1
|
Millett M, Heuberger A, Martin Castosa E, Comite A, Wagner P, Hall D, Gallardo I, Chambers NE, Wagner L, Reinhardt J, Moehle MS. Neuron specific quantitation of Gα olf expression and signaling in murine brain tissue. Brain Res 2024; 1842:149105. [PMID: 38960060 DOI: 10.1016/j.brainres.2024.149105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The heterotrimeric G-protein α subunit, Gαolf, acts to transduce extracellular signals through G-protein coupled receptors (GPCRs) and stimulates adenylyl cyclase mediated production of the second messenger cyclic adenosine monophosphate. Numerous mutations in the GNAL gene, which encodes Gαolf, have been identified as causative for an adult-onset dystonia. These mutations disrupt GPCR signaling cascades in in vitro assays through several mechanisms, and this disrupted signaling is hypothesized to lead to dystonic motor symptoms in patients. However, the cells and circuits that mutations in GNAL corrupt are not well understood. Published patterns of Gαolf expression outside the context of the striatum are sparse, conflicting, often lack cell type specificity, and may be confounded by expression of the close GNAL homolog of GNAS. Here, we use RNAScope in-situ hybridization to quantitatively characterize Gnal mRNA expression in brain tissue from wildtype C57BL/6J adult mice. We observed widespread expression of Gnal puncta throughout the brain, suggesting Gαolf is expressed in more brain structures and neuron types than previously accounted for. We quantify transcripts at a single cell level, and use neuron type specific markers to further classify and understand patterns of GNAL expression. Our data suggests that brain regions classically associated with motor control, initiation, and regulation show the highest expression of GNAL, with Purkinje Cells of the cerebellum showing the highest expression of any neuron type examined. Subsequent conditional Gnal knockout in Purkinje cells led to markedly decreased intracellular cAMP levels and downstream cAMP-dependent enzyme activation. Our work provides a detailed characterization of Gnal expression throughout the brain and the biochemical consequences of loss of Gαolf signaling in vivo in neurons that highly express Gnal.
Collapse
Affiliation(s)
- Michael Millett
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Anika Heuberger
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Elisabeth Martin Castosa
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Allison Comite
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Preston Wagner
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Dominic Hall
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Ignacio Gallardo
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Nicole E Chambers
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Lloyd Wagner
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Jessica Reinhardt
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Mark S Moehle
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| |
Collapse
|
2
|
da Silva D, Matsui A, Murray EM, Mamais A, Authement ME, Shin JH, Shaw M, Ron D, Cookson MR, Alvarez VA. Leucine-rich repeat kinase 2 limits dopamine D1 receptor signaling in striatum and biases against heavy persistent alcohol drinking. Neuropsychopharmacology 2024; 49:824-836. [PMID: 37684522 PMCID: PMC10948780 DOI: 10.1038/s41386-023-01731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.
Collapse
Affiliation(s)
- Daniel da Silva
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Erin M Murray
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Michael E Authement
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Jung Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Marlisa Shaw
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, 20892, USA.
- NIMH, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
3
|
Kim YJ, Kook WA, Ma SX, Lee BR, Ko YH, Kim SK, Lee Y, Lee JG, Lee S, Kim KM, Lee SY, Jang CG. The novel psychoactive substance 25E-NBOMe induces reward-related behaviors via dopamine D1 receptor signaling in male rodents. Arch Pharm Res 2024; 47:360-376. [PMID: 38551761 DOI: 10.1007/s12272-024-01491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wun-A Kook
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Gyeong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- Analytical Toxicology Laboratory, College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju, 81186, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Su H, Zhu L, Su L, Li M, Wang R, Zhu J, Chen Y, Chen T. Impact of miR-29c-3p in the Nucleus Accumbens on Methamphetamine-Induced Behavioral Sensitization and Neuroplasticity-Related Proteins. Int J Mol Sci 2024; 25:942. [PMID: 38256016 PMCID: PMC10815255 DOI: 10.3390/ijms25020942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique in conjunction with Ingenuity pathway analysis (IPA) to probe the putative molecular mechanisms of METH sensitization through miR-29c-3p inhibition. Through a microinjection of AAV-anti-miR-29c-3p into the nucleus accumbens (NAc) of mice, we observed the attenuation of METH-induced locomotor effects. Subsequent iTRAQ analysis identified 70 differentially expressed proteins (DEPs), with 22 up-regulated potential target proteins identified through miR-29c-3p target gene prediction and IPA analysis. Our focus extended to the number of neuronal branches, the excitatory synapse count, and locomotion-related pathways. Notably, GPR37, NPC1, and IREB2 emerged as potential target molecules for miR-29c-3p regulation, suggesting their involvement in the modulation of METH sensitization. Quantitative PCR confirmed the METH-induced aberrant expression of Gpr37, Npc1, and Ireb2 in the NAc of mice. Specifically, the over-expression of miR-29c-3p led to a significant reduction in the mRNA level of Gpr37, while the inhibition of miR-29c-3p resulted in a significant increase in the mRNA level of Gpr37, consistent with the regulatory principle of miRNAs modulating target gene expression. This suggests that miR-29c-3p potentially influences METH sensitization through its regulation of neuroplasticity. Our research indicates that miR-29c-3p plays a crucial role in regulating METH-induced sensitization, and it identified the potential molecular of miR-29c-3p in regulating METH-induced sensitization.
