1
|
Nishitani N, Sasaki Y, Kaneda K. Effects of 3,4-methylenedioxymethamphetamine on neural activity in the nucleus accumbens of male mice engaged in social behavior. Neuropsychopharmacol Rep 2025; 45:e12510. [PMID: 39628031 DOI: 10.1002/npr2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024] Open
Abstract
3,4-methylenedioxymethamphetamine (MDMA), a commonly abused recreational drug, induces prosocial effects such as increased sociability and empathy. The nucleus accumbens (NAc) has been suggested to play a crucial role in these MDMA-mediated prosocial effects. However, the relationship between social behavior and NAc neural activity, and the effects of MDMA on this relationship, remain unknown. In this study, we measured NAc neural activity using fiber photometry and classified the behaviors of mice at times of transient increases in NAc neural activity during the social approach test (SAT). We found that NAc neural activity transiently increased at the onset of turning toward and sniffing novel mice during the SAT, although the frequency of turning was relatively low. We then examined the effects of MDMA on behavior and NAc neural activity and found that MDMA decreased the duration of sniffing per bout but did not alter NAc neural activity at the onset of turning toward or sniffing novel mice. These results suggest that MDMA does not affect the transient increase in NAc neural activity at the onset of social behaviors.
Collapse
Affiliation(s)
- Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuki Sasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Li J, Wei Y, Xiang J, Zhang D. Role of the ventral tegmental area in general anesthesia. Eur J Pharmacol 2025; 986:177145. [PMID: 39566814 DOI: 10.1016/j.ejphar.2024.177145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
The ventral tegmental area (VTA), located in the midbrain, plays a pivotal role in the regulation of many important behaviors, such as reward, addiction, aversion, memory, learning, and sleep-wakefulness cycles. The majority of VTA neurons are dopaminergic neurons, although there is a significant proportion of GABAergic neurons and few glutamatergic neurons. These neuronal types project to different brain regions, thus mediating various biological functions. Therefore, the diverse roles of the VTA might depend on its heterogeneous neuronal types and projecting circuits. General anesthesia and sleep-wakefulness cycles share the feature of reversible loss of consciousness, and several common neural mechanisms underlie these two conditions. In addition to the well-known regulatory role of VTA in sleep-wakefulness, emerging evidence has demonstrated that VTA activity is also associated with promoting emergence from general anesthesia. Herein, we reviewed the literature and summarized the evidence regarding the modulation of the VTA by general anesthesia in rodents, which will improve the understanding of the modulatory mechanism of the VTA in general anesthesia.
Collapse
Affiliation(s)
- Jia Li
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China.
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518100, China
| | - Jiaxin Xiang
- Department of Anesthesiology, Weill Cornell Medicine, New York, 10065, USA
| | - Donghang Zhang
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Dvorak NM, Wadsworth PA, Aquino-Miranda G, Wang P, Engelke DS, Zhou J, Nguyen N, Singh AK, Aceto G, Haghighijoo Z, Smith II, Goode N, Zhou M, Avchalumov Y, Troendle EP, Tapia CM, Chen H, Powell RT, Baumgartner TJ, Singh J, Koff L, Di Re J, Wadsworth AE, Marosi M, Azar MR, Elias K, Lehmann P, Mármol Contreras YM, Shah P, Gutierrez H, Green TA, Ulmschneider MB, D'Ascenzo M, Stephan C, Cui G, Do Monte FH, Zhou J, Laezza F. Enhanced motivated behavior mediated by pharmacological targeting of the FGF14/Na v1.6 complex in nucleus accumbens neurons. Nat Commun 2025; 16:110. [PMID: 39747162 PMCID: PMC11696184 DOI: 10.1038/s41467-024-55554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na+ channel 1.6 (Nav1.6) complex regulates excitability of medium spiny neurons (MSN) of the nucleus accumbens (NAc), a central hub of reward circuitry that controls motivated behaviors. Here, we identified compound 1028 (IUPAC: ethyl 3-(2-(3-(hydroxymethyl)-1H-indol-1-yl)acetamido)benzoate), a brain-permeable small molecule that targets FGF14R117, a critical residue located within a druggable pocket at the FGF14/Nav1.6 PPI interface. We found that 1028 modulates FGF14/Nav1.6 complex assembly and depolarizes the voltage-dependence of Nav1.6 channel inactivation with nanomolar potency by modulating the intramolecular interaction between the III-IV linker and C-terminal domain of the Nav1.6 channel. Consistent with the compound's effects on Nav1.6 channel inactivation, 1028 enhances MSN excitability ex vivo and accumbal neuron firing rate in vivo in murine models. Systemic administration of 1028 maintains behavioral motivation preferentially during motivationally deficient conditions in murine models. These behavioral effects were abrogated by in vivo gene silencing of Fgf14 in the NAc and were accompanied by a selective reduction in accumbal dopamine levels during reward consumption in murine models. These findings underscore the potential to selectively regulate complex behaviors associated with neuropsychiatric disorders through targeting of PPIs in neurons.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul A Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Douglas S Engelke
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Nghi Nguyen
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Zahra Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabella I Smith
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Nana Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mingxiang Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yosef Avchalumov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Evan P Troendle
- Department of Chemistry, King's College London 7 Trinity Street, London, UK
| | - Cynthia M Tapia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Reid T Powell
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Timothy J Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jully Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leandra Koff
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica Di Re
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann E Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marc R Azar
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Kristina Elias
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Paul Lehmann
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Poonam Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hector Gutierrez
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas A Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Marcello D'Ascenzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Clifford Stephan
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
4
|
Zhao H, Li H, Meng L, Du P, Mo X, Gong M, Chen J, Liao Y. Disrupting heroin-associated memory reconsolidation through actin polymerization inhibition in the nucleus accumbens core. Int J Neuropsychopharmacol 2024; 28:pyae065. [PMID: 39716383 DOI: 10.1093/ijnp/pyae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied. METHODS This study employed a rodent model of self-administered heroin to investigate the involvement of actin polymerization in the reconsolidation of heroin-associated memories. Rats underwent ten days of intravenous heroin self-administration paired with conditioned cues. Subsequently, a 10-day extinction phase aimed to reduce heroin-seeking behaviors. Following this, rats participated in a 15-minute retrieval trial with or without cues. Immediately post-retrieval, rats received bilateral injections of the actin polymerization inhibitor Latrunculin A (Lat A) into the nucleus accumbens core (NACc), a critical brain region for memory reconsolidation. RESULTS Immediate administration of Lat A into the NACc post-retrieval significantly reduced cue-induced and heroin-primed reinstatement of heroin-seeking behavior for at least 28 days. However, administering Lat A 6-hour post-retrieval or without a retrieval trial, as well as administering Jasplakionlide prior to memory reactivation did not affect heroin-seeking behaviors. CONCLUSIONS Inhibiting actin polymerization during the reconsolidation window disrupts heroin-associated memory reconsolidation, leading to decreased heroin-seeking behavior and prevention of relapse. These effects are contingent upon the presence of a retrieval trial and exhibit temporal specificity, shedding light on addiction mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyu Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Meng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Gong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Enriquez-Traba J, Arenivar M, Yarur-Castillo HE, Noh C, Flores RJ, Weil T, Roy S, Usdin TB, LaGamma CT, Wang H, Tsai VS, Kerspern D, Moritz AE, Sibley DR, Lutas A, Moratalla R, Freyberg Z, Tejeda HA. Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors. Nat Neurosci 2024:10.1038/s41593-024-01819-9. [PMID: 39653808 DOI: 10.1038/s41593-024-01819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/22/2024] [Indexed: 12/18/2024]
Abstract
Dopamine (DA) release in striatal circuits, including the nucleus accumbens medial shell (mNAcSh), tracks separable features of reward like motivation and reinforcement. However, the cellular and circuit mechanisms by which DA receptors transform DA release into distinct constructs of reward remain unclear. Here we show that DA D3 receptor (D3R) signaling in the mNAcSh drives motivated behavior in mice by regulating local microcircuits. Furthermore, D3Rs coexpress with DA D1 receptors, which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report nonoverlapping physiological actions of D3R and DA D1 receptor signaling in mNAcSh neurons. Our results establish a fundamental framework wherein DA signaling within the same nucleus accumbens cell type is physiologically compartmentalized via actions on distinct DA receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors relevant to the etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Juan Enriquez-Traba
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
- Department of Biochemistry, Universidad Autonoma de Madrid, Madrid, Spain
- Department of Functional and Systems Neurobiology, Instituto Cajal-CSIC, Madrid, Spain
| | - Miguel Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Hector E Yarur-Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Chloe Noh
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Tenley Weil
- Section on Light and Circadian Rhythms, National Institute of Mental Health, Bethesda, MD, USA
| | - Snehashis Roy
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, MD, USA
| | - Ted B Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, MD, USA
| | - Christina T LaGamma
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Valerie S Tsai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Damien Kerspern
- Neuromodulation and Motivation Section, Diabetes, Endocrinology, & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Andrew Lutas
- Neuromodulation and Motivation Section, Diabetes, Endocrinology, & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Rosario Moratalla
- Department of Functional and Systems Neurobiology, Instituto Cajal-CSIC, Madrid, Spain
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Duvarci S. Dopaminergic circuits controlling threat and safety learning. Trends Neurosci 2024; 47:1014-1027. [PMID: 39472156 DOI: 10.1016/j.tins.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The ability to learn from experience that certain cues and situations are associated with threats or safety is crucial for survival and adaptive behavior. Understanding the neural substrates of threat and safety learning has high clinical significance because deficits in these forms of learning characterize anxiety disorders. Traditionally, dopamine neurons were thought to uniformly support reward learning by signaling reward prediction errors. However, the dopamine system is functionally more diverse than was initially appreciated and is also critical for processing threat and safety. In this review, I highlight recent studies demonstrating that dopamine neurons generate prediction errors for threat and safety, and describe how dopamine projections to the amygdala, medial prefrontal cortex (mPFC), and striatum regulate associative threat and safety learning.
