1
|
Rubilar JC, Outeiro TF, Klein AD. The lysosomal β-glucocerebrosidase strikes mitochondria: implications for Parkinson's therapeutics. Brain 2024; 147:2610-2620. [PMID: 38437875 DOI: 10.1093/brain/awae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, α-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal β-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering α-synuclein accumulation. Additionally, α-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
Collapse
Affiliation(s)
- Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37073, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
2
|
Brunet M, Vargas C, Fanjul M, Varry D, Hanoun N, Larrieu D, Pieruccioni L, Labrousse G, Lulka H, Capilla F, Ricard A, Selves J, Couvelard A, Gigoux V, Cordelier P, Guillermet-Guibert J, Dufresne M, Torrisani J. The E3 ubiquitin ligase TRIP12 is required for pancreatic acinar cell plasticity and pancreatic carcinogenesis. J Pathol 2024; 263:466-481. [PMID: 38924548 DOI: 10.1002/path.6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
The E3 ubiquitin ligase thyroid hormone receptor interacting protein 12 (TRIP12) has been implicated in pancreatic adenocarcinoma (PDAC) through its role in mediating the degradation of pancreas transcription factor 1a (PTF1a). PTF1a is a transcription factor essential for the acinar differentiation state that is notably diminished during the early steps of pancreatic carcinogenesis. Despite these findings, the direct involvement of TRIP12 in the onset of pancreatic cancer has yet to be established. In this study, we demonstrated that TRIP12 protein was significantly upregulated in human pancreatic preneoplastic lesions. Furthermore, we observed that TRIP12 overexpression varied within PDAC samples and PDAC-derived cell lines. We further demonstrated that TRIP12 was required for PDAC-derived cell growth and for the expression of E2F-targeted genes. Acinar-to-ductal cell metaplasia (ADM) is a reversible process that reflects the high plasticity of acinar cells. ADM becomes irreversible in the presence of oncogenic Kras mutations and leads to the formation of preneoplastic lesions. Using two genetically modified mouse models, we showed that a loss of TRIP12 prevented acini from developing ADM in response to pancreatic injury. With two additional mouse models, we further discovered that a depletion of TRIP12 prevented the formation of KrasG12D-induced preneoplastic lesions and impaired metastasis formation in the presence of mutated KrasG12D and Trp53R172H genes. In summary our study identified an overexpression of TRIP12 from the early stages of pancreatic carcinogenesis and proposed this E3 ubiquitin ligase as a novel regulator of acinar plasticity with an important dual role in initiation and metastatic steps of PDAC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/enzymology
- Humans
- Acinar Cells/pathology
- Acinar Cells/metabolism
- Acinar Cells/enzymology
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/enzymology
- Metaplasia/pathology
- Metaplasia/metabolism
- Cell Plasticity
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Mice
- Cell Line, Tumor
- Cell Proliferation
- Mice, Knockout
- Gene Expression Regulation, Neoplastic
- Precancerous Conditions/pathology
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/enzymology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Carrier Proteins
Collapse
Affiliation(s)
- Manon Brunet
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Claire Vargas
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marjorie Fanjul
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Damien Varry
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Naïma Hanoun
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Dorian Larrieu
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Laetitia Pieruccioni
- Centre de recherches RESTORE, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Toulouse, France
| | - Guillaume Labrousse
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Hubert Lulka
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Florence Capilla
- Service d'Histopathologie expérimentale, INSERM US006-CREFRE, Toulouse, France
| | - Alban Ricard
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Janick Selves
- Département de Pathologie, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Anne Couvelard
- Département de Pathologie Beaujon-Bichat, Hôpital Bichat, APHP and Université Paris Cité, Paris, France
| | - Véronique Gigoux
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Pierre Cordelier
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marlène Dufresne
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jérôme Torrisani
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Mao X, Gu H, Kim D, Kimura Y, Wang N, Xu E, Kumbhar R, Ming X, Wang H, Chen C, Zhang S, Jia C, Liu Y, Bian H, Karuppagounder SS, Akkentli F, Chen Q, Jia L, Hwang H, Lee SH, Ke X, Chang M, Li A, Yang J, Rastegar C, Sriparna M, Ge P, Brahmachari S, Kim S, Zhang S, Shimoda Y, Saar M, Liu H, Kweon SH, Ying M, Workman CJ, Vignali DAA, Muller UC, Liu C, Ko HS, Dawson VL, Dawson TM. Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein. Nat Commun 2024; 15:4663. [PMID: 38821932 PMCID: PMC11143359 DOI: 10.1038/s41467-024-49016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid β precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Hao Gu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Nanjing Brain Hospital, Nanjing, Jiangsu, 210029, PR China
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology, College of Medicine, Dong-A University, 32 Daesin Gongwwon-ro, Seo-gu, Busan, 49201, Republic of Korea
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ning Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Xiaotian Ming