Collapse
Affiliation(s)
- Hang Su
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.S.); (L.Z.); (L.S.); (M.L.); (R.W.); (J.Z.)
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an 710061, China
- National Biosafety Evidence Foundation, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi’an Jiaotong University, Xi’an 710115, China
| | - Li Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.S.); (L.Z.); (L.S.); (M.L.); (R.W.); (J.Z.)
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an 710061, China
- National Biosafety Evidence Foundation, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi’an Jiaotong University, Xi’an 710115, China
| | - Linlan Su
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.S.); (L.Z.); (L.S.); (M.L.); (R.W.); (J.Z.)
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an 710061, China
- National Biosafety Evidence Foundation, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi’an Jiaotong University, Xi’an 710115, China
| | - Min Li
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.S.); (L.Z.); (L.S.); (M.L.); (R.W.); (J.Z.)
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an 710061, China
- National Biosafety Evidence Foundation, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi’an Jiaotong University, Xi’an 710115, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.S.); (L.Z.); (L.S.); (M.L.); (R.W.); (J.Z.)
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an 710061, China
- National Biosafety Evidence Foundation, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi’an Jiaotong University, Xi’an 710115, China
| | - Jie Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.S.); (L.Z.); (L.S.); (M.L.); (R.W.); (J.Z.)
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an 710061, China
- National Biosafety Evidence Foundation, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi’an Jiaotong University, Xi’an 710115, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.S.); (L.Z.); (L.S.); (M.L.); (R.W.); (J.Z.)
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an 710061, China
- National Biosafety Evidence Foundation, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi’an Jiaotong University, Xi’an 710115, China
| |
Collapse
|
5
|
Hanna C, Yao R, Sajjad M, Gold M, Blum K, Thanos PK. Exercise Modifies the Brain Metabolic Response to Chronic Cocaine Exposure Inhibiting the Stria Terminalis. Brain Sci 2023; 13:1705. [PMID: 38137153 PMCID: PMC10742065 DOI: 10.3390/brainsci13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
It is well known that exercise promotes health and wellness, both mentally and physiologically. It has been shown to play a protective role in many diseases, including cardiovascular, neurological, and psychiatric diseases. The present study examined the effects of aerobic exercise on brain glucose metabolic activity in response to chronic cocaine exposure in female Lewis rats. Rats were divided into exercise and sedentary groups. Exercised rats underwent treadmill running for six weeks and were compared to the sedentary rats. Using positron emission tomography (PET) and [18F]-Fluorodeoxyglucose (FDG), metabolic changes in distinct brain regions were observed when comparing cocaine-exposed exercised rats to cocaine-exposed sedentary rats. This included activation of the secondary visual cortex and inhibition in the cerebellum, stria terminalis, thalamus, caudate putamen, and primary somatosensory cortex. The functional network of this brain circuit is involved in sensory processing, fear and stress responses, reward/addiction, and movement. These results show that chronic exercise can alter the brain metabolic response to cocaine treatment in regions associated with emotion, behavior, and the brain reward cascade. This supports previous findings of the potential for aerobic exercise to alter the brain's response to drugs of abuse, providing targets for future investigation. These results can provide insights into the fields of exercise neuroscience, psychiatry, and addiction research.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mark Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
7
|