Collapse
Affiliation(s)
- Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany.
| |
Collapse
|
7
|
Hueske E, Stine C, Yoshida T, Crittenden JR, Gupta A, Johnson JC, Achanta AS, Bhagavatula S, Loftus J, Mahar A, Hu D, Azocar J, Gray RJ, Bruchas MR, Graybiel AM. Developmental and Adult Striatal Patterning of Nociceptin Ligand Marks Striosomal Population With Direct Dopamine Projections. J Comp Neurol 2024; 532:e70003. [PMID: 39656141 PMCID: PMC11629859 DOI: 10.1002/cne.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Circuit influences on the midbrain dopamine system are crucial to adaptive behavior and cognition. Recent developments in the study of neuropeptide systems have enabled high-resolution investigations of the intersection of neuromodulatory signals with basal ganglia circuitry, identifying the nociceptin/orphanin FQ (N/OFQ) endogenous opioid peptide system as a prospective regulator of striatal dopamine signaling. Using a prepronociceptin-Cre reporter mouse line, we characterized highly selective striosomal patterning of Pnoc mRNA expression in mouse dorsal striatum, reflecting the early developmental expression of Pnoc. In the ventral striatum, Pnoc expression in the nucleus accumbens core was grouped in clusters akin to the distribution found in striosomes. We found that PnoctdTomato reporter cells largely comprise a population of dopamine receptor D1 (Drd1) expressing medium spiny projection neurons localized in dorsal striosomes, known to be unique among striatal projection neurons for their direct innervation of midbrain dopamine neurons. These findings provide a new understanding of the intersection of the N/OFQ system among basal ganglia circuits with particular implications for developmental regulation or wiring of striato-nigral circuits.
Collapse
Affiliation(s)
- Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Carrie Stine
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
- Molecular and Cellular BiologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Akshay Gupta
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joseph C. Johnson
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Ananya S. Achanta
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Smitha Bhagavatula
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Johnny Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jesus Azocar
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan J. Gray
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Michael R. Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Xue S, Yi P, Mao Y, Zhan Z, Cai Y, Song Z, Wang K, Yang K, Song Y, Wang X, Long H. Nucleus accumbens shell electrical lesion attenuates seizures and gliosis in chronic temporal lobe epilepsy rats. Epileptic Disord 2024. [PMID: 39570088 DOI: 10.1002/epd2.20316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most prevalent form of epilepsy. Prior research has indicated the involvement of the nucleus accumbens shell (NAcSh) in the process of epileptogenesis, thereby implying its potential as a therapeutic target for TLE. In the present study, we investigated the antiepileptic effect of the NAcSh electrical lesion. METHODS Chronic TLE was induced by stereotactic injection of kainic acid (KA) into the hippocampus 3 weeks after KA administration, and NAcSh electrical lesions were performed. Seizures in rats were monitored by video electroencephalogram (EEG) 1 week following the NAcSh electrical lesion. Besides, the spatial memory function assessment in rats was conducted using the Morris water maze (MWM) test in the final week of the experiment. Later, hippocampal glial cell activation and neuron loss in rats were evaluated through immunohistochemistry. RESULTS TLE rats subjected to NAcSh electrical lesion exhibited a significant reduction in the frequency of seizures compared to untreated TLE rats. Furthermore, NAcSh electrical lesion led to less activation of hippocampal glial cells and fewer neuronal loss in TLE rats. It is worth noting that the NAcSh electrical lesion did not cause additional memory impairment. SIGNIFICANCE In the present study, the NAcSh electrical lesion exhibited a definitive therapeutic effect on the chronic TLE rat model, potentially due to decreased hippocampal TLE-induced activation of glial cells and neuron loss. In conclusion, our results indicated that the NAcSh is a promising therapeutic target for TLE and possesses high potential for clinical application.
Collapse
Affiliation(s)
- Shuaishuai Xue
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Peiyao Yi
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yangqi Mao
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhengming Zhan
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yonghua Cai
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zibin Song
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kewan Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kaijun Yang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ye Song
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xingqin Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Liu Q, Xiong J, Kim DW, Lee SS, Bell BJ, Alexandre C, Blackshaw S, Latremoliere A, Wu MN. An amygdalar oscillator coordinates cellular and behavioral rhythms. Neuron 2024; 112:3750-3767.e7. [PMID: 39303704 PMCID: PMC11581920 DOI: 10.1016/j.neuron.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Circadian rhythms are generated by the master pacemaker suprachiasmatic nucleus (SCN) in concert with local clocks throughout the body. Although many brain regions exhibit cycling clock gene expression, the identity of a discrete extra-SCN brain oscillator that produces rhythmic behavior has remained elusive. Here, we show that an extra-SCN oscillator in the lateral amygdala (LA) is defined by expression of the clock-output molecule mWAKE/ANKFN1. mWAKE is enriched in the anterior/dorsal LA (adLA), and, strikingly, selective disruption of clock function or excitatory signaling in adLAmWAKE neurons abolishes Period2 (PER2) rhythms throughout the LA. mWAKE levels rise at night and promote rhythmic excitability of adLAmWAKE neurons by upregulating Ca2+-activated K+ channel activity specifically at night. adLAmWAKE neurons coordinate rhythmic sensory perception and anxiety in a clock-dependent and WAKE-dependent manner. Together, these data reveal the cellular identity of an extra-SCN brain oscillator and suggest a multi-level hierarchical system organizing molecular and behavioral rhythms.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiali Xiong
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Soo Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J Bell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chloe Alexandre
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alban Latremoliere
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Setoyama H, Ota S, Yoshida M, Kawashima S, Kusumoto-Yoshida I, Kashiwadani H, Kuwaki T. Activation of the nucleus accumbens promotes place preference and counteracts stress-induced hyperthermia. iScience 2024; 27:111197. [PMID: 39759072 PMCID: PMC11700644 DOI: 10.1016/j.isci.2024.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 01/07/2025] Open
Abstract
Positive affect promotes mental health and physical well-being, which may involve modifications in the autonomic nervous system activity. Here, we examine, using chemogenetic techniques, the effects of nucleus accumbens (NAc) activation on affect and body temperature regulation as a proxy of autonomic function. A conditioned place preference test revealed that nucleus accumbens activation induced positive affect. Chemogenetic and natural activations inhibited intruder stress-induced hyperthermia and prostaglandin E2-induced fever. Chemogenetic inhibition did not show a negative affect but canceled the positive affect induced by the natural stimulus of chocolate or sucrose. Counting of c-Fos expression confirmed chemogenetic and sucrose-induced activation of the NAc. Our findings indicate that nucleus accumbens activation modifies a component of autonomic nervous activity and that this mechanism may underscore the link between positive affect and physical well-being. Applying our observations to humans may reduce fever side reactions of vaccines by employing preventive treatments that induce positive affect.
