Qinrui Li
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Pengchao Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Hua Wang,
| | - Xiao Mao
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Xiao Mao,
| |
Collapse
|
17
|
Caillet-Saguy C, Wolff N. PDZ-Containing Proteins Targeted by the ACE2 Receptor. Viruses 2021; 13:2281. [PMID: 34835087 PMCID: PMC8624105 DOI: 10.3390/v13112281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a main receptor for SARS-CoV-2 entry to the host cell. Indeed, the first step in viral entry is the binding of the viral trimeric spike (S) protein to ACE2. Abundantly present in human epithelial cells of many organs, ACE2 is also expressed in the human brain. ACE2 is a type I membrane protein with an extracellular N-terminal peptidase domain and a C-terminal collectrin-like domain that ends with a single transmembrane helix and an intracellular 44-residue segment. This C-terminal segment contains a PDZ-binding motif (PBM) targeting protein-interacting domains called PSD-95/Dlg/ZO-1 (PDZ). Here, we identified the human PDZ specificity profile of the ACE2 PBM using the high-throughput holdup assay and measuring the binding intensities of the PBM of ACE2 against the full human PDZome. We discovered 14 human PDZ binders of ACE2 showing significant binding with dissociation constants' values ranging from 3 to 81 μM. NHERF, SHANK, and SNX27 proteins found in this study are involved in protein trafficking. The PDZ/PBM interactions with ACE2 could play a role in ACE2 internalization and recycling that could be of benefit for the virus entry. Interestingly, most of the ACE2 partners we identified are expressed in neuronal cells, such as SHANK and MAST families, and modifications of the interactions between ACE2 and these neuronal proteins may be involved in the neurological symptoms of COVID-19.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité Récepteurs-Canaux, Institut Pasteur, UMR CNRS 3571, 75015 Paris, France
| | - Nicolas Wolff
- Unité Récepteurs-Canaux, Institut Pasteur, UMR CNRS 3571, 75015 Paris, France
| |
Collapse
|
18
|
Mast1 mediates radiation-induced gastric injury via the P38 MAPK pathway. Exp Cell Res 2021; 409:112913. [PMID: 34774870 DOI: 10.1016/j.yexcr.2021.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022]
Abstract
Radiation-induced gastric injury is a serious adverse effect and reduces the efficacy of radiotherapy treatment. However, the mechanisms underlying radiation-induced stomach injury remain unclear. Here, mouse stomach and gastric epithelial cells were irradiated with different doses of X-ray radiation. The results showed that radiation induced gastric injury in vivo and in vitro. Differentially expressed functional mRNAs in irradiation-induced gastric tissues were screened from the Gene Expression Omnibus (GEO) database. We found that the expression of microtubule-associated serine/threonine kinase 1 (Mast1) was downregulated in mouse gastric tissues and gastric epithelial cells after irradiation. Furthermore, functional assays showed that knockdown of Mast1 inhibited growth and promoted apoptosis in gastric epithelial cells, while overexpression of Mast1 protected gastric epithelial cells from radiation damage. Mechanistically, Mast1 negatively regulated radiation-induced injury in gastric epithelial cells by inhibiting the activation of P38. The apoptosis caused by knockdown of Mast1 in gastric epithelial cells could be partially reversed by the P38 inhibitor SB203580. Moreover, data from several gastric cancer cell lines and online databases revealed that Mast1 was not involved in the development of gastric cancer. Collectively, our findings demonstrated that Mast1 is essential for radiation-induced gastric injury, providing a promising prognostic and therapeutic target.
Collapse
|
19
|
Dobyns WB. The Names of Things: The 2018 Bernard Sachs Lecture. Pediatr Neurol 2021; 122:41-49. [PMID: 34330614 DOI: 10.1016/j.pediatrneurol.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
In 2018, I was honored to receive the Bernard Sachs Award for a lifetime of work expanding knowledge of diverse neurodevelopmental disorders. Summarizing work over more than 30 years is difficult but is an opportunity to chronicle the dramatic changes in the medical and scientific world that have transformed the field of Child Neurology over this time, as reflected in my own work. Here I have chosen to highlight five broad themes of my research beginning with my interest in descriptive terms that drive wider understanding and my choice for the title of this review. From there I will go on to contrast the state of knowledge as I entered the field with the state of knowledge today for four human brain malformations-lissencephaly, megalencephaly, cerebellar malformations, and polymicrogyria. For all, the changes have been dramatic.