Dong Z, Xiang S, Pan C, Jiang C, Bao S, Shangguan W, Zeng R, Li J, Lian Q, Wu B. The excitatory transmission from basolateral nuclues of amygdala to nucleus accumbens shell regulates propofol self-administration through AMPA receptors. Addict Biol 2023; 28:e13310. [PMID: 37500486 DOI: 10.1111/adb.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Propofol addictive properties have been demonstrated in humans and rats. The glutamatergic transmission from basolateral nucleus of amygdala (BLA) to the nucleus accumbens (NAc) modulates reward-seeking behaviour; especially, NAc shell (NAsh) is implicated in reward-seeking response. Previous studies indicated the interactions between AMPA receptors (AMPARs) and dopamine D1 receptor (D1R) in NAc mediated drug addiction, but whether the circuit of BLA-to-NAsh and AMPARs regulate propofol addiction remains unclear. We trained adult male Sprague-Dawley rats for propofol self-administration to examine the changes of action potentials (APs) and spontaneous excitatory postsynaptic currents (sEPSCs) in the NAsh. Thereafter, optogenetic stimulation with adeno-associated viral vectors microinjections in BLA was used to explore the effect of BLA-to-NAsh on propofol self-administration behaviour (1.7 mg/kg/injection). The pretreatment effects with NBQX (0.25-1.0 μg/0.3 μl/site) or vehicle in the NAsh on propofol self-administration behaviour, the expressions of AMPARs subunits and D1R/ERK/CREB signalling pathway in the NAc were detected. The results showed that the number of APs, amplitude and frequency of sEPSCs were enhanced in propofol self-administrated rats. Propofol self-administration was inhibited in the NpHR3.0-EYFP group, but in the ChR2-EYFP group, there was a promoting effect, which could be weakened by NBQX pretreatment. NBQX pretreatment also significantly decreased the expressions of GluA2 subunit and D1R in the NAc but did not change the expressions of GluA1 and ERK/CREB signalling pathway. The evidence supports a vital role of BLA-to-NAsh circuit in regulating propofol self-administration and suggests this central reward processing may function through the interaction between AMPARs and D1R in the NAsh.
Collapse
Affiliation(s)
- Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Saiqiong Xiang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Chi Pan
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suhao Bao
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Wangning Shangguan
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Ruifeng Zeng
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Jun Li
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Godino A, Salery M, Durand-de Cuttoli R, Estill MS, Holt LM, Futamura R, Browne CJ, Mews P, Hamilton PJ, Neve RL, Shen L, Russo SJ, Nestler EJ. Transcriptional control of nucleus accumbens neuronal excitability by retinoid X receptor alpha tunes sensitivity to drug rewards. Neuron 2023; 111:1453-1467.e7. [PMID: 36889314 PMCID: PMC10164098 DOI: 10.1016/j.neuron.2023.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/06/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
The complex nature of the transcriptional networks underlying addictive behaviors suggests intricate cooperation between diverse gene regulation mechanisms that go beyond canonical activity-dependent pathways. Here, we implicate in this process a nuclear receptor transcription factor, retinoid X receptor alpha (RXRα), which we initially identified bioinformatically as associated with addiction-like behaviors. In the nucleus accumbens (NAc) of male and female mice, we show that although its own expression remains unaltered after cocaine exposure, RXRα controls plasticity- and addiction-relevant transcriptional programs in both dopamine receptor D1- and D2-expressing medium spiny neurons, which in turn modulate intrinsic excitability and synaptic activity of these NAc cell types. Behaviorally, bidirectional viral and pharmacological manipulation of RXRα regulates drug reward sensitivity in both non-operant and operant paradigms. Together, this study demonstrates a key role for NAc RXRα in promoting drug addiction and paves the way for future studies of rexinoid signaling in psychiatric disease states.