Collapse
Affiliation(s)
- Honami Setoyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shintaro Ota
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mayuko Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shigetaka Kawashima
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2024:10.1007/s12035-024-04575-w. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
12
|
Furman KL, Baron L, Lyons HC, Cha T, Evans JR, Manna J, Zhu L, Mattis J, Burgess CR. Melanin concentrating hormone projections to the nucleus accumbens enhance the reward value of food consumption and do not induce feeding or REM sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622987. [PMID: 39605522 PMCID: PMC11601410 DOI: 10.1101/2024.11.11.622987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit. When dysregulated, non-homeostatic drives to consume can contribute to disorders of food intake, adding to the increasing prevalence of restrictive eating disorders and obesity. Melanin-concentrating hormone (MCH) neurons have been implicated in the regulation of feeding behavior, in addition to a number of other fundamental behaviors including sleep, anxiety, and maternal behavior. Several studies suggest that MCH peptide increases food consumption, while studies of MCH neurons show effects only on cued feeding, and others show no effect of MCH neuron manipulation on feeding. MCH neurons have widespread projections to diverse downstream brain regions yet few studies have investigated the function of specific projections or differentiated the behaviors they regulate. Here we use optogenetics, in combination with different behavioral paradigms, to elucidate the role of MCH projections to the nucleus accumbens (NAc) in sleep and feeding behavior. We show that MCH neurons projecting to the NAc do not induce changes in baseline feeding or REM sleep, but do enhance the preference for a food paired with optogenetic stimulation. Furthermore, this effect is diminished in female mice relative to males, in line with previous results suggesting sex differences in the functional role of MCH neurons. These results suggest that MCH projections to the NAc can enhance the rewarding value of consumed food.
Collapse
Affiliation(s)
- Katherine L. Furman
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
| | - Lorelei Baron
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Hannah C. Lyons
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Neurology, University of Michigan, Ann Arbor, MI USA
| | - Timothy Cha
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Jack R. Evans
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Jayeeta Manna
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI USA
| | - Joanna Mattis
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
- Department of Neurology, University of Michigan, Ann Arbor, MI USA
| | - Christian R. Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
13
|
De Felice M, Szkudlarek HJ, Uzuneser TC, Rodríguez-Ruiz M, Sarikahya MH, Pusparajah M, Galindo Lazo JP, Whitehead SN, Yeung KKC, Rushlow WJ, Laviolette SR. The Impacts of Adolescent Cannabinoid Exposure on Striatal Anxiety- and Depressive-Like Pathophysiology Are Prevented by the Antioxidant N-Acetylcysteine. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100361. [PMID: 39257692 PMCID: PMC11381987 DOI: 10.1016/j.bpsgos.2024.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Background Exposure to Δ9-tetrahydrocannabinol (THC) is an established risk factor for later-life neuropsychiatric vulnerability, including mood- and anxiety-related symptoms. The psychotropic effects of THC on affect and anxiogenic behavioral phenomena are known to target the striatal network, particularly the nucleus accumbens, a neural region linked to mood and anxiety disorder pathophysiology. THC may increase neuroinflammatory responses via the redox system and dysregulate inhibitory and excitatory neural balance in various brain circuits, including the striatum. Thus, interventions that can induce antioxidant effects may counteract the neurodevelopmental impacts of THC exposure. Methods In the current study, we used an established preclinical adolescent rat model to examine the impacts of adolescent THC exposure on various behavioral, molecular, and neuronal biomarkers associated with increased mood and anxiety disorder vulnerability. Moreover, we investigated the protective properties of the antioxidant N-acetylcysteine against THC-related pathology. Results We demonstrated that adolescent THC exposure induced long-lasting anxiety- and depressive-like phenotypes concomitant with differential neuronal and molecular abnormalities in the two subregions of the nucleus accumbens, the shell and the core. In addition, we report for the first time that N-acetylcysteine can prevent THC-induced accumbal pathophysiology and associated behavioral abnormalities. Conclusions The preventive effects of this antioxidant intervention highlight the critical role of redox mechanisms underlying cannabinoid-induced neurodevelopmental pathology and identify a potential intervention strategy for the prevention and/or reversal of these pathophysiological sequelae.
Collapse
Affiliation(s)
- Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Taygun C Uzuneser
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mohammed H Sarikahya
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | | | | | - Shawn N Whitehead
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Western University, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), London, Ontario, Canada
| |
Collapse
|
14
|
Pan G, Zhao B, Zhang M, Guo Y, Yan Y, Dai D, Zhang X, Yang H, Ni J, Huang Z, Li X, Duan S. Nucleus Accumbens Corticotropin-Releasing Hormone Neurons Projecting to the Bed Nucleus of the Stria Terminalis Promote Wakefulness and Positive Affective State. Neurosci Bull 2024; 40:1602-1620. [PMID: 38980648 PMCID: PMC11607243 DOI: 10.1007/s12264-024-01233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/02/2024] [Indexed: 07/10/2024] Open
Abstract
The nucleus accumbens (NAc) plays an important role in various emotional and motivational behaviors that rely on heightened wakefulness. However, the neural mechanisms underlying the relationship between arousal and emotion regulation in NAc remain unclear. Here, we investigated the roles of a specific subset of inhibitory corticotropin-releasing hormone neurons in the NAc (NAcCRH) in regulating arousal and emotional behaviors in mice. We found an increased activity of NAcCRH neurons during wakefulness and rewarding stimulation. Activation of NAcCRH neurons converts NREM or REM sleep to wakefulness, while inhibition of these neurons attenuates wakefulness. Remarkably, activation of NAcCRH neurons induces a place preference response (PPR) and decreased basal anxiety level, whereas their inactivation induces a place aversion response and anxious state. NAcCRH neurons are identified as the major NAc projection neurons to the bed nucleus of the stria terminalis (BNST). Furthermore, activation of the NAcCRH-BNST pathway similarly induced wakefulness and positive emotional behaviors. Taken together, we identified a basal forebrain CRH pathway that promotes the arousal associated with positive affective states.
Collapse
Affiliation(s)
- Gaojie Pan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bing Zhao
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Mutian Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Yanan Guo
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Yuhua Yan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Dan Dai
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Zhang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hui Yang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinfei Ni
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Xia Li
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| | - Shumin Duan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310030, China.
| |
Collapse
|
15
|
Sun F, Kong Z, Tang Y, Yang J, Huang G, Liu Y, Jiang W, Yang M, Jia X. Functional Connectivity Differences in the Resting-state of the Amygdala in Alcohol-dependent Patients with Depression. Acad Radiol 2024; 31:4611-4620. [PMID: 38755068 DOI: 10.1016/j.acra.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
RATIONALE AND OBJECTIVES The mechanism of comorbidity between alcohol dependence and depressive disorders are not well understood. This study investigated differences in the brain function of alcohol-dependent patients with and without depression by performing functional connectivity analysis using resting-state functional magnetic resonance imaging. MATERIALS AND METHODS A total of 29 alcohol-dependent patients with depression, 31 alcohol-dependent patients without depression and 31 healthy control subjects were included in this study. The resting-state functional connectivity between the amygdala and the whole brain was compared among the three groups. Additionally, we examined the correlation between functional connectivity values in significantly different brain regions and levels of alcohol dependence and depression. RESULTS The resting-state functional connectivity between the left amygdala and the right caudate nucleus was decreased in alcohol-dependent patients. Additionally, the resting-state functional connectivity of the right amygdala with the right caudate nucleus, right transverse temporal gyrus, right temporal pole: superior temporal gyrus were also decreased. In alcohol-dependent patients with depression, not only was functional connectivity between the above brain regions significantly decreased, but so was functional connectivity between the right amygdala and the left middle temporal gyrus. Also, there was no significant correlation between the resting-state functional connectivity values in statistically significant brain regions and the levels of alcohol dependence and depression. CONCLUSION The impairment of the functional connectivity of the amygdala with caudate nucleus and partial temporal lobe may be involved in the neural mechanism of alcohol dependence comorbidity depressive disorders.
Collapse
Affiliation(s)
- Fengwei Sun
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Zhi Kong
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yun Tang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Jihui Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Gengdi Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yu Liu
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Wentao Jiang
- Department of Radiology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen 518118, China.
| |
Collapse
|
16
|
Hazlett MF, Hall VL, Patel E, Halvorsen A, Calakos N, West AE. The Perineuronal Net Protein Brevican Acts in Nucleus Accumbens Parvalbumin-Expressing Interneurons of Adult Mice to Regulate Excitatory Synaptic Inputs and Motivated Behaviors. Biol Psychiatry 2024; 96:694-707. [PMID: 38346480 PMCID: PMC11315813 DOI: 10.1016/j.biopsych.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Experience-dependent functional adaptation of nucleus accumbens (NAc) circuitry underlies the development and expression of reward-motivated behaviors. Parvalbumin-expressing GABAergic (gamma-aminobutyric acidergic) interneurons (PVINs) within the NAc are required for this process. Perineuronal nets (PNNs) are extracellular matrix structures enriched around PVINs that arise during development and have been proposed to mediate brain circuit stability. However, their function in the adult NAc is largely unknown. Here, we studied the developmental emergence and adult regulation of PNNs in the NAc of male and female mice and examined the cellular and behavioral consequences of reducing the PNN component brevican in NAc PVINs. METHODS We characterized the expression of PNN components in mouse NAc using immunofluorescence and RNA in situ hybridization. We lowered brevican in NAc PVINs of adult mice using an intersectional viral and genetic method and quantified the effects on synaptic inputs to NAc PVINs and reward-motivated learning. RESULTS PNNs around NAc PVINs were developmentally regulated and appeared during adolescence. In the adult NAc, PVIN PNNs were also dynamically regulated by cocaine. Transcription of the gene that encodes brevican was regulated in a cell type- and isoform-specific manner in the NAc, with the membrane-tethered form of brevican being highly enriched in PVINs. Lowering brevican in NAc PVINs of adult mice decreased their excitatory inputs and enhanced both short-term novel object recognition and cocaine-induced conditioned place preference. CONCLUSIONS Regulation of brevican in NAc PVINs of adult mice modulates their excitatory synaptic drive and sets experience thresholds for the development of motivated behaviors driven by rewarding stimuli.