Collapse
Affiliation(s)
- William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
20
|
Spinelli E, Christensen KR, Bryant E, Schneider A, Rakotomamonjy J, Muir AM, Giannelli J, Littlejohn RO, Roeder ER, Schmidt B, Wilson WG, Marco EJ, Iwama K, Kumada S, Pisano T, Barba C, Vetro A, Brilstra EH, van Jaarsveld RH, Matsumoto N, Goldberg-Stern H, Carney P, Ian Andrews P, El Achkar CM, Berkovic S, Rodan LH, McWalter K, Guerrini R, Scheffer IE, Mefford HC, Mandelstam S, Laux L, Millichap JJ, Guemez-Gamboa A, Nairn AC, Carvill GL. Pathogenic MAST3 Variants in the STK Domain Are Associated with Epilepsy. Ann Neurol 2021; 90:274-284. [PMID: 34185323 PMCID: PMC8324566 DOI: 10.1002/ana.26147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.
Collapse
Affiliation(s)
- Egidio Spinelli
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kyle R Christensen
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut, USA
| | - Emily Bryant
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Division of Genetics, Birth Defects and Metabolism, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Amy Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Jennifer Rakotomamonjy
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica Giannelli
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA
| | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA
| | - Berkley Schmidt
- Division of Medical Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - William G Wilson
- Division of Medical Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elysa J Marco
- Department of Pediatrics, University of California, San Francisco, California, USA
- Research Division, Cortica Healthcare, San Rafael, California, USA
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tiziana Pisano
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Carmen Barba
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Annalisa Vetro
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Eva H Brilstra
- Genetics Department, University Medical Centre Utrecht, The Netherlands
| | | | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Patrick Carney
- Department of Neurology, Austin Health, Heidelberg, Australia
| | - P Ian Andrews
- Department of Neurology, Sydney Children’s Hospital, Sydney, Australia
| | | | - Sam Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Lance H Rodan
- Department of Neurology and Division of Genetics and Genomics, Boston Children’s Hospital
| | | | | | - Renzo Guerrini
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Simone Mandelstam
- Department of Pediatrics and Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Imaging, Royal Children’s Hospital of Melbourne, Melbourne, Victoria, Australia
| | - Linda Laux
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John J Millichap
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alicia Guemez-Gamboa
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut, USA
| | - Gemma L Carvill
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Izzo G, Toto V, Doneda C, Parazzini C, Lanna M, Bulfamante G, Righini A. Fetal thick corpus callosum: new insights from neuroimaging and neuropathology in two cases and literature review. Neuroradiology 2021; 63:2139-2148. [PMID: 34021362 DOI: 10.1007/s00234-021-02699-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the correlation between fetal imaging (in vivo and ex vivo) and neuropathology in two fetuses at early gestational age (GA) with isolated thick corpus callosum (CC), a rare finding whose pathological significance and neuropathology data are scarce. METHODS Two fetuses at 21-week GA underwent fetal MRI (fMRI) for suspected callosal anomalies at ultrasound (US). After fMRI results, termination of pregnancy (TOP) was carried out and post-mortem MRI (pmMRI) was performed. Neuropathology correlation consisted in macro and microscopic evaluation with sections prepared for hematoxylin-eosin and immunohistochemistry staining. RESULTS Fetal imaging confirmed in both cases the presence of a shorter and thicker CC with respect to the reference standard at the same GA, without a clear distinction between its different parts. Moreover, on pmMRI, an abnormal slightly T2-weighted hyperintense layer along the superior and inferior surface of CC was noted in both cases. At histopathology, these findings corresponded to an increased amount of white matter tracts but also to an abnormal representation of embryological structures that contribute to CC development, naming induseum griseum (IG) and the glioepithelial layer (GL) of the "callosal sling." After reviewing the literature data, we confirmed the recent embryological theory regarding the CC development and provide new insights into the pathophysiology of the abnormal cases. CONCLUSIONS An abnormally thick CC at the early fetal period could be associated to an abnormal representation of the midline glia structures, so to result in potential disturbance of the axon guidance mechanism of callosal formation and eventually in CC dysgenesis.