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haibo Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chan Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Anesthesiology, West China Hospital, Sichuan University. The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yuqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hetao Bian
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fatih Akkentli
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Qi Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Longgang Jia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heehong Hwang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Su Hyun Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiyu Ke
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amanda Li
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cyrus Rastegar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Manjari Sriparna
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biological Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shu Zhang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata, 940-2188, Japan
| | - Martina Saar
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Haiqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD, 21205, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Ulrike C Muller
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Bindal P, Roy K, Sarkar B, Rana N, Kapil L, Singh C, Singh A. Intermittent fasting along with hydroalcoholic extract of Centella-asiatica ameliorates sub-acute hypoxia-induced ischemic stroke in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109871. [PMID: 38428624 DOI: 10.1016/j.cbpc.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Reduced blood flow (hypoxia) to the brain is thought to be the main cause of strokes because it deprives the brain of oxygen and nutrients. An increasing amount of evidence indicates that the Centella-Asiatica (HA-CA) hydroalcoholic extract has a variety of pharmacological benefits, such as antioxidant activity, neuroprotection, anti-inflammatory qualities, and angiogenesis promotion. Intermittent fasting (IF) has neurological benefits such as anti-inflammatory properties, neuroprotective effects, and the ability to enhance neuroplasticity. The current study evaluates the combined effect of IF (for 1, 6, and 12 days) along with HA-CA (daily up to 12 days) in adult zebrafish subjected to hypoxia every 5 min for 12 days followed by behavioral (novel tank and open-field tank test), biochemical (SOD, GSH-Px, and LPO), inflammatory (IL-10, IL-1β, and TNF-α), mitochondrial enzyme activities (Complex-I, II, and IV), signaling molecules (AMPK, MAPK, GSK-3β, Nrf2), and imaging/staining (H&E, TTC, and TEM) analysis. Results show that sub-acute hypoxia promotes the behavioral alterations, and production of radical species and alters the oxidative stress status in brain tissues of zebrafish, along with mitochondrial dysfunction, neuroinflammation, and alteration of signaling molecules. Nevertheless, HA-CA along with IF significantly ameliorates these defects in adult zebrafish as compared to their effects alone. Further, imaging analysis significantly provided evidence of infarct damage along with neuronal and mitochondrial damage which was significantly ameliorated by IF and HA-CA. The use of IF and HA-CA has been proven to enhance the physiological effects of hypoxia in all dimensions.
Collapse
Affiliation(s)
- Priya Bindal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India; Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala, Jalandhar 144603, India
| | - Kaunava Roy
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India; Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala, Jalandhar 144603, India
| | - Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India; Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala, Jalandhar 144603, India
| | - Natasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India; Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala, Jalandhar 144603, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India; Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala, Jalandhar 144603, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India; Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala, Jalandhar 144603, India.
| |
Collapse
|
5
|
Yao R, Li R, Wu X, Jin T, Luo Y, Li R, Huang Y. E3 ubiquitin ligase Hul6 modulates iron-dependent metabolism by regulating Php4 stability. J Biol Chem 2024; 300:105670. [PMID: 38272226 PMCID: PMC10882131 DOI: 10.1016/j.jbc.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Schizosaccharomyces pombe Php4 is the regulatory subunit of the CCAAT-binding complexes and plays an important role in the regulation of iron homeostasis and iron-dependent metabolism. Here, we show that Php4 undergoes ubiquitin-dependent degradation in the late logarithmic and stationary phases. The degradation and ubiquitination of Php4 could be attenuated by deletion of hul6, a gene encoding a putative HECT-type E3 ubiquitin ligase. The expression levels of Hul6 and Php4 are oppositely regulated during cell growth. Hul6 interacts with the C-terminal region of Php4. Two lysine residues (K217 and K274) located in the C-terminal region of Php4 are required for its polyubiquitination. Increasing the levels of Php4 by deletion of hul6 or overexpression of php4 decreased expression of Php4 target proteins involved in iron-dependent metabolic pathways such as the tricarboxylic cycle and mitochondrial oxidative phosphorylation, thus causing increased sensitivity to high-iron and reductions in succinate dehydrogenase and mitochondrial complex II activities. Hul6 is located primarily in the mitochondrial outer membrane and most likely targets cytosolic Php4 for ubiquitination and degradation. Taken together, our data suggest that Hul6 regulates iron-dependent metabolism through degradation of Php4 under normal growth conditions. Our results also suggest that Hul6 promotes iron-dependent metabolism to help the cell to adapt to a nutrient-starved growth phase.