Collapse
Affiliation(s)
- Mariah F Hazlett
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Victoria L Hall
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Esha Patel
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Aaron Halvorsen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina; Department of Neurology, Duke University Medical Center, Durham, North Carolina; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina; Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
17
|
Toddes C, Lefevre EM, Retzlaff CL, Zugschwert L, Khan S, Myhre E, Gauthier EA, Fernandez de Velasco EM, Kieffer BL, Rothwell PE. Mu opioid receptor expression by nucleus accumbens inhibitory interneurons promotes affiliative social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620729. [PMID: 39553981 PMCID: PMC11565767 DOI: 10.1101/2024.10.28.620729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mu opioid receptors in the nucleus accumbens regulate motivated behavior, including pursuit of natural rewards like social interaction as well as exogenous opioids. We used a suite of genetic and viral strategies to conditionally delete mu opioid receptor expression from all major neuron types in the nucleus accumbens. We pinpoint inhibitory interneurons as an essential site of mu opioid receptor expression for typical social behavior, independent from exogenous opioid sensitivity.
Collapse
|
18
|
Rousseau EB, Jackson HD, Guha S, Sherman SS, Cima M, Chartoff EH. Microdosing of a kappa opioid receptor agonist within proximal nucleus accumbens shell microstructures revealing opposing behavioral outcomes. Neuroscience 2024; 563:261-267. [PMID: 39490516 DOI: 10.1016/j.neuroscience.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Targeted intracranial delivery of molecularly-specific therapies within intricate brain structures poses a formidable challenge due to the heterogeneity of neuronal phenotypes and functions. Here we report the use of an implantable, miniaturized neural drug delivery system permitting dynamic adjustment of pharmacotherapies. Specifically, we exploit the spatial accuracy afforded by this method for targeting modulation of neuronal microstructures. Kappa opioid receptors (KOR) within the dorsal medial nucleus accumbens shell (NASh) are selectively activated through micro infusions of the KOR agonist, U-50488. Remarkably, we demonstrate that micro infusions of U-50488 into the dorsal NASh induces reward-like conditioned place preferences, whereas a mere 1 mm shift ventrally results in conditioned place aversions. The striking precision afforded by this method may prove useful in other neurotherapeutic interventions.
Collapse
Affiliation(s)
- Erin B Rousseau
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah D Jackson
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Suman Guha
- SPARED Center, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Basic Neuroscience Division, McLean Hospital, Boston, MA, USA
| | - Sydney S Sherman
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Cima
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, Basic Neuroscience Division, McLean Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Chen H, Liu P, Chen X, Liu J, Tang H, Tian Y, Wang X, Lu F, Zhou J. The mediation role of gray matter volume in the relationship between childhood maltreatment and psychological resilience in adolescents with first-episode major depressive disorder. Transl Psychiatry 2024; 14:452. [PMID: 39448606 PMCID: PMC11502710 DOI: 10.1038/s41398-024-03169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Previous studies have revealed morphologic alterations in patients with major depressive disorder (MDD) with experiences of childhood trauma. However, the underlying neural mechanisms remain largely unknown. This study aims to explore the brain structural changes and their possible mediation role in the relationship between childhood maltreatment and psychological resilience in drug-naïve adolescents with first-episode MDD. A total of 57 adolescents with first-episode MDD and 36 healthy controls (HCs) completed the T1-weighted magnetic resonance imaging scan. The adverse childhood experiences and current psychological resilience were assessed using the Childhood Trauma Questionnaire-Short Form and the Connor Davidson Resilience Scale, respectively. The voxel-based morphometry approach was applied to examine changes in the gray matter volume (GMV). Compared with the HCs, adolescents with MDD had significantly reduced GMV volumes in the left fusiform gyrus, right orbitofrontal gyrus, right superior temporal gyrus, right calcarine cortex, right middle frontal gyrus, left angular gyrus, right precuneus, right posterior cingulate gyrus, and right posterior central gyrus, as well as significantly increased GMV volumes in the left lenticular putamen and right lenticular pallidum. The GMV of the right calcarine cortex was found to be negatively correlated with the severity of emotional abuse and positively correlated with the level of psychological resilience. Moreover, the GMV of the right calcarine cortex might partially mediate the relationship between childhood maltreatment and psychological resilience. The present study provided further evidence for structural impairments in adolescents with MDD. Our findings also confirmed the important role of depression-related GMV changes in childhood growth experiences and psychological resilience characteristics during adolescent brain maturation.
Collapse
Affiliation(s)
- Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peiqu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Zhou J, Hormigo S, Sajid MS, Castro-Alamancos MA. Role of the Nucleus Accumbens in Signaled Avoidance Actions. eNeuro 2024; 11:ENEURO.0314-24.2024. [PMID: 39349060 PMCID: PMC11613310 DOI: 10.1523/eneuro.0314-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Animals, humans included, navigate their environments guided by sensory cues, responding adaptively to potential dangers and rewards. Avoidance behaviors serve as adaptive strategies in the face of signaled threats, but the neural mechanisms orchestrating these behaviors remain elusive. Current circuit models of avoidance behaviors indicate that the nucleus accumbens (NAc) in the ventral striatum plays a key role in signaled avoidance behaviors, but the nature of this engagement is unclear. Evolving perspectives propose the NAc as a pivotal hub for action selection, integrating cognitive and affective information to heighten the efficiency of both appetitive and aversive motivated behaviors. To unravel the engagement of the NAc during active and passive avoidance, we used calcium imaging fiber photometry to examine NAc GABAergic neuron activity in ad libitum moving mice performing avoidance behaviors. We then probed the functional significance of NAc neurons using optogenetics and genetically targeted or electrolytic lesions. We found that NAc neurons code contraversive orienting movements and avoidance actions. However, direct optogenetic inhibition or lesions of NAc neurons did not impair active or passive avoidance behaviors, challenging the notion of their purported pivotal role in adaptive avoidance. The findings emphasize that while the NAc encodes avoidance movements, it is not required for avoidance behaviors, highlighting the distinction between behavior encoding or representation and mediation or generation.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Sebastian Hormigo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Muhammad S Sajid
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Manuel A Castro-Alamancos
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| |
Collapse
|
21
|
Mikati MO, Erdmann-Gilmore P, Connors R, Conway SM, Malone J, Woods J, Sprung RW, Townsend RR, Al-Hasani R. Highly sensitive in vivo detection of dynamic changes in enkephalins following acute stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.528745. [PMID: 36824728 PMCID: PMC9948958 DOI: 10.1101/2023.02.15.528745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Enkephalins are opioid peptides that modulate analgesia, reward, and stress. In vivo detection of enkephalins remains difficult due to transient and low endogenous concentrations and inherent sequence similarity. To begin to address this we previously developed a system combining in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents (Al-Hasani, 2018, eLife). Here we show improved detection resolution and stabilization of enkephalin detection, which allowed us to investigate enkephalin release during acute stress. We present an analytical method for real-time, simultaneous detection of Met- and Leu-Enkephalin (Met-Enk & Leu-Enk) in the mouse Nucleus Accumbens shell (NAcSh) after acute stress. We confirm that acute stress activates enkephalinergic neurons in the NAcSh using fiber photometry and that this leads to the release of Met- and Leu-Enk. We also demonstrate the dynamics of Met- and Leu-Enk release as well as how they correlate to one another in the ventral NAc shell, which was previously difficult due to the use of approaches that relied on mRNA transcript levels rather than post-translational products. This approach increases spatiotemporal resolution, optimizes the detection of Met-Enkephalin through methionine oxidation, and provides novel insight into the relationship between Met- and Leu-Enkephalin following stress.