Collapse
Affiliation(s)
- Giana Izzo
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy.
| | - Valentina Toto
- Department of Health Sciences, Pathology Division, San Paolo Hospital, University of Milan, Milan, Italy
| | - Chiara Doneda
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy
| | - Cecilia Parazzini
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy
| | - Mariano Lanna
- Obstetrics and Gynecology Department, Children's Hospital V. Buzzi - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Gaetano Bulfamante
- Department of Health Sciences, Pathology Division, San Paolo Hospital, University of Milan, Milan, Italy
| | - Andrea Righini
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy
| |
Collapse
|
22
|
Hur YJ, Chung WY, Lim YJ, Park S, Jun KR. A MAST1 Mutation Underlying Mega-Corpus Callosum Syndrome with Extended Phenotypes: The First Case in Korea. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2020.00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
24
|
Kolbjer S, Martin DA, Pettersson M, Dahlin M, Anderlid BM. Lissencephaly in an epilepsy cohort: Molecular, radiological and clinical aspects. Eur J Paediatr Neurol 2021; 30:71-81. [PMID: 33453472 DOI: 10.1016/j.ejpn.2020.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lissencephaly is a rare malformation of cortical development due to abnormal transmantle migration resulting in absent or reduced gyration. The lissencephaly spectrum consists of agyria, pachygyria and subcortical band heterotopia. In this study we compared genetic aetiology, neuroradiology, clinical phenotype and response to antiepileptic drugs in patients with epilepsy and lissencephaly spectrum malformations. METHODS The study group consisted of 20 patients - 13 males and 7 females, aged 18 months to 21 years at the time of data collection. Genetic testing was performed by oligonucleotide array comparative genomic hybridization (microarray), multiplex ligation-dependent probe amplification (MLPA), targeted gene panels and whole exome/genome sequencing. All neuroradiological investigations were re-evaluated and the malformations were classified by the same neuroradiologist. Clinical features and response to anti-epileptic drugs (AEDs) were evaluated by retrospective review of medical records. RESULTS In eleven patients (55%) mutations in PAFAH1B1 (LIS1) or variable microdeletions of 17p13.3 including the PAFAH1B1 gene were detected. Four patients (20%) had tubulin encoding gene mutations (TUBA1A, TUBG1 and TUBGCP6). Mutations in DCX, DYNC1H1, ADGRG1 and WDR62 were identified in single patients. In one patient, a possibly pathogenic intragenic deletion in TRIO was detected. A clear radiologic distinction could be made between tubulinopathies and PAFAH1B1 related lissencephaly. The majority of the patients had therapy resistant epilepsy and epileptic spasms was the most prominent seizure type. The best therapeutic response to seizure control in our cohort was obtained by the ketogenic diet, vigabatrin, clobazam, phenobarbital and valproate. CONCLUSION The most common genetic aetiologies in our cohort of 20 individuals with epilepsy and lissencephaly spectrum were intragenic deletions or single nucleotide mutations in PAFAH1B1 or larger deletions in 17p13.3, encompassing PAFAH1B1, followed by mutations in tubulin encoding genes. Radiological findings could reliably predict molecular results only in agyria with a posterior to anterior gradient. Radiological and molecular findings did not correlate consistently with severity of clinical outcome or therapeutic response.