Collapse
Affiliation(s)
- Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting Jin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rong Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
6
|
Liu J, van Beusekom H, Bu X, Chen G, Henrique Rosado de Castro P, Chen X, Chen X, Clarkson AN, Farr TD, Fu Y, Jia J, Jolkkonen J, Kim WS, Korhonen P, Li S, Liang Y, Liu G, Liu G, Liu Y, Malm T, Mao X, Oliveira JM, Modo MM, Ramos‐Cabrer P, Ruscher K, Song W, Wang J, Wang X, Wang Y, Wu H, Xiong L, Yang Y, Ye K, Yu J, Zhou X, Zille M, Masters CL, Walczak P, Boltze J, Ji X, Wang Y. Preserving cognitive function in patients with Alzheimer's disease: The Alzheimer's disease neuroprotection research initiative (ADNRI). NEUROPROTECTION 2023; 1:84-98. [PMID: 38223913 PMCID: PMC10783281 DOI: 10.1002/nep3.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 01/16/2024]
Abstract
The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-β (Aβ) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aβ antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aβ and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aβ from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Heleen van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Xian‐Le Bu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Gong Chen
- Guangdong‐HongKong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouGuangdongChina
| | | | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Institute of NeuroscienceFujian Medical UniversityFuzhouFujianChina
| | - Xiaowei Chen
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Tracy D. Farr
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Yuhong Fu
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Woojin Scott Kim
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Guang‐Hui Liu
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yu‐Hui Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
- ICVS/3B's—PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Mike M. Modo
- Department of Bioengineering, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Radiology, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pedro Ramos‐Cabrer
- Magnetic Resonance Imaging LaboratoryCIC BiomaGUNE Research Center, Basque Research and Technology Alliance (BRTA)Donostia‐San SebastianSpain
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical SciencesLund UniversityLundSweden
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Medical UniversityZhejiangChina
| | - Jun Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Xuanyue Wang
- School of Optometry and Vision ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic, Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National, Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Haitao Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yi Yang
- Department of NeurologyThe First Hospital of Jilin University, Chang ChunJilinChina
| | - Keqiang Ye
- Faculty of Life and Health SciencesBrain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced TechnologyShenzhenChina
| | - Jin‐Tai Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin‐Fu Zhou
- Division of Health Sciences, School of Pharmacy and Medical Sciences and Sansom InstituteUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Suzhou Auzone BiotechSuzhouJiangsuChina
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
| | - Colin L. Masters
- The Florey InstituteThe University of Melbourne, ParkvilleVictoriaAustralia
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | | | - Xunming Ji
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yan‐Jiang Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
7
|
Li B, Zhou Q, Wan Q, Qiao X, Chen S, Zhou J, Wuxiao Z, Luo L, Ng SB, Li J, Chng WJ. EZH2 K63-polyubiquitination affecting migration in extranodal natural killer/T-cell lymphoma. Clin Epigenetics 2023; 15:187. [PMID: 38031139 PMCID: PMC10685657 DOI: 10.1186/s13148-023-01606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Overexpressed EZH2 is oncogenically involved in the pathogenesis of different cancerous contexts including extranodal natural killer/T cell lymphoma (ENKTL). However, the underlying mechanisms of EZH2 upregulation have not been fully clarified and it is still difficult to target EZH2 in ENKTL. RESULTS Current study identifies an E3 ligase TRIP12 that triggers K63-linked polyubiquitination of EZH2 in ENKTL and unexpectedly, stabilizes EZH2. As determined by gene expression profiling (GEP), TRIP12 and EZH2 levels correlate with each other in ENKTL patient samples. Aided by quantitative mass spectrometry (MS) and follow-up analysis, we identify K634 as the ubiquitination site of EZH2. Further study confirms that TRIP12-mediated EZH2 K634 ubiquitination enhances the interaction between EZH2 and SUZ12 or CDK1 and increases the level of EZH2 T487 phosphorylation. This study further demonstrates the TRIP12-EZH2 signaling might be regulated by cytoplasmic HSP60. Importantly, the TRIP12-EZH2 axis mediates ENKTL cell migration via accelerating epithelial-mesenchymal transition (EMT). Moreover, our study finds out dexamethasone treatment manipulates TRIP12-EZH2 signaling and may represent a novel therapeutic strategy against ENKTL metastasis. CONCLUSIONS Altogether, TRIP12 induces K63-linked site-specific polyubiquitination of EZH2 for stabilization, which promotes ENKTL cell migration and could be targeted by dexamethasone treatment.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Qidi Zhou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xuan Qiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Shangying Chen
- Bioinformatics Core, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Zhijun Wuxiao
- Department of Hematology, Lymphoma and Myeloma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jieping Li
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
8
|
Keyan KS, Salim S, Gowda S, Abdelrahman D, Amir SS, Islam Z, Vargas C, Bengoechea-Alonso MT, Alwa A, Dahal S, Kolatkar PR, Da'as S, Torrisani J, Ericsson J, Mohammad F, Khan OM. Control of TGFβ signalling by ubiquitination independent function of E3 ubiquitin ligase TRIP12. Cell Death Dis 2023; 14:692. [PMID: 37863914 PMCID: PMC10589240 DOI: 10.1038/s41419-023-06215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Transforming growth factor β (TGFβ) pathway is a master regulator of cell proliferation, differentiation, and death. Deregulation of TGFβ signalling is well established in several human diseases including autoimmune disorders and cancer. Thus, understanding molecular pathways governing TGFβ signalling may help better understand the underlying causes of some of those conditions. Here, we show that a HECT domain E3 ubiquitin ligase TRIP12 controls TGFβ signalling in multiple models. Interestingly, TRIP12 control of TGFβ signalling is completely independent of its E3 ubiquitin ligase activity. Instead, TRIP12 recruits SMURF2 to SMAD4, which is most likely responsible for inhibitory monoubiquitination of SMAD4, since SMAD4 monoubiquitination and its interaction with SMURF2 were dramatically downregulated in TRIP12-/- cells. Additionally, genetic inhibition of TRIP12 in human and murine cells leads to robust activation of TGFβ signalling which was rescued by re-introducing wildtype TRIP12 or a catalytically inactive C1959A mutant. Importantly, TRIP12 control of TGFβ signalling is evolutionary conserved. Indeed, genetic inhibition of Drosophila TRIP12 orthologue, ctrip, in gut leads to a reduced number of intestinal stem cells which was compensated by the increase in differentiated enteroendocrine cells. These effects were completely normalised in Drosophila strain where ctrip was co-inhibited together with Drosophila SMAD4 orthologue, Medea. Similarly, in murine 3D intestinal organoids, CRISPR/Cas9 mediated genetic targeting of Trip12 enhances TGFβ mediated proliferation arrest and cell death. Finally, CRISPR/Cas9 mediated genetic targeting of TRIP12 in MDA-MB-231 breast cancer cells enhances the TGFβ induced migratory capacity of these cells which was rescued to the wildtype level by re-introducing wildtype TRIP12. Our work establishes TRIP12 as an evolutionary conserved modulator of TGFβ signalling in health and disease.