Collapse
Affiliation(s)
- Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Chapp AD, Collins AR, Driscoll KM, Behnke JE, Shan Z, Zhang L, Chen QH. Ethanol Metabolite, Acetate, Increases Excitability of the Central Nucleus of Amygdala Neurons through Activation of NMDA Receptors. ACS Chem Neurosci 2023; 14:1278-1290. [PMID: 36957993 PMCID: PMC11163875 DOI: 10.1021/acschemneuro.2c00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is a key brain region involved in emotional and stressor responses due to its many projections to autonomic regulatory centers. It is also a primary site of action from ethanol consumption. However, the influence of active metabolites of ethanol such as acetate on the CeA neural circuitry has yet to be elucidated. Here, we investigated the effect of acetate on CeA neurons with the axon projecting to the rostral ventrolateral medulla (CeA-RVLM), as well as quantified cytosolic calcium responses in primary neuronal cultures. Whole-cell patch-clamp recordings in brain slices containing autonomic CeA-RVLM neurons revealed a dose-dependent increase in neuronal excitability in response to acetate. N-Methyl-d-aspartate receptor (NMDAR) antagonists suppressed the acetate-induced increase in CeA-RVLM neuronal excitability and memantine suppressed the direct activation of NMDAR-dependent inward currents by acetate in brain slices. We observed that acetate increased cytosolic Ca2+ in a time-dependent manner in primary neuronal cell cultures. The acetate enhancement of calcium signaling was abolished by memantine. Computational modeling of acetic acid at NMDAR/NR1 glutamatergic and glycinergic sites suggests potential active site interactions. These findings suggest that within the CeA, acetate is excitatory at least partially through activation of NMDAR, which may underlie the impact of ethanol consumption on autonomic circuitry.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Neuroscience, University of Minnesota, Twin Cities, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Andréa R Collins
- Department of Psychiatry, University of California, San Francisco, Fresno, California 93701, United States
| | - Kyle M Driscoll
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jessica E Behnke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
10
|
Rodriguez-Contreras D, Gong S, Lebowitz JJ, Fedorov LM, Asad N, Dore TM, Phillips TJ, Ford CP, Williams JT, Neve KA. Gait Abnormalities and Aberrant D2 Receptor Expression and Signaling in Mice Carrying the Human Pathogenic Mutation DRD2I212F. Mol Pharmacol 2023; 103:188-198. [PMID: 36456191 PMCID: PMC11033946 DOI: 10.1124/molpharm.122.000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. That allelic variant D2-I212F is a constitutively active and G protein-biased receptor. We now describe mice engineered using CRISPR-Cas9-mediated gene editing technology to carry the D2-I212F variant. Drd2I212F mice exhibited gait abnormalities resembling those in other mouse models of chorea and/or dystonia and had striatal D2 receptor expression that was decreased approximately 30% per Drd2I212F allele. Electrically evoked inhibitory postsynaptic conductances in midbrain dopamine neurons and striatum from Drd2I212F mice, caused by G protein activation of potassium channels, exhibited slow kinetics (e.g., approximately four- to sixfold slower decay) compared with Drd2 +/+ mice. Current decay initiated by photolytic release of the D2 antagonist sulpiride from CyHQ-sulpiride was also ∼fourfold slower in midbrain slices from Drd2I212F mice than Drd2 +/+ mice. Furthermore, in contrast to Drd2 +/+ mice, in which dopamine is several-fold more potent at neurons in the nucleus accumbens than in the dorsal striatum, reflecting activation of Gα o versus Gα i, dopamine had similar potencies in those two brain regions of Drd2I212F mice. Repeated cocaine treatment, which decreases dopamine potency in the nucleus accumbens of Drd2 +/+ mice, had no effect on dopamine potency in Drd2 I212F mice. The results demonstrate the pathogenicity of the D2-I212F mutation and the utility of this mouse model for investigating the role of pathogenic DRD2 variants in early-onset hyperkinetic movement disorders. SIGNIFICANCE STATEMENT: The first dopamine receptor mutation to cause a movement disorder, D2-I212F, was recently identified. The mutation makes receptor activation of G protein-mediated signaling more efficient. To confirm the pathogenesis of D2-I212F, this study reports that mice carrying this mutation have gait abnormalities consistent with the clinical phenotype. The mutation also profoundly alters D2 receptor expression and function in vivo. This mouse model will be useful for further characterization of the mutant receptor and for evaluation of potential therapeutic drugs.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Sheng Gong
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Joseph J Lebowitz
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Lev M Fedorov
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Naeem Asad
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Timothy M Dore
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Tamara J Phillips