Collapse
Affiliation(s)
- Sintia Kolbjer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel A Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Paediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Hecher L, Johannsen J, Bierhals T, Buhk JH, Hempel M, Denecke J. The Clinical Picture of a Bilateral Perisylvian Syndrome as the Initial Symptom of Mega-Corpus-Callosum Syndrome due to a MAST1-Gene Mutation. Neuropediatrics 2020; 51:435-439. [PMID: 32818970 DOI: 10.1055/s-0040-1710588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Congenital bilateral perisylvian syndrome (CBPS) is a rare neurological disorder associated with typical clinical and imaging features such as bilateral symmetrical polymicrogyria, either exclusively or mainly affecting the perisylvian region of the brain. We present a girl with the typical clinical picture of a CBPS and a complex migration disorder, predominantly presenting as bilateral symmetrical polymicrogyria associated with corpus callosum hyperplasia, ventricular dilation, and pontine hypoplasia. At the age of 6 months, the girl showed a profound global developmental delay, seizures refractory to treatment, and severe oromotor dysfunction. Exome analysis revealed a de novo mutation in microtubule-associated serine/threonine kinase 1 (MAST1). Recently, mutations in this gene were described in six patients with a cortical migration disorder named mega-corpus-callosum syndrome with cerebellar hypoplasia. Although all patients present the clinical and imaging features of CBPS, a clear assignment between CBPS and MAST1 mutations has not been reported yet.
Collapse
Affiliation(s)
- Laura Hecher
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Buhk
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Leca I, Phillips AW, Hofer I, Landler L, Ushakova L, Cushion TD, Dürnberger G, Stejskal K, Mechtler K, Keays DA. A proteomic survey of microtubule-associated proteins in a R402H TUBA1A mutant mouse. PLoS Genet 2020; 16:e1009104. [PMID: 33137126 PMCID: PMC7660477 DOI: 10.1371/journal.pgen.1009104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/12/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022] Open
Abstract
Microtubules play a critical role in multiple aspects of neurodevelopment, including the generation, migration and differentiation of neurons. A recurrent mutation (R402H) in the α-tubulin gene TUBA1A is known to cause lissencephaly with cerebellar and striatal phenotypes. Previous work has shown that this mutation does not perturb the chaperone-mediated folding of tubulin heterodimers, which are able to assemble and incorporate into the microtubule lattice. To explore the molecular mechanisms that cause the disease state we generated a new conditional mouse line that recapitulates the R402H variant. We show that heterozygous mutants present with laminar phenotypes in the cortex and hippocampus, as well as a reduction in striatal size and cerebellar abnormalities. We demonstrate that homozygous expression of the R402H allele causes neuronal death and exacerbates a cell intrinsic defect in cortical neuronal migration. Microtubule sedimentation assays coupled with quantitative mass spectrometry demonstrated that the binding and/or levels of multiple microtubule associated proteins (MAPs) are perturbed by the R402H mutation including VAPB, REEP1, EZRIN, PRNP and DYNC1l1/2. Consistent with these data we show that the R402H mutation impairs dynein-mediated transport which is associated with a decoupling of the nucleus to the microtubule organising center. Our data support a model whereby the R402H variant is able to fold and incorporate into microtubules, but acts as a gain of function by perturbing the binding of MAPs. Microtubules are polymers composed of tubulin proteins, which play an important role in the development of the human brain. Genetic mutations in tubulin genes are known to cause neurodevelopmental diseases, including lissencephaly which is characterised by an impairment in the migration of neurons. In this study we investigate how a common mutation (R402H) in TUBA1A causes lissencephaly by generating and characterising a mouse with the same variant. We show that affected animals recapitulate multiple aspects of the human disease; including laminar perturbations in the cortex and hippocampus, attributable to defects in neuronal migration at key developmental time points. To characterize the molecular implications of the R402H mutation we purified microtubules from the developing brain, and analysed the proteins present by mass spectrometry. This revealed that the binding of DYNC1I1/2 to microtubules is altered in mice with the R402H mutation. Our results provide insight into the molecular pathology underlying tubulin related disease states, and provide a foundation for the rational design of therapeutic interventions.
Collapse
Affiliation(s)
- Ines Leca
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | | | - Iris Hofer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Lukas Landler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Lyubov Ushakova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas David Cushion
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - David Anthony Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
- * E-mail:
| |
Collapse
|
27
|
De León Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development 2020; 147:147/18/dev189738. [PMID: 32988974 DOI: 10.1242/dev.189738] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The corpus callosum (CC) connects the cerebral hemispheres and is the major mammalian commissural tract. It facilitates bilateral sensory integration and higher cognitive functions, and is often affected in neurodevelopmental diseases. Here, we review the mechanisms that contribute to the development of CC circuits in animal models and humans. These species comparisons reveal several commonalities. First, there is an early period of massive axonal projection. Second, there is a postnatal temporal window, varying between species, in which early callosal projections are selectively refined. Third, sensory-derived activity influences axonal refinement. We also discuss how defects in CC formation can lead to mild or severe CC congenital malformations.