Collapse
Affiliation(s)
- Kripa S Keyan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Safa Salim
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Swetha Gowda
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Syeda Sakina Amir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Zeyaul Islam
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Claire Vargas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Amira Alwa
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Subrat Dahal
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Sahar Da'as
- Department of Research, Sidra Medicine, Doha, Qatar
| | - Jerome Torrisani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Johan Ericsson
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Omar M Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
9
|
Peng Y, Ye JR, Wang SS, He WB, Feng ZP, Sun HS, Chu SF, Zhang Z, Chen NH. A small molecule 20C from Gastrodia elata inhibits α-synuclein aggregation and prevents progression of Parkinson's disease. Cell Death Dis 2023; 14:594. [PMID: 37673867 PMCID: PMC10482970 DOI: 10.1038/s41419-023-06116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is pathologically manifested by the aggregation of α-synuclein, which has been envisioned as a promising disease-modifying target for PD. Here, we identified 20C, a bibenzyl compound derived from Gastrodia elata, able to inhibit the aggregation of A53T variants of α-synuclein directly in vitro. Computational analysis revealed that 20C binds to cavities in mature α-synuclein fibrils, and it indeed displays a strong interaction with α-synuclein and reduced their β-sheet structure by microscale thermophoresis and circular dichroism, respectively. Moreover, incubating neural cells with 20C reduced the amounts of α-synuclein inclusions significantly. The treatment of A53T α-Syn transgenic mice with 20C significantly reduces the toxic α-synuclein levels, improves behavioral performance, rescues dopaminergic neuron, and enhances functional connections between SNc and PD associated brain areas. The transcriptome analysis of SNc demonstrated that 20C improves mitochondrial dynamics, which protects mitochondrial morphology and function against α-synuclein induced degeneration. Overall, 20C appears to be a promising candidate for the treatment of PD.
Collapse
Affiliation(s)
- Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jun-Rui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wen-Bin He
- Shanxi University of Chinese Medicine, National International Joint Research Center for Molecular Chinese Medicine, Taiyuan, 030024, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
10
|
Mushtaq U. EP1 receptor: Devil in emperors coat. J Cell Biochem 2023; 124:1105-1114. [PMID: 37450673 DOI: 10.1002/jcb.30436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
EP1 receptor belongs to prostanoid receptors and is activated by prostaglandin E2. The receptor performs contrasting functions in central nervous system (CNS) and other tissues. Although the receptor is neurotoxic and proapoptotic in CNS, it has also been reported to act in an antiapoptotic manner by modulating cell survival, proliferation, invasion, and migration in different types of cancers. The receptor mediates its neurotoxic effects by increasing cytosolic Ca2+ levels, leading to the activation of its downstream target, protein kinase C, in different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and epilepsy. Antagonists ONO-8713, SC51089, and SC51322 against EP1 receptor ameliorate the neurotoxic effect by attenuating the neuroinflammation. The receptor also shows increased expression in different types of cancers and has been found to activate different signaling pathways, which lead to the development, progression, and metastasis of different cancers. The receptor stimulates the cell survival pathway by phosphorylating the AKT and PTEN (phosphatase and tensin homolog deleted on chromosome 10) signaling pathways. Although there are limited studies about this receptor and not a single clinical trial has been targeting the EP1 receptor for different neurological disorders or cancer, the receptor is appearing as a potential candidate for therapeutic targets. The aim of this article is to review the recent progress in understanding the pathogenic roles of EP1 receptors in different pathological conditions.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
11
|
Kim MS, Ra EA, Kweon SH, Seo BA, Ko HS, Oh Y, Lee G. Advanced human iPSC-based preclinical model for Parkinson's disease with optogenetic alpha-synuclein aggregation. Cell Stem Cell 2023; 30:973-986.e11. [PMID: 37339636 PMCID: PMC10829432 DOI: 10.1016/j.stem.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/02/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer advantages for disease modeling and drug discovery. However, recreating innate cellular pathologies, particularly in late-onset neurodegenerative diseases with accumulated protein aggregates including Parkinson's disease (PD), has been challenging. To overcome this barrier, we developed an optogenetics-assisted α-synuclein (α-syn) aggregation induction system (OASIS) that rapidly induces α-syn aggregates and toxicity in PD hiPSC-midbrain dopaminergic neurons and midbrain organoids. Our OASIS-based primary compound screening with SH-SY5Y cells identified 5 candidates that were secondarily validated with OASIS PD hiPSC-midbrain dopaminergic neurons and midbrain organoids, leading us to finally select BAG956. Furthermore, BAG956 significantly reverses characteristic PD phenotypes in α-syn preformed fibril models in vitro and in vivo by promoting autophagic clearance of pathological α-syn aggregates. Following the FDA Modernization Act 2.0's emphasis on alternative non-animal testing methods, our OASIS can serve as an animal-free preclinical test model (newly termed "nonclinical test") for the synucleinopathy drug development.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eun A Ra
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sin Ho Kweon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bo Am Seo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea
| | - Han Seok Ko
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Tseng FS, Foo JQX, Mai AS, Tan EK. The genetic basis of multiple system atrophy. J Transl Med 2023; 21:104. [PMID: 36765380 PMCID: PMC9912584 DOI: 10.1186/s12967-023-03905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there is a possible genetic component that is poorly understood. This review summarizes current literature on genetic risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been associated with MSA including genes related to Parkinson's disease (PD), oxidative stress, inflammation, and tandem gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that modulate MSA risk, including complex gene-gene and gene-environment interactions, which influence the disease phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification of novel pathophysiologic clues, and pave the way for translational research into the development of disease-modifying therapeutic targets.