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Christopher P Ford
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - John T Williams
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Kim A Neve
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| |
Collapse
|
11
|
Boxer EE, Kim J, Dunn B, Aoto J. Ventral Subiculum Inputs to Nucleus Accumbens Medial Shell Preferentially Innervate D2R Medium Spiny Neurons and Contain Calcium Permeable AMPARs. J Neurosci 2023; 43:1166-1177. [PMID: 36609456 PMCID: PMC9962776 DOI: 10.1523/jneurosci.1907-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Ventral subiculum (vSUB) is the major output region of ventral hippocampus (vHIPP) and sends major projections to nucleus accumbens medial shell (NAcMS). Hyperactivity of the vSUB-NAcMS circuit is associated with substance use disorders and the modulation of vSUB activity alters drug seeking and drug reinstatement behavior in rodents. However, to the best of our knowledge, the cell type-specific connectivity and synaptic transmission properties of the vSUB-NAcMS circuit have never been directly examined. Instead, previous functional studies have focused on total ventral hippocampal (vHIPP) output to NAcMS without distinguishing vSUB from other subregions of vHIPP, including ventral CA1 (vCA1). Using ex vivo electrophysiology, we systematically characterized the vSUB-NAcMS circuit with cell type- and synapse-specific resolution in male and female mice and found that vSUB output to dopamine receptor type-1 (D1R) and type-2 (D2R) expressing medium spiny neurons (MSNs) displays a functional connectivity bias for D2R MSNs. Furthermore, we found that vSUB-D1R and vSUB-D2R MSN synapses contain calcium-permeable AMPA receptors in drug-naive mice. Finally, we find that, distinct from other glutamatergic inputs, cocaine exposure selectively induces plasticity at vSUB-D2R synapses. Importantly, we directly compared vSUB and vCA1 output to NAcMS and found that vSUB synapses are functionally distinct and that vCA1 output recapitulated the synaptic properties previously ascribed to vHIPP. Our work highlights the need to consider the contributions of individual subregions of vHIPP to substance use disorders and represents an important first step toward understanding how the vSUB-NAcMS circuit contributes to the etiologies that underlie substance use disorders.SIGNIFICANCE STATEMENT Inputs to nucleus accumbens (NAc) dopamine receptor type 1 (D1R) and D2R medium spiny neurons (MSNs) are critically involved in reward seeking behavior. Ventral subiculum (vSUB) provides robust synaptic input to nucleus accumbens medial shell (NAcMS) and activity of this circuit is linked to substance use disorders. Despite the importance of the vSUB to nucleus accumbens circuit, the functional connectivity and synaptic transmission properties have not been tested. Here, we systematically interrogated these properties and found that basal connectivity and drug-induced plasticity are biased for D2R medium spiny neurons. Overall, we demonstrate that this circuit is distinct from synaptic inputs from other brain regions, which helps to explain how vSUB dysfunction contributes to the etiologies that underlie substance use disorders.
Collapse
Affiliation(s)
- Emma E Boxer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - JungMin Kim
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Brett Dunn
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jason Aoto
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
12
|
Cell-type specific synaptic plasticity in dorsal striatum is associated with punishment-resistance compulsive-like cocaine self-administration in mice. Neuropsychopharmacology 2023; 48:448-458. [PMID: 36071131 PMCID: PMC9852591 DOI: 10.1038/s41386-022-01429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/02/2023]
Abstract
Addiction-related compulsion-like behavior can be modeled in rodents with drug self-administration (SA) despite harmful consequences. Recent studies suggest that the potentiation of glutamatergic transmission at the orbitofrontal cortex (OFC) to dorsal striatum (DS) synapses drives the transition from controlled to compulsion-like SA. However, the timing of the induction of this synaptic plasticity remains elusive. Here, mice were first allowed to intravenously self-administer cocaine. When mice had to endure a risk of electrical foot shock, only a fraction persevered in cocaine SA. In these persevering mice, we recorded high A/N ratios (AMPA-R/NMDA-R: α-amino-3hydroxy-5-methyl-4-isoxazolepropionic acid receptor/N-methyl-D-aspartate receptor) in both types of spiny projection neurons (i.e., D1 and D2 dopamine receptor-expressing SPNs). By contrast, when we prepared slices at the end of the acquisition period, in all mice, the A/N was high in D1R- but not D2R-SPNs. These results indicate that the transition to compulsion-like cocaine SA emerges during the punishment sessions, where synapses onto D2R-SPNs are strengthened. In renouncing individuals, the cocaine-evoked strengthening in D1R-SPNs is lost. Our study thus reveals the cell-type specific sequence of the induction of plasticity that eventually may cause compulsion-like SA.