Collapse
Affiliation(s)
- Noelia S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Lorena Bragg-Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
28
|
|
29
|
Yu X, Sheng P, Sun J, Zhao X, Zhang J, Li Y, Zhang Y, Zhang W, Wang J, Liu K, Zhu D, Jiang H. The circular RNA circMAST1 promotes hepatocellular carcinoma cell proliferation and migration by sponging miR-1299 and regulating CTNND1 expression. Cell Death Dis 2020; 11:340. [PMID: 32393764 PMCID: PMC7214424 DOI: 10.1038/s41419-020-2532-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/28/2023]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with a loop structure; however, their functions remain largely unknown. Growing evidence suggests that circRNAs play a pivotal role in the progression of malignant diseases. However, the expression profiles and function of circRNAs in hepatocellular carcinoma (HCC) remain unclear. We investigated the expression of microtubule-associated serine/threonine kinase 1 (MAST1) circRNA (circMAST1) in HCC and healthy tissues using bioinformatics, quantitative real-time PCR (qRT-PCR), and fluorescence in situ hybridization. Luciferase reporter assays were performed to assess the interaction between circMAST1 and miR-1299. Proliferation assays, colony formation assays, flow cytometry, transwell assays, and western blotting were also performed. A mouse xenograft model was also used to determine the effect of circMAST1 on HCC growth in vivo. CircMAST1 was upregulated in HCC tissues and cell lines; silencing via small interfering RNA inhibited migration, invasion, and proliferation of HCC cell lines in vitro as well as tumor growth in vivo. Furthermore, the expression of circMAST1 was positively correlated with catenin delta-1 (CTNND1) and negatively correlated with microRNA (miR)-1299 in HCC clinical samples. Importantly, circMAST1 sponged miR-1299 to stabilize the expression of CTNND1 and promoted tumorigenic features in HCC cell lines. We found that circMAST1 may serve as a novel biomarker for HCC. Moreover, circMAST1 elicits HCC progression by sponging miRNA-1299 and stabilizing CTNND1. Our data provide potential options for therapeutic targets in patients with HCC.
Collapse
Affiliation(s)
- Xiufeng Yu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150081, China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, China
| | - Ping Sheng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150081, China
| | - Jing Sun
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150081, China
| | - Xijuang Zhao
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, China
| | - Junting Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, China
| | - Yiying Li
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, China
| | - YiMeng Zhang
- College of Bioinformatics and Technology, Harbin Medical University (Daqing), Daqing, 163319, China
| | - Wenxiu Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, China
| | - Jianqi Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150081, China
| | - Kunpeng Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150081, China
| | - Daling Zhu
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, China. .,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, China.
| | - Hongchi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150081, China.
| |
Collapse
|
30
|
Rodríguez-García ME, Cotrina-Vinagre FJ, Gómez-Cano MDLÁ, Martínez de Aragón A, Martín-Hernández E, Martínez-Azorín F. MAST1 variant causes mega-corpus-callosum syndrome with cortical malformations but without cerebellar hypoplasia. Am J Med Genet A 2020; 182:1483-1490. [PMID: 32198973 DOI: 10.1002/ajmg.a.61560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/06/2022]
Abstract
We report the case of a Caucasian Spanish origin female who showed severe psychomotor developmental delay, hypotonia, strabismus, epilepsy, short stature, and poor verbal language development. Brain magnetic resonance imaging scans showed thickened corpus callosum, cortical malformations, and dilated and abnormal configuration of the lateral ventricles without hydrocephalus. Whole-exome sequence uncovered a de novo variant in the microtubule associated serine/threonine kinase 1 gene (MAST1; NM_014975.3:c.1565G>A:p.(Gly522Glu)) that encodes for the MAST1. Only 12 patients have been identified worldwide with 10 different variants in this gene: six patients with mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations; two patients with microcephaly and cerebellar hypoplasia; two patients with autism, one patient with diplegia, and one patient with microcephaly and dysmorphism. Our patient shows a new phenotypic subtype defined by mega-corpus-callosum syndrome with cortical malformations without cerebellar hypoplasia. In conclusion, our data expand the phenotypic spectrum associated to MAST1 gene variants.