Collapse
Affiliation(s)
- Fan Shuen Tseng
- grid.163555.10000 0000 9486 5048Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joel Qi Xuan Foo
- grid.276809.20000 0004 0636 696XDepartment of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
13
|
Regulators of proteostasis are translationally repressed in fibroblasts from patients with sporadic and LRRK2-G2019S Parkinson's disease. NPJ Parkinsons Dis 2023; 9:20. [PMID: 36746972 PMCID: PMC9902458 DOI: 10.1038/s41531-023-00460-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Deficits in protein synthesis are associated with Parkinson's disease (PD). However, it is not known which proteins are affected or if there are synthesis differences between patients with sporadic and Leucine-Rich Repeat Kinase 2 (LRRK2) G2019S PD, the most common monogenic form. Here we used bio-orthogonal non-canonical amino acid tagging for global analysis of newly translated proteins in fibroblasts from sporadic and LRKK2-G2019S patients. Quantitative proteomic analysis revealed that several nascent proteins were reduced in PD samples compared to healthy without any significant change in mRNA levels. Using targeted proteomics, we validated which of these proteins remained dysregulated at the static proteome level and found that regulators of endo-lysosomal sorting, mRNA processing and components of the translation machinery remained low. These proteins included autophagy-related protein 9A (ATG9A) and translational stability regulator YTH N6-ethyladenosine RNA binding protein 3 (YTHDF3). Notably, 77% of the affected proteins in sporadic patients were also repressed in LRRK2-G2019S patients (False discovery rate (FDR) < 0.05) in both sporadic and LRRK2-G2019S samples. This analysis of nascent proteomes from PD patient skin cells reveals that regulators of proteostasis are repressed in both sporadic and LRRK2-G2019S PD.
Collapse
|
14
|
E3 Ubiquitin Ligase TRIP12 Controls Exit from Mitosis via Positive Regulation of MCL-1 in Response to Taxol. Cancers (Basel) 2023; 15:cancers15020505. [PMID: 36672454 PMCID: PMC9856375 DOI: 10.3390/cancers15020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy resistance is a major hurdle in cancer treatment. Taxol-based chemotherapy is widely used in the treatment of cancers including breast, ovarian, and pancreatic cancer. Loss of function of the tumor suppressor F-box WD-40 domain containing 7 (FBW7) mutations leads to the accumulation of its substrate MCL-1 which is associated with Taxol resistance in human cancers. We recently showed that E3 ubiquitin ligase TRIP12 is a negative regulator of FBW7 protein. In this study, we find that Taxol-induced mitotic block in cancer cells is partly controlled by TRIP12 via its positive regulation of MCL-1 protein. Genetic inhibition of TRIP12 accelerates MCL-1 protein degradation in mitosis. Notably, introducing double-point mutations in lysines 404/412 of FBW7 to arginine which makes it resistant to proteasomal degradation, leads to the sharp reduction of MCL-1 protein levels and sensitizes cancer cells to Taxol-induced cell death. Finally, TRIP12 deletion leads to enhanced mitotic arrest and cell death in an FBW7 and MCL-1 dependent manner in multiple cell lines including colorectal and ovarian cancer but not in breast cancer. Thus, the TRIP12/FBW7/MCL-1 axis may provide a therapeutic target to overcome Taxol-associated chemotherapy resistance in cancer.
Collapse
|
15
|
Feng L, Sharma A, Wang Z, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Co-administration of Nanowired DL-3-n-Butylphthalide (DL-NBP) Together with Mesenchymal Stem Cells, Monoclonal Antibodies to Alpha Synuclein and TDP-43 (TAR DNA-Binding Protein 43) Enhance Superior Neuroprotection in Parkinson's Disease Following Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:97-138. [PMID: 37480460 DOI: 10.1007/978-3-031-32997-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is one of the potent antioxidant compounds that induces profound neuroprotection in stroke and traumatic brain injury. Our previous studies show that dl-NBP reduces brain pathology in Parkinson's disease (PD) following its nanowired delivery together with mesenchymal stem cells (MSCs) exacerbated by concussive head injury (CHI). CHI alone elevates alpha synuclein (ASNC) in brain or cerebrospinal fluid (CSF) associated with elevated TAR DNA-binding protein 43 (TDP-43). TDP-43 protein is also responsible for the pathologies of PD. Thus, it is likely that exacerbation of brain pathology in PD following brain injury may be thwarted using nanowired delivery of monoclonal antibodies (mAb) to ASNC and/or TDP-43. In this review, the co-administration of dl-NBP with MSCs and mAb to ASNC and/or TDP-43 using nanowired delivery in PD and CHI-induced brain pathology is discussed based on our own investigations. Our observations show that co-administration of TiO2 nanowired dl-NBP with MSCs and mAb to ASNC with TDP-43 induced superior neuroprotection in CHI induced exacerbation of brain pathology in PD, not reported earlier.