Collapse
|
22
|
Torres-Berrío A, Estill M, Patel V, Ramakrishnan A, Kronman H, Minier-Toribio A, Issler O, Browne CJ, Parise EM, van der Zee YY, Walker DM, Martínez-Rivera FJ, Lardner CK, Durand-de Cuttoli R, Russo SJ, Shen L, Sidoli S, Nestler EJ. Mono-methylation of lysine 27 at histone 3 confers lifelong susceptibility to stress. Neuron 2024; 112:2973-2989.e10. [PMID: 38959894 PMCID: PMC11377169 DOI: 10.1016/j.neuron.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishwendra Patel
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Kuiper LB, Dawes MH, West AM, DiMarco EK, Galante EV, Kishida KT, Jones SR. Comparison of dopamine release and uptake parameters across sex, species and striatal subregions. Eur J Neurosci 2024; 60:5113-5140. [PMID: 39161062 PMCID: PMC11632670 DOI: 10.1111/ejn.16495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
For over four decades, fast-scan cyclic voltammetry (FSCV) has been used to selectively measure neurotransmitters such as dopamine (DA) with high spatial and temporal resolution, providing detailed information about the regulation of DA in the extracellular space. FSCV is an optimal method for determining concentrations of stimulus-evoked DA in brain tissue. When modelling diseases involving disturbances in DA transmission, preclinical rodent models are especially useful because of the availability of specialized tools and techniques that serve as a foundation for translational research. There is known heterogeneity in DA dynamics between and within DA-innervated brain structures and between males and females. However, systematic evaluations of sex- and species-differences across multiple areas are lacking. Therefore, using FSCV, we captured a broad range of DA dynamics across five sub-regions of the dorsal and ventral striatum of males and females of both rats and mice that reflect the functional heterogeneity of DA kinetics and dynamics within these structures. While numerous differences were found, in particular, we documented a strong, consistent pattern of increased DA transporter activity in females in all of the regions surveyed. The data herein are intended to be used as a resource for further investigation of DA terminal function.
Collapse
Affiliation(s)
- Lindsey B. Kuiper
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Monica H. Dawes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alyssa M. West
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily K. DiMarco
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Emma V. Galante
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kenneth T. Kishida
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sara R. Jones
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
24
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
25
|
Pirino BE, Hawks A, Carpenter BA, Candelas PG, Gargiulo AT, Curtis GR, Karkhanis AN, Barson JR. Kappa-opioid receptor stimulation in the nucleus accumbens shell and ethanol drinking: Differential effects by rostro-caudal location and level of drinking. Neuropsychopharmacology 2024; 49:1550-1558. [PMID: 38528134 PMCID: PMC11319348 DOI: 10.1038/s41386-024-01850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Although the kappa-opioid receptor (KOR) and its endogenous ligand, dynorphin, are believed to be involved in ethanol drinking, evidence on the direction of their effects has been mixed. The nucleus accumbens (NAc) shell densely expresses KORs, but previous studies have not found KOR activation to influence ethanol drinking. Using microinjections into the NAc shell of male and female Long-Evans rats that drank under the intermittent-access procedure, we found that the KOR agonist, U50,488, had no effect on ethanol drinking when injected into the middle NAc shell, but that it promoted intake in males and high-drinking females in the caudal NAc shell and high-drinking females in the rostral shell, and decreased intake in males and low-drinking females in the rostral shell. Conversely, injection of the KOR antagonist, nor-binaltorphimine, stimulated ethanol drinking in low-drinking females when injected into the rostral NAc shell and decreased drinking in high-drinking females when injected into the caudal NAc shell. These effects of KOR activity were substance-specific, as U50,488 did not affect sucrose intake. Using quantitative real-time PCR, we found that baseline gene expression of the KOR was higher in the rostral compared to caudal NAc shell, but that this was upregulated in the rostral shell with a history of ethanol drinking. Our findings have important clinical implications, demonstrating that KOR stimulation in the NAc shell can affect ethanol drinking, but that this depends on NAc subregion, subject sex, and ethanol intake level, and suggesting that this may be due to differences in KOR expression.
Collapse
Affiliation(s)
- Breanne E Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Annie Hawks
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Brody A Carpenter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Pelagia G Candelas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Andrew T Gargiulo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University - SUNY, Binghamton, NY, 13902, USA
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
26
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
27
|
Eckenwiler EA, Ingebretson AE, Stolley JJ, Fusaro MA, Romportl AM, Ross JM, Petersen CL, Kale EM, Clark MS, Schattauer SS, Zweifel LS, Lemos JC. Corticotropin-Releasing Factor Release From a Unique Subpopulation of Accumbal Neurons Constrains Action-Outcome Acquisition in Reward Learning. Biol Psychiatry 2024:S0006-3223(24)01534-8. [PMID: 39181385 DOI: 10.1016/j.biopsych.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin-releasing factor (CRF) has been previously documented. Here, we provide a comprehensive analysis of their identity and functional role in shaping reward learning. METHODS Our multidisciplinary approach included fluorescent in situ hybridization (n = ≥3 mice), tract tracing (n = 5 mice), ex vivo electrophysiology (n = ≥30 cells), in vivo calcium imaging with fiber photometry (n = ≥4 mice), and use of viral strategies in transgenic lines to selectively delete CRF peptide from NAc neurons (n = ≥4 mice). Behaviors used were instrumental learning, sucrose preference, and spontaneous exploration in an open field. RESULTS We showed that the vast majority of NAc CRF-containing neurons are spiny projection neurons (SPNs) comprising dopamine D1-, D2-, or D1/D2-containing SPNs that primarily project and connect to the ventral pallidum and to a lesser extent the ventral midbrain. As a population, they display mature and immature SPN firing properties. We demonstrated that NAc CRF-containing neurons track reward outcomes during operant reward learning and that CRF release from these neurons acts to constrain initial acquisition of action-outcome learning and at the same time facilitates flexibility in the face of changing contingencies. CONCLUSIONS CRF release from this sparse population of SPNs is critical for reward learning under normal conditions.
Collapse
Affiliation(s)
- Elizabeth A Eckenwiler
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey J Stolley
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Maxine A Fusaro
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Alyssa M Romportl
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Jack M Ross
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Petersen
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Eera M Kale
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Michael S Clark
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Selena S Schattauer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington; Department of Pharmacology, University of Washington, Seattle, Washington
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington; Department of Pharmacology, University of Washington, Seattle, Washington
| | - Julia C Lemos
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
28
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
29
|
Sun Q, Liu M, Guan W, Xiao X, Dong C, Bruchas MR, Zweifel LS, Li Y, Tian L, Li B. Dynorphin modulates motivation through a pallido-amygdala cholinergic circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605785. [PMID: 39211114 PMCID: PMC11361169 DOI: 10.1101/2024.07.31.605785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The endogenous opioid peptide dynorphin and its receptor κ-opioid receptor (KOR) have been implicated in divergent behaviors, but the underlying mechanisms remain elusive. Here we show that dynorphin released from nucleus accumbens dynorphinergic neurons exerts powerful modulation over a ventral pallidum (VP) disinhibitory circuit, thereby controlling cholinergic transmission to the amygdala and motivational drive in mice. On one hand, dynorphin acts postsynaptically via KORs on local GABAergic neurons in the VP to promote disinhibition of cholinergic neurons, which release acetylcholine into the amygdala to invigorate reward-seeking behaviors. On the other hand, dynorphin also acts presynaptically via KORs on dynorphinergic terminals to limit its own release. Such autoinhibition keeps cholinergic neurons from prolonged activation and release of acetylcholine, and prevents perseverant reward seeking. Our study reveals how dynorphin exquisitely modulate motivation through cholinergic system, and provides an explanation for why these neuromodulators are involved in motivational disorders, including depression and addiction.
Collapse
|
30
|
Marinescu AM, Labouesse MA. The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding. Front Neurosci 2024; 18:1437210. [PMID: 39139500 PMCID: PMC11319282 DOI: 10.3389/fnins.2024.1437210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Feeding behavior is a complex physiological process regulated by the interplay between homeostatic and hedonic feeding circuits. Among the neural structures involved, the nucleus accumbens (NAc) has emerged as a pivotal region at the interface of these two circuits. The NAc comprises distinct subregions and in this review, we focus mainly on the NAc shell (NAcSh). Homeostatic feeding circuits, primarily found in the hypothalamus, ensure the organism's balance in energy and nutrient requirements. These circuits monitor peripheral signals, such as insulin, leptin, and ghrelin, and modulate satiety and hunger states. The NAcSh receives input from these homeostatic circuits, integrating information regarding the organism's metabolic needs. Conversely, so-called hedonic feeding circuits involve all other non-hunger and -satiety processes, i.e., the sensory information, associative learning, reward, motivation and pleasure associated with food consumption. The NAcSh is interconnected with hedonics-related structures like the ventral tegmental area and prefrontal cortex and plays a key role in encoding hedonic information related to palatable food seeking or consumption. In sum, the NAcSh acts as a crucial hub in feeding behavior, integrating signals from both homeostatic and hedonic circuits, to facilitate behavioral output via its downstream projections. Moreover, the NAcSh's involvement extends beyond simple integration, as it directly impacts actions related to food consumption. In this review, we first focus on delineating the inputs targeting the NAcSh; we then present NAcSh output projections to downstream structures. Finally we discuss how the NAcSh regulates feeding behavior and can be seen as a neural hub integrating homeostatic and hedonic feeding signals, via a functionally diverse set of projection neuron subpopulations.