Collapse
Affiliation(s)
- María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María de Los Ángeles Gómez-Cano
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - Ana Martínez de Aragón
- Servicio de Radiología, Sección de Neurorradiología, Hospital 12 de Octubre, Madrid, Spain
| | - Elena Martín-Hernández
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
31
|
Hansen AW, Murugan M, Li H, Khayat MM, Wang L, Rosenfeld J, Andrews BK, Jhangiani SN, Coban Akdemir ZH, Sedlazeck FJ, Ashley-Koch AE, Liu P, Muzny DM, Davis EE, Katsanis N, Sabo A, Posey JE, Yang Y, Wangler MF, Eng CM, Sutton VR, Lupski JR, Boerwinkle E, Gibbs RA. A Genocentric Approach to Discovery of Mendelian Disorders. Am J Hum Genet 2019; 105:974-986. [PMID: 31668702 PMCID: PMC6849092 DOI: 10.1016/j.ajhg.2019.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.
Collapse
Affiliation(s)
- Adam W Hansen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mullai Murugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M Khayat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liwen Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - B Kim Andrews
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erica E Davis
- Pediatric Genetic and translational Medicine Center (P-GeM), Stanley Manne Children's Research Institute, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicholas Katsanis
- Pediatric Genetic and translational Medicine Center (P-GeM), Stanley Manne Children's Research Institute, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aniko Sabo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Iwama K, Mizuguchi T, Takeshita E, Nakagawa E, Okazaki T, Nomura Y, Iijima Y, Kajiura I, Sugai K, Saito T, Sasaki M, Yuge K, Saikusa T, Okamoto N, Takahashi S, Amamoto M, Tomita I, Kumada S, Anzai Y, Hoshino K, Fattal-Valevski A, Shiroma N, Ohfu M, Moroto M, Tanda K, Nakagawa T, Sakakibara T, Nabatame S, Matsuo M, Yamamoto A, Yukishita S, Inoue K, Waga C, Nakamura Y, Watanabe S, Ohba C, Sengoku T, Fujita A, Mitsuhashi S, Miyatake S, Takata A, Miyake N, Ogata K, Ito S, Saitsu H, Matsuishi T, Goto YI, Matsumoto N. Genetic landscape of Rett syndrome-like phenotypes revealed by whole exome sequencing. J Med Genet 2019; 56:396-407. [DOI: 10.1136/jmedgenet-2018-105775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/03/2022]
Abstract
BackgroundRett syndrome (RTT) is a characteristic neurological disease presenting with regressive loss of neurodevelopmental milestones. Typical RTT is generally caused by abnormality of methyl-CpG binding protein 2 (MECP2). Our objective to investigate the genetic landscape of MECP2-negative typical/atypical RTT and RTT-like phenotypes using whole exome sequencing (WES).MethodsWe performed WES on 77 MECP2-negative patients either with typical RTT (n=11), atypical RTT (n=22) or RTT-like phenotypes (n=44) incompatible with the RTT criteria.ResultsPathogenic or likely pathogenic single-nucleotide variants in 28 known genes were found in 39 of 77 (50.6%) patients. WES-based CNV analysis revealed pathogenic deletions involving six known genes (including MECP2) in 8 of 77 (10.4%) patients. Overall, diagnostic yield was 47 of 77 (61.0 %). Furthermore, strong candidate variants were found in four novel genes: a de novo variant in each of ATPase H+ transporting V0 subunit A1 (ATP6V0A1), ubiquitin-specific peptidase 8 (USP8) and microtubule-associated serine/threonine kinase 3 (MAST3), as well as biallelic variants in nuclear receptor corepressor 2 (NCOR2).ConclusionsOur study provides a new landscape including additional genetic variants contributing to RTT-like phenotypes, highlighting the importance of comprehensive genetic analysis.
Collapse
|