Collapse
Affiliation(s)
- Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Hu JH, Liu Y, Hoffman DA. Identification of Kv4.2 protein complex and modifications by tandem affinity purification-mass spectrometry in primary neurons. Front Cell Neurosci 2022; 16:1070305. [PMID: 36568885 PMCID: PMC9788671 DOI: 10.3389/fncel.2022.1070305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Proteins usually form complexes to fulfill variable physiological functions. In neurons, communication relies on synapses where receptors, channels, and anchoring proteins form complexes to precisely control signal transduction, synaptic integration, and action potential firing. Although there are many published protocols to isolate protein complexes in cell lines, isolation in neurons has not been well established. Here we introduce a method that combines lentiviral protein expression with tandem affinity purification followed by mass-spectrometry (TAP-MS) to identify protein complexes in neurons. This protocol can also be used to identify post-translational modifications (PTMs) of synaptic proteins. We used the A-type voltage-gated K+ channel subunit Kv4.2 as the target protein. Kv4.2 is highly expressed in the hippocampus where it contributes to learning and memory through its regulation of neuronal excitability and synaptic plasticity. We tagged Kv4.2 with the calmodulin-binding-peptide (CBP) and streptavidin-binding-peptide (SBP) at its C-terminus and expressed it in neurons via lentivirus. Kv4.2 was purified by two-step TAP and samples were analyzed by MS. MS identified two prominently known Kv4.2 interacting proteins [dipeptidyl peptidase like (DPPs) and Kv channel-interacting proteins (KChIPs)] in addition to novel synaptic proteins including glutamate receptors, a calcium channel, and anchoring proteins. Co-immunoprecipitation and colocalization experiments validated the association of Kv4.2 with glutamate receptors. In addition to protein complex identification, we used TAP-MS to identify Kv4.2 phosphorylation sites. Several known and unknown phosphorylation sites were identified. These findings provide a novel path to identify protein-protein interactions and PTMs in neurons and shed light on mechanisms of neuronal signaling potentially involved in the pathology of neurological diseases.
Collapse
|
17
|
Mercer A, Jaunmuktane Z, Hristova M, Lange S. Differential, Stage Dependent Detection of Peptidylarginine Deiminases and Protein Deimination in Lewy Body Diseases-Findings from a Pilot Study. Int J Mol Sci 2022; 23:13117. [PMID: 36361903 PMCID: PMC9658624 DOI: 10.3390/ijms232113117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Over 10 million people worldwide live with Parkinson's disease (PD) and 4% of affected people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that, through post-translational deimination of arginine to citrulline, contribute to changes in protein function, including in pathological processes. Recent studies have highlighted roles for PADs in a range of neurological disorders including PD, but overall, investigations on PADs in Lewy body disease (LBD), including PD, are still scarce. Hence, the current pilot study aimed at performing an immunohistochemistry screen of post-mortem human brain sections from Braak stages 4-6 from PD patients, as well as patients with incidental LBD (ILBD). We assessed differences in PAD isozyme detection (assessing all five PADs), in total protein deimination/citrullination and histone H3 deimination-which is an indicator of epigenetic changes and extracellular trap formation (ETosis), which can elicit immune responses and has involvement in pathogenic conditions. The findings of our pilot study indicate that PADs and deimination are increased in cingulate cortex and hippocampus, particularly in earlier stages of the disease. PAD2 and PAD3 were the most strongly upregulated PAD isozymes, with some elevation also observed for PAD1, while PAD4 and PAD6 increase was less marked in PD brains. Total protein deimination and histone H3 deimination were furthermore increased in PD brains, with a considerable increase at earlier Braak stages, compared with controls. Our findings point to a significant contribution of PADs, which may further aid early disease biomarker discovery, in PD and other LBDs.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
18
|
Li J, Zhang Y, Wang L, Li M, Yang J, Chen P, Zhu J, Li X, Zeng Z, Li G, Xiong W, McCarthy JB, Xiang B, Yi M. FOXA1 prevents nutrients deprivation induced autophagic cell death through inducing loss of imprinting of IGF2 in lung adenocarcinoma. Cell Death Dis 2022; 13:711. [PMID: 35974000 PMCID: PMC9381574 DOI: 10.1038/s41419-022-05150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Lung cancer remains one of the most common malignancies and the leading cause of cancer-related death worldwide. Forkhead box protein A1 (FOXA1) is a pioneer factor amplified in lung adenocarcinoma (LUAD). However, its role in LUAD remains elusive. In this study, we found that expression of FOXA1 enhanced LUAD cell survival in nutrients deprived conditions through inhibiting autophagic cell death (ACD). FOXA1 bound to the imprinting control region of insulin-like growth factor 2 (IGF2) and interacted with DNA methyltransferase 1 (DNMT1), leading to initiation of DNMT1-mediated loss of imprinting (LOI) of IGF2 and autocrine of IGF2. Blockage of IGF2 and its downstream insulin-like growth factor 1 receptor (IGF1R) abolished the protective effect of FOXA1 on LUAD cells in nutrients deprived conditions. Furthermore, FOXA1 suppressed the expression of the lysosomal enzyme glucocerebrosidase 1 (GBA1), a positive mediator of ACD, through ubiquitination of GBA1 enhanced by IGF2. Notably, FOXA1 expression in A549 cells reduced the efficacy of the anti-angiogenic drug nintedanib to inhibit xenograft tumor growth, whereas a combination of nintedanib with IGF1R inhibitor linsitinib or mTORC1 inhibitor rapamycin enhanced tumor control. Clinically, high expression level of FOXA1 protein was associated with unfavorable prognosis in LUAD patients of advanced stage who received bevacizumab treatment. Our findings uncovered a previously unrecognized role of FOXA1 in mediating loss of imprinting of IGF2, which confer LUAD cells enhanced survival ability against nutrients deprivation through suppressing autophagic cell death.