Collapse
Affiliation(s)
- Alina-Măriuca Marinescu
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marie A. Labouesse
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Eckenwiler EA, Ingebretson AE, Stolley JJ, Fusaro MA, Romportl AM, Ross JM, Petersen CL, Kale EM, Clark MS, Schattauer SS, Zweifel LS, Lemos JC. CRF release from a unique subpopulation of accumbal neurons constrains action-outcome acquisition in reward learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567495. [PMID: 39005420 PMCID: PMC11244858 DOI: 10.1101/2023.11.16.567495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin releasing factor (CRF) has been previously documented. Here we provide a comprehensive analysis of their identity and functional role in shaping reward learning. Methods To do this, we took a multidisciplinary approach that included florescent in situ hybridization (N mice ≥ 3), tract tracing (N mice = 5), ex vivo electrophysiology (N cells ≥ 30), in vivo calcium imaging with fiber photometry (N mice ≥ 4) and use of viral strategies in transgenic lines to selectively delete CRF peptide from NAc neurons (N mice ≥ 4). Behaviors used were instrumental learning, sucrose preference and spontaneous exploration in an open field. Results Here we show that the vast majority of NAc CRF-containing (NAc CRF ) neurons are spiny projection neurons (SPNs) comprised of dopamine D1-, D2- or D1/D2-containing SPNs that primarily project and connect to the ventral pallidum and to a lesser extent the ventral midbrain. As a population, they display mature and immature SPN firing properties. We demonstrate that NAc CRF neurons track reward outcomes during operant reward learning and that CRF release from these neurons acts to constrain initial acquisition of action-outcome learning, and at the same time facilitates flexibility in the face of changing contingencies. Conclusion We conclude that CRF release from this sparse population of SPNs is critical for reward learning under normal conditions.
Collapse
|
32
|
Hopf FW. Nucleus accumbens shell cholinergic interneurons potently drive binge alcohol drinking: A commentary on Sharma et al., 2024. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1243-1245. [PMID: 38811254 DOI: 10.1111/acer.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Frederic Woodward Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Zhao W, Yu YM, Wang XY, Xia SH, Ma Y, Tang H, Tao M, Li H, Xu Z, Yang JX, Wu P, Zhang H, Ding HL, Cao JL. CRF regulates pain sensation by enhancement of corticoaccumbal excitatory synaptic transmission. Mol Psychiatry 2024; 29:2170-2184. [PMID: 38454083 DOI: 10.1038/s41380-024-02488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Weinan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huimei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingshu Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - He Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
34
|
Wu Y, Zhang D, Liu J, Jiang J, Xie K, Wu L, Leng Y, Liang P, Zhu T, Zhou C. Activity of the Sodium Leak Channel Maintains the Excitability of Paraventricular Thalamus Glutamatergic Neurons to Resist Anesthetic Effects of Sevoflurane in Mice. Anesthesiology 2024; 141:56-74. [PMID: 38625708 DOI: 10.1097/aln.0000000000005015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Stimulation of the paraventricular thalamus has been found to enhance anesthesia recovery; however, the underlying molecular mechanism by which general anesthetics modulate paraventricular thalamus is unclear. This study aimed to test the hypothesis that the sodium leak channel (NALCN) maintains neuronal activity in the paraventricular thalamus to resist anesthetic effects of sevoflurane in mice. METHODS Chemogenetic and optogenetic manipulations, in vivo multiple-channel recordings, and electroencephalogram recordings were used to investigate the role of paraventricular thalamus neuronal activity in sevoflurane anesthesia. Virus-mediated knockdown and/or overexpression was applied to determine how NALCN influenced excitability of paraventricular thalamus glutamatergic neurons under sevoflurane. Viral tracers and local field potentials were used to explore the downstream pathway. RESULTS Single neuronal spikes in the paraventricular thalamus were suppressed by sevoflurane anesthesia and recovered during emergence. Optogenetic activation of paraventricular thalamus glutamatergic neurons shortened the emergence period from sevoflurane anesthesia, while chemogenetic inhibition had the opposite effect. Knockdown of the NALCN in the paraventricular thalamus delayed the emergence from sevoflurane anesthesia (recovery time: from 24 ± 14 to 64 ± 19 s, P < 0.001; concentration for recovery of the righting reflex: from 1.13% ± 0.10% to 0.97% ± 0.13%, P < 0.01). As expected, the overexpression of the NALCN in the paraventricular thalamus produced the opposite effects. At the circuit level, knockdown of the NALCN in the paraventricular thalamus decreased the neuronal activity of the nucleus accumbens, as indicated by the local field potential and decreased single neuronal spikes in the nucleus accumbens. Additionally, the effects of NALCN knockdown in the paraventricular thalamus on sevoflurane actions were reversed by optical stimulation of the nucleus accumbens. CONCLUSIONS Activity of the NALCN maintains the excitability of paraventricular thalamus glutamatergic neurons to resist the anesthetic effects of sevoflurane in mice. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Keyu Xie
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Leng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci 2024; 60:3447-3465. [PMID: 38798086 DOI: 10.1111/ejn.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
As opposed to those requiring a single action for reward acquisition, tasks necessitating action sequences demand that animals learn action elements and their sequential order and sustain the behaviour until the sequence is completed. With repeated learning, animals not only exhibit precise execution of these sequences but also demonstrate enhanced smoothness and efficiency. Previous research has demonstrated that midbrain dopamine and its major projection target, the striatum, play crucial roles in these processes. Recent studies have shown that dopamine from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve distinct functions in action sequence learning. The distinct contributions of dopamine also depend on the striatal subregions, namely the ventral, dorsomedial and dorsolateral striatum. Here, we have reviewed recent findings on the role of striatal dopamine in action sequence learning, with a focus on recent rodent studies.
Collapse
Affiliation(s)
- Minryung R Song
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, South Korea
- Center for Neuroscience-inspired AI, KAIST, Daejeon, South Korea
| |
Collapse
|
36
|
Wang H, Flores RJ, Yarur HE, Limoges A, Bravo-Rivera H, Casello SM, Loomba N, Enriquez-Traba J, Arenivar M, Wang Q, Ganley R, Ramakrishnan C, Fenno LE, Kim Y, Deisseroth K, Or G, Dong C, Hoon MA, Tian L, Tejeda HA. Prefrontal cortical dynorphin peptidergic transmission constrains threat-driven behavioral and network states. Neuron 2024; 112:2062-2078.e7. [PMID: 38614102 PMCID: PMC11250624 DOI: 10.1016/j.neuron.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.
Collapse
Affiliation(s)
- Huikun Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Limoges
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Columbia University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector Bravo-Rivera
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Sanne M Casello
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Loomba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Juan Enriquez-Traba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Miguel Arenivar
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Brown University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Queenie Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Robert Ganley
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Kim
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Grace Or
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Mark A Hoon
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hugo A Tejeda
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Al-Redouan A, Salaj M, Kubova H, Druga R. Compartmental neuronal degeneration in the ventral striatum induced by status epilepticus in young rats' brain in comparison with adults. Int J Dev Neurosci 2024; 84:328-341. [PMID: 38631684 DOI: 10.1002/jdn.10331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations. To better understand the development of neuronal damage in the striatopallidal complex associated with SE, the detected neuronal degeneration in the compartments of the VS, namely, the nucleus accumbens (NAc) and the olfactory tubercle (OT), was analyzed. The experiments were performed on Wistar rats at age of 25-day-old pups and 3-month-old adult animals. Lithium-pilocarpine model of SE was used. Lithium chloride (3 mmol/kg, ip) was injected 24 h before administering pilocarpine (40 mg/kg, ip). This presented study demonstrates the variability of post SE neuronal damage in 25-day-old pups in comparison with 3-month-old adult rats. The NAc exhibited small to moderate number of Fluoro-Jade B (FJB)-positive neurons detected 4 and 8 h post SE intervals. The number of degenerated neurons in the shell subdivision of the NAc significantly increased at survival interval of 12 h after the SE. FJB-positive neurons were evidently more prominent occupying the whole anteroposterior and mediolateral extent of the nucleus at longer survival intervals of 24 and 48 h after the SE. This was also the case in the bordering vicinity between the shell and the core compartments but with clusters of degenerating cells. The severity of damage of the shell subdivision of the NAc reached its peak at an interval of 24 h post SE. Isolated FJB-positive neurons were detected in the ventral peripheral part of the core compartment. Degenerated neurons persisted in the shell subdivision of the NAc 1 week after SE. However, the quantity of cell damage had significantly reduced in comparison with the aforementioned shorter intervals. The third layer of the OT exhibited more degenerated neurons than the second layer. The FJB-positive cells in the young animals were higher than in the adult animals. The morphology of those cells was identical in the two age groups except in the OT.