Collapse
|
13
|
Dai KZ, Choi IB, Levitt R, Blegen MB, Kaplan AR, Matsui A, Shin JH, Bocarsly ME, Simpson EH, Kellendonk C, Alvarez VA, Dobbs LK. Dopamine D2 receptors bidirectionally regulate striatal enkephalin expression: Implications for cocaine reward. Cell Rep 2022; 40:111440. [PMID: 36170833 PMCID: PMC9620395 DOI: 10.1016/j.celrep.2022.111440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse. Low striatal D2 receptor levels are associated with cocaine abuse. Dai et al. bidirectionally alter striatal D2 receptor levels to probe the downstream mechanisms underlying this abuse liability. They provide evidence that enhanced enkephalin tone resulting from low D2 receptors is associated with suppressed intra-striatal GABA and potentiated cocaine reward.
Collapse
Affiliation(s)
- Kathy Z Dai
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - In Bae Choi
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ryan Levitt
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mariah B Blegen
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Alanna R Kaplan
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - J Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Miriam E Bocarsly
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Rutgers Brain Health Institute, Newark, NJ, USA
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Center on Compulsive Behaviors, IRP, NIH, Bethesda, MD, USA
| | - Lauren K Dobbs
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
15
|
Zych SM, Ford CP. Divergent properties and independent regulation of striatal dopamine and GABA co-transmission. Cell Rep 2022; 39:110823. [PMID: 35584679 PMCID: PMC9134867 DOI: 10.1016/j.celrep.2022.110823] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
Substantia nigra pars compacta (SNc) dopamine neurons play a key role in regulating the activity of striatal circuits within the basal ganglia. In addition to dopamine, these neurons release several other transmitters, including the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). Both dopamine and GABA are loaded into SNc synaptic vesicles by the vesicular monoamine transporter 2 (VMAT2), and co-release of GABA provides strong inhibition to the striatum by directly inhibiting striatal medium spiny projection neurons (MSNs) through activation of GABAA receptors. Here, we found that despite both dopamine and GABA being co-packaged by VMAT2, the properties of transmission, including Ca2+ sensitivity, release probability, and requirement of active zone scaffolding proteins, differ between the two transmitters. Moreover, the extent by which presynaptic neuromodulators inhibit co-transmission also varied. Differences in modulation and the mechanisms controlling release allow for independent regulation of dopamine and GABA signals despite both being loaded via similar mechanisms.
Collapse
Affiliation(s)
- Sarah M Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
BXD Recombinant Inbred Mice as a Model to Study Neurotoxicity. Biomolecules 2021; 11:biom11121762. [PMID: 34944406 PMCID: PMC8698863 DOI: 10.3390/biom11121762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022] Open
Abstract
BXD recombinant inbred (RI) lines represent a genetic reference population derived from a cross between C57BL/6J mice (B6) and DBA/2J mice (D2), which through meiotic recombination events possesses recombinant chromosomes containing B6 or D2 haplotype segments. The quantitative trait loci (QTLs) are the locations of segregating genetic polymorphisms and are fundamental to understanding genetic diversity in human disease susceptibility and severity. QTL mapping represents the typical approach for identifying naturally occurring polymorphisms that influence complex phenotypes. In this process, genotypic values at markers of known genomic locations are associated with phenotypic values measured in a segregating population. Indeed, BXD RI strains provide a powerful tool to study neurotoxicity induced by different substances. In this review, we describe the use of BXD RI lines to understand the underlying mechanisms of neurotoxicity in response to ethanol and cocaine, as well as metals and pesticide exposures.
Collapse
|