Collapse
Affiliation(s)
- Junjun Li
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Yongchang Zhang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Li Wang
- grid.216417.70000 0001 0379 7164Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Min Li
- grid.216417.70000 0001 0379 7164Department of Respiratory Medicine, Xiangya Lung Cancer Center; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Jianbo Yang
- grid.17635.360000000419368657Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Pan Chen
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China
| | - Jie Zhu
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Xiayu Li
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Zhaoyang Zeng
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Guiyuan Li
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Wei Xiong
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - James B. McCarthy
- grid.17635.360000000419368657Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Bo Xiang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Mei Yi
- grid.216417.70000 0001 0379 7164Department of Respiratory Medicine, Xiangya Lung Cancer Center; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
19
|
Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, Brahmachari S, Jhaldiyal A, Hinkle JT, Akkentli F, Mao X, Xu E, Karuppagounder SS, Hsu ET, Kang SU, Pletnikova O, Troncoso J, Dawson VL, Dawson TM. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease. Neuron 2022; 110:2422-2437.e9. [PMID: 35654037 PMCID: PMC9357148 DOI: 10.1016/j.neuron.2022.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is mediated, in part, by intraneuronal accumulation of α-synuclein aggregates andsubsequent death of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc). Microglial hyperactivation of the NOD-like receptor protein 3 (NLRP3) inflammasome has been well-documented in various neurodegenerative diseases, including PD. We show here that loss of parkin activity in mouse and human DA neurons results in spontaneous neuronal NLRP3 inflammasome assembly, leading to DA neuron death. Parkin normally inhibits inflammasome priming by ubiquitinating and targeting NLRP3 for proteasomal degradation. Loss of parkin activity also contributes to the assembly of an active NLRP3 inflammasome complex via mitochondrial-derived reactive oxygen species (mitoROS) generation through the accumulation of another parkin ubiquitination substrate, ZNF746/PARIS. Inhibition of neuronal NLRP3 inflammasome assembly prevents degeneration of DA neurons in familial and sporadic PD models. Strategies aimed at limiting neuronal NLRP3 inflammasome activation hold promise as a disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aanishaa Jhaldiyal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared T Hinkle
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fatih Akkentli
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric T Hsu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA.
| |
Collapse
|
20
|
Lunghi G, Carsana EV, Loberto N, Cioccarelli L, Prioni S, Mauri L, Bassi R, Duga S, Straniero L, Asselta R, Soldà G, Di Fonzo A, Frattini E, Magni M, Liessi N, Armirotti A, Ferrari E, Samarani M, Aureli M. β-Glucocerebrosidase Deficiency Activates an Aberrant Lysosome-Plasma Membrane Axis Responsible for the Onset of Neurodegeneration. Cells 2022; 11:cells11152343. [PMID: 35954187 PMCID: PMC9367513 DOI: 10.3390/cells11152343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
β-glucocerebrosidase is a lysosomal hydrolase involved in the catabolism of the sphingolipid glucosylceramide. Biallelic loss of function mutations in this enzyme are responsible for the onset of Gaucher disease, while monoallelic β-glucocerebrosidase mutations represent the first genetic risk factor for Parkinson’s disease. Despite this evidence, the molecular mechanism linking the impairment in β-glucocerebrosidase activity with the onset of neurodegeneration in still unknown. In this frame, we developed two in vitro neuronal models of β-glucocerebrosidase deficiency, represented by mouse cerebellar granule neurons and human-induced pluripotent stem cells-derived dopaminergic neurons treated with the specific β-glucocerebrosidase inhibitor conduritol B epoxide. Neurons deficient for β-glucocerebrosidase activity showed a lysosomal accumulation of glucosylceramide and the onset of neuronal damage. Moreover, we found that neurons react to the lysosomal impairment by the induction of their biogenesis and exocytosis. This latter event was responsible for glucosylceramide accumulation also at the plasma membrane level, with an alteration in lipid and protein composition of specific signaling microdomains. Collectively, our data suggest that β-glucocerebrosidase loss of function impairs the lysosomal compartment, establishing a lysosome–plasma membrane axis responsible for modifications in the plasma membrane architecture and possible alterations of intracellular signaling pathways, leading to neuronal damage.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.D.F.); (E.F.); (M.M.)
| | - Emanuele Frattini
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.D.F.); (E.F.); (M.M.)
| | - Manuela Magni
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.D.F.); (E.F.); (M.M.)
| | - Nara Liessi
- Analytical Chemistry Facility, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (N.L.); (A.A.)
| | - Andrea Armirotti
- Analytical Chemistry Facility, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (N.L.); (A.A.)