Collapse
Affiliation(s)
- Azzat Al-Redouan
- Department of Anatomy, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Salaj
- Department of Anatomy, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Kubova
- Department of developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Rastislav Druga
- Department of Anatomy, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
38
|
Zhao M, Pang H, Li X, Bu S, Wang J, Liu Y, Jiang Y, Fan G. Low and high-order topological disruption of functional networks in multiple system atrophy with freezing of gait: A resting-state study. Neurobiol Dis 2024; 195:106504. [PMID: 38615913 DOI: 10.1016/j.nbd.2024.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE Freezing of gait (FOG), a specific survival-threatening gait impairment, needs to be urgently explored in patients with multiple system atrophy (MSA), which is characterized by rapid progression and death within 10 years of symptom onset. The objective of this study was to explore the topological organisation of both low- and high-order functional networks in patients with MAS and FOG. METHOD Low-order functional connectivity (LOFC) and high-order functional connectivity FC (HOFC) networks were calculated and further analysed using the graph theory approach in 24 patients with MSA without FOG, 20 patients with FOG, and 25 healthy controls. The relationship between brain activity and the severity of freezing symptoms was investigated in patients with FOG. RESULTS Regarding global topological properties, patients with FOG exhibited alterations in the whole-brain network, dorsal attention network (DAN), frontoparietal network (FPN), and default network (DMN), compared with patients without FOG. At the node level, patients with FOG showed decreased nodal centralities in sensorimotor network (SMN), DAN, ventral attention network (VAN), FPN, limbic regions, hippocampal network and basal ganglia network (BG), and increased nodal centralities in the FPN, DMN, visual network (VIN) and, cerebellar network. The nodal centralities of the right inferior frontal sulcus, left lateral amygdala and left nucleus accumbens (NAC) were negatively correlated with the FOG severity. CONCLUSION This study identified a disrupted topology of functional interactions at both low and high levels with extensive alterations in topological properties in MSA patients with FOG, especially those associated with damage to the FPN. These findings offer new insights into the dysfunctional mechanisms of complex networks and suggest potential neuroimaging biomarkers for FOG in patients with MSA.
Collapse
Affiliation(s)
- Mengwan Zhao
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Huize Pang
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Xiaolu Li
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Shuting Bu
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Juzhou Wang
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Yu Liu
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, Beijing 7 Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, PR China.
| | - Guoguang Fan
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
39
|
Andraka E, Phillips RA, Brida KL, Day JJ. Chst9 marks a spatially and transcriptionally unique population of Oprm1-expressing neurons in the nucleus accumbens. ADDICTION NEUROSCIENCE 2024; 11:100153. [PMID: 38957401 PMCID: PMC11218735 DOI: 10.1016/j.addicn.2024.100153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (μORs). The μOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from μOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9, a gene encoding a carbohydrate sulfotransferase. Notably, Chst9+ neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9. The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.
Collapse
Affiliation(s)
- Emma Andraka
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Robert A. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kasey L. Brida
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
40
|
Zhu K, Chen S, Qin X, Bai W, Hao J, Xu X, Guo H, Bai H, Yang Z, Wang S, Zhao Z, Ji T, Kong D, Zhang W. Exploring the therapeutic potential of cannabidiol for sleep deprivation-induced hyperalgesia. Neuropharmacology 2024; 249:109893. [PMID: 38428482 DOI: 10.1016/j.neuropharm.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.
Collapse
Affiliation(s)
- Kangsheng Zhu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China; Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Wanjun Bai
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Jie Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xiaolei Xu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Tengfei Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
41
|
Hueske E, Stine C, Yoshida T, Crittenden JR, Gupta A, Johnson JC, Achanta AS, Loftus J, Mahar A, Hul D, Azocar J, Gray RJ, Bruchas MR, Graybiel AM. Developmental and adult striatal patterning of nociceptin ligand marks striosomal population with direct dopamine projections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594426. [PMID: 38798373 PMCID: PMC11118414 DOI: 10.1101/2024.05.15.594426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Circuit influences on the midbrain dopamine system are crucial to adaptive behavior and cognition. Recent developments in the study of neuropeptide systems have enabled high-resolution investigations of the intersection of neuromodulatory signals with basal ganglia circuitry, identifying the nociceptin/orphanin FQ (N/OFQ) endogenous opioid peptide system as a prospective regulator of striatal dopamine signaling. Using a prepronociceptin-Cre reporter mouse line, we characterized highly selective striosomal patterning of Pnoc mRNA expression in mouse dorsal striatum, reflecting early developmental expression of Pnoc . In the ventral striatum, Pnoc expression was was clustered across the nucleus accumbens core and medial shell, including in adult striatum. We found that Pnoc tdTomato reporter cells largely comprise a population of dopamine receptor D1 ( Drd1 ) expressing medium spiny projection neurons localized in dorsal striosomes, known to be unique among striatal projections neurons for their direct innervation of midbrain dopamine neurons. These findings provide new understanding of the intersection of the N/OFQ system among basal ganglia circuits with particular implications for developmental regulation or wiring of striatal-nigral circuits.
Collapse
|
42
|
Jiang T, Liang S, Zhang X, Dong S, Zhu H, Wang Y, Sun Y. Parvalbumin neurons in the nucleus accumbens shell modulate seizure in temporal lobe epilepsy. Neurobiol Dis 2024; 194:106482. [PMID: 38522590 DOI: 10.1016/j.nbd.2024.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Shuyu Liang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaohan Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Shasha Dong
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - HaiFang Zhu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| | - Yanping Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
43
|
Nosaka R, Ushida T, Kidokoro H, Kawaguchi M, Shiraki A, Iitani Y, Imai K, Nakamura N, Sato Y, Hayakawa M, Natsume J, Kajiyama H, Kotani T. Intrauterine exposure to chorioamnionitis and neuroanatomical alterations at term-equivalent age in preterm infants. Arch Gynecol Obstet 2024; 309:1909-1918. [PMID: 37178219 DOI: 10.1007/s00404-023-07064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE Infants born to mothers with chorioamnionitis (CAM) are at increased risk of developing adverse neurodevelopmental disorders in later life. However, clinical magnetic resonance imaging (MRI) studies examining brain injuries and neuroanatomical alterations attributed to CAM have yielded inconsistent results. We aimed to determine whether exposure to histological CAM in utero leads to brain injuries and alterations in the neuroanatomy of preterm infants using 3.0- Tesla MRI at term-equivalent age. METHODS A total of 58 preterm infants born before 34 weeks of gestation at Nagoya University Hospital between 2010 and 2018 were eligible for this study (CAM group, n = 21; non-CAM group, n = 37). Brain injuries and abnormalities were assessed using the Kidokoro Global Brain Abnormality Scoring system. Gray matter, white matter, and subcortical gray matter (thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens) volumes were evaluated using segmentation tools (SPM12 and Infant FreeSurfer). RESULTS The Kidokoro scores for each category and severity in the CAM group were comparable to those observed in the non-CAM group. White matter volume was significantly smaller in the CAM group after adjusting for covariates (postmenstrual age at MRI, infant sex, and gestational age) (p = 0.007), whereas gray matter volume was not significantly different. Multiple linear regression analyses revealed significantly smaller volumes in the bilateral pallidums (right, p = 0.045; left, p = 0.038) and nucleus accumbens (right, p = 0.030; left, p = 0.004) after adjusting for covariates. CONCLUSIONS Preterm infants born to mothers with histological CAM showed smaller volumes in white matter, pallidum, and nucleus accumbens at term-equivalent age.
Collapse
Affiliation(s)
- Rena Nosaka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Neurology, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Iitani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Noriyuki Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Obstetrics and Gynecology, Anjo Kosei Hospital, Anjo, Aichi, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
44
|
Seitz RJ, Paloutzian RF, Angel H. Manifestations, social impact, and decay of conceptual beliefs: A cultural perspective. Brain Behav 2024; 14:e3470. [PMID: 38558538 PMCID: PMC10983810 DOI: 10.1002/brb3.3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Believing comprises multifaceted processes that integrate information from the outside world through meaning-making processes with personal relevance. METHODS Qualitative Review of the current literature in social cognitive neuroscience. RESULTS Although believing develops rapidly outside an individual's conscious awareness, it results in the formation of beliefs that are stored in memory and play an important role in determining an individual's behavior. Primal beliefs reflect an individual's experience of objects and events, whereas conceptual beliefs are based on narratives that are held in social groups. Conceptual beliefs can be about autobiographical, political, religious, and other aspects of life and may be encouraged by participation in group rituals. We hypothesize that assertions of future gains and rewards that transcend but are inherent in these codices provide incentives to follow the norms and rules of social groups. CONCLUSION The power of conceptual beliefs to provide cultural orientation is likely to fade when circumstances and evidence make it clear that what was asserted no longer applies.
Collapse
Affiliation(s)
- Rüdiger J. Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR‐Klinikum Düsseldorf, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Hans‐Ferdinand Angel
- Institute of Catechetic and Pedagogic of ReligionKarl Franzens University GrazGrazAustria
| |
Collapse
|
45
|
He BH, Yang YH, Hsiao BW, Lin WT, Chuang YF, Chen SY, Liu FC. Foxp2 Is Required for Nucleus Accumbens-mediated Multifaceted Limbic Function. Neuroscience 2024; 542:33-46. [PMID: 38354901 DOI: 10.1016/j.neuroscience.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The forkhead box protein P2 (Foxp2), initially identified for its role in speech and language development, plays an important role in neural development. Previous studies investigated the function of the Foxp2 gene by deleting or mutating Foxp2 from developmental stages. Little is known about its physiological function in adult brains. Although Foxp2 has been well studied in the dorsal striatum, its function in the nucleus accumbens (NAc) of the ventral striatum remains elusive. Here, we examine the physiological function of Foxp2 in NAc of mouse brains. We conditionally knocked out Foxp2 by microinjections of AAV-EGFP-Cre viruses into the medial shell of NAc of Foxp2 floxed (cKO) mice. Immunostaining showed increased c-Fos positive cells in cKO NAc at basal levels, suggesting an abnormality in Foxp2-deficient NAc cells. Unbiased behavioral profiling of Foxp2 cKO mice showed abnormalities in limbic-associated function. Foxp2 cKO mice exhibited abnormal social novelty without preference for interaction with strangers and familiar mice. In appetitive reward learning, Foxp2 cKO mice failed to learn the time expectancy of food delivery. In fear learning, Foxp2 cKO mice exhibited abnormal increases in freezing levels in response to tone paired with foot shock during fear conditioning. The extinction of the fear response was also altered in Foxp2 cKO mice. In contrast, conditional knockout of Foxp2 in NAc did not affect locomotion, motor coordination, thermal pain sensation, anxiety- and depression-like behaviors. Collectively, our study suggests that Foxp2 has a multifaceted physiological role in NAc in the regulation of limbic function in the adult brain.
Collapse
Affiliation(s)
- Bo-Han He
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ya-Hui Yang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Bo-Wen Hsiao
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Ting Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
46
|
Zheng H, Zhai T, Lin X, Dong G, Yang Y, Yuan TF. The resting-state brain activity signatures for addictive disorders. MED 2024; 5:201-223.e6. [PMID: 38359839 PMCID: PMC10939772 DOI: 10.1016/j.medj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.
Collapse
Affiliation(s)
- Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming 650092, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
47
|
Wojick JA, Paranjapye A, Chiu JK, Mahmood M, Oswell C, Kimmey BA, Wooldridge LM, McCall NM, Han A, Ejoh LL, Chehimi SN, Crist RC, Reiner BC, Korb E, Corder G. A nociceptive amygdala-striatal pathway for chronic pain aversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579947. [PMID: 38405972 PMCID: PMC10888915 DOI: 10.1101/2024.02.12.579947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of nociceptive BLA projection neurons (BLAnoci ensemble). However, the role of the BLAnoci ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood. Here, we show that the same BLAnoci ensemble neurons are required for both acute and chronic neuropathic pain behavior. Using single nucleus RNA-sequencing, we characterized the effect of acute and chronic pain on the BLA and identified enrichment for genes with known functions in axonal and synaptic organization and pain perception. We thus examined the brain-wide targets of the BLAnoci ensemble and uncovered a previously undescribed nociceptive hotspot of the nucleus accumbens shell (NAcSh) that mirrors the stability and specificity of the BLAnoci ensemble and is recruited in chronic pain. Notably, BLAnoci ensemble axons transmit acute and neuropathic nociceptive information to the NAcSh, highlighting this nociceptive amygdala-striatal circuit as a unique pathway for affective-motivational responses across pain states.
Collapse
Affiliation(s)
- Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alekh Paranjapye
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juliann K. Chiu
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinna Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Han
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar Nasser Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
de Jong JW, Liang Y, Verharen JPH, Fraser KM, Lammel S. State and rate-of-change encoding in parallel mesoaccumbal dopamine pathways. Nat Neurosci 2024; 27:309-318. [PMID: 38212586 PMCID: PMC11590751 DOI: 10.1038/s41593-023-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
The nervous system uses fast- and slow-adapting sensory detectors in parallel to enable neuronal representations of external states and their temporal dynamics. It is unknown whether this dichotomy also applies to internal representations that have no direct correlation in the physical world. Here we find that two distinct dopamine (DA) neuron subtypes encode either a state or its rate-of-change. In mice performing a reward-seeking task, we found that the animal's behavioral state and rate-of-change were encoded by the sustained activity of DA neurons in medial ventral tegmental area (VTA) DA neurons and transient activity in lateral VTA DA neurons, respectively. The neural activity patterns of VTA DA cell bodies matched DA release patterns within anatomically defined mesoaccumbal pathways. Based on these results, we propose a model in which the DA system uses two parallel lines for proportional-differential encoding of a state variable and its temporal dynamics.
Collapse
Affiliation(s)
- Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Yilan Liang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Kurt M Fraser
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
49
|
Ibrahim KM, Massaly N, Yoon HJ, Sandoval R, Widman AJ, Heuermann RJ, Williams S, Post W, Pathiranage S, Lintz T, Zec A, Park A, Yu W, Kash TL, Gereau RW, Morón JA. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat Commun 2024; 15:750. [PMID: 38286800 PMCID: PMC10825206 DOI: 10.1038/s41467-024-44836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Hye-Jean Yoon
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Rossana Sandoval
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Allie J Widman
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Heuermann
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University Pain Center, St. Louis, MO, 63110, USA
| | - Sidney Williams
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - William Post
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sulan Pathiranage
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tania Lintz
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley Park
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Waylin Yu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA.
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
50
|
Gildawie KR, Wang K, Budge KE, Byrnes EM. Effects of Maternal Separation on Effort-based Responding for Sucrose Are Associated with c-Fos Expression in the Nucleus Accumbens Core. Neuroscience 2024; 537:174-188. [PMID: 38036058 PMCID: PMC10872495 DOI: 10.1016/j.neuroscience.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
In both people and animals, exposure to adverse experiences early in life can alter neurodevelopment and lead to long-term behavioral effects, including effects on reward processing. In the current study, we use a well-validated rodent model of maternal neglect, maternal separation (MS), to investigate the impact of early life adversity on reward learning and motivation and identify associated modifications in cellular activation in reward-relevant areas. Litters of Long-Evans rats were separated from the dam for either 15 min (brief) or 180 min (prolonged)/day from postnatal day (PND)2 to PND14. As adults, offspring were trained to lever press for a sucrose pellet using fixed ratio (FR) schedules and motivation was tested using a progressive ratio (PR) schedule over 10 daily sessions to assess sustained effects on effort-based responding. Immunohistochemical staining for c-Fos was conducted in a subset of animals that underwent an additional PR session. While there were no effects on reward learning, both MS180 males and females demonstrated increased effort-based responding on the first day of PR testing, while only MS180 males demonstrated a sustained increase in effort across all 10 days. MS180-induced changes in c-Fos expression in the dorsal and ventral striatum were observed, with subregion-specific effects along the rostrocaudal axis. Moreover, regression analyses suggest that motivated responding for a sucrose food reward in MS180-exposed, but not MS15-exposed animals, was associated with increased c-Fos expression in the rostral nucleus accumbens core. These findings implicate specific striatal regions in sex-specific modulation of sustained effort-based reward behavior following early life adversity.
Collapse
Affiliation(s)
- Kelsea R Gildawie
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Katherine Wang
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Kerri E Budge
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Elizabeth M Byrnes
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA.
| |
Collapse
|