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;
| | - Maura Samarani
- Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France;
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
- Correspondence: ; Tel.: +39-025-033-0364
| |
Collapse
|
21
|
LRRK2 kinase activity regulates GCase level and enzymatic activity differently depending on cell type in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:92. [PMID: 35853899 PMCID: PMC9296523 DOI: 10.1038/s41531-022-00354-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways, and immune function. Mutations in LRRK2 cause autosomal-dominant forms of Parkinson's disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we performed a comprehensive analysis of GCase levels and activity in complementary LRRK2 models, including (i) LRRK2 G2019S knock in (GSKI) mice, (ii) peripheral blood mononuclear cell (PBMCs), plasma, and fibroblasts from PD patients carrying LRRK2 G2019S mutation, (iii) patient iPSCs-derived neurons; (iv) endogenous and overexpressed cell models. In some of these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. GCase protein level is reduced in GSKI brain tissues and in G2019S iPSCs-derived neurons, but increased in fibroblasts and PBMCs from patients, suggesting cell-type-specific effects. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase in a cell-type-specific manner, with important implications in the context of therapeutic application of LRRK2 inhibitors in GBA1-linked and idiopathic PD.
Collapse
|
22
|
Ceramide and Sphingosine-1-Phosphate in Neurodegenerative Disorders and Their Potential Involvement in Therapy. Int J Mol Sci 2022; 23:ijms23147806. [PMID: 35887154 PMCID: PMC9324343 DOI: 10.3390/ijms23147806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders (ND) are progressive diseases of the nervous system, often without resolutive therapy. They are characterized by a progressive impairment and loss of specific brain regions and neuronal populations. Cellular and animal model studies have identified several molecular mechanisms that play an important role in the pathogenesis of ND. Among them are alterations of lipids, in particular sphingolipids, that play a crucial role in neurodegeneration. Overall, during ND, ceramide-dependent pro-apoptotic signalling is promoted, whereas levels of the neuroprotective spingosine-1-phosphate are reduced. Moreover, ND are characterized by alterations of the metabolism of complex sphingolipids. The finding that altered sphingolipid metabolism has a role in ND suggests that its modulation might provide a useful strategy to identify targets for possible therapies. In this review, based on the current literature, we will discuss how bioactive sphingolipids (spingosine-1-phosphate and ceramide) are involved in some ND (Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis) and their possible involvement in therapies.
Collapse
|
23
|
Expanding Views of Mitochondria in Parkinson's Disease: Focusing on PINK1 and GBA1 Mutations. Neurosci Bull 2022; 38:825-828. [PMID: 35543935 DOI: 10.1007/s12264-022-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022] Open
|
24
|
Assembly and function of branched ubiquitin chains. Trends Biochem Sci 2022; 47:759-771. [DOI: 10.1016/j.tibs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
25
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
26
|
Esfandiary A, Finkelstein DI, Voelcker NH, Rudd D. Clinical Sphingolipids Pathway in Parkinson’s Disease: From GCase to Integrated-Biomarker Discovery. Cells 2022; 11:cells11081353. [PMID: 35456032 PMCID: PMC9028315 DOI: 10.3390/cells11081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Alterations in the sphingolipid metabolism of Parkinson’s Disease (PD) could be a potential diagnostic feature. Only around 10–15% of PD cases can be diagnosed through genetic alterations, while the remaining population, idiopathic PD (iPD), manifest without validated and specific biomarkers either before or after motor symptoms appear. Therefore, clinical diagnosis is reliant on the skills of the clinician, which can lead to misdiagnosis. IPD cases present with a spectrum of non-specific symptoms (e.g., constipation and loss of the sense of smell) that can occur up to 20 years before motor function loss (prodromal stage) and formal clinical diagnosis. Prodromal alterations in metabolites and proteins from the pathways underlying these symptoms could act as biomarkers if they could be differentiated from the broad values seen in a healthy age-matched control population. Additionally, these shifts in metabolites could be integrated with other emerging biomarkers/diagnostic tests to give a PD-specific signature. Here we provide an up-to-date review of the diagnostic value of the alterations in sphingolipids pathway in PD by focusing on the changes in definitive PD (postmortem confirmed brain data) and their representation in “probable PD” cerebrospinal fluid (CSF) and blood. We conclude that the trend of holistic changes in the sphingolipid pathway in the PD brain seems partly consistent in CSF and blood, and could be one of the most promising pathways in differentiating PD cases from healthy controls, with the potential to improve early-stage iPD diagnosis and distinguish iPD from other Parkinsonism when combined with other pathological markers.
Collapse
Affiliation(s)
- Ali Esfandiary
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | | | - Nicolas Hans Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3168, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3-9903-9581
| |
Collapse
|