1
|
Kim J, Lee JS, Noh S, Seo E, Lee J, Kim T, Cho SW, Kim G, Kim SS, Park J. Cellular level cryo-neuromodulation using rapid and localized cooling device combined with microelectrode array. Biosens Bioelectron 2025; 277:117257. [PMID: 39978154 DOI: 10.1016/j.bios.2025.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Cryotherapy, a rapid and effective medical treatment utilizing low temperatures, has not been widely adopted in clinical practice due to a limited understanding of its mechanisms and efficacy. This challenge stems from the absence of methods for fast, precise, and localized spatiotemporal temperature control, as well as the lack of reliable real-time quantitative techniques for measuring and analyzing the effects of cooling. To address these limitations, this study introduces a cryo-neuromodulation platform that integrates a high-speed precision cooling device with a microelectrode array (MEA) system. This platform enables the investigation of cellular-level cryo-modulation of neuronal activity and its effects on surrounding cells, providing a novel framework for advancing research in cryotherapy and neuromodulation. Experiments show that neurons recovered fully within 1 min of cooling with a fast-cooling rate (-20 °C/s at cooling) and that silenced neurons can influence distant cells via a well-organized network. Extended cooling durations (e.g., 10 min) resulted in altered neuronal dynamics, including delayed recovery and reduced burst activity, highlighting the importance of precise control over cooling parameters. This device offers reversible neural control, with potential applications in both research and clinical settings, such as anesthesia, pain management and treatment of neurological disorders like neocortical seizures.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soyeon Noh
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Eunseok Seo
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Gunho Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
2
|
Ambroziak W, Nencini S, Pohle J, Zuza K, Pino G, Lundh S, Araujo-Sousa C, Goetz LIL, Schrenk-Siemens K, Manoj G, Herrera MA, Acuna C, Siemens J. Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance. Nat Neurosci 2025; 28:346-360. [PMID: 39653806 PMCID: PMC11802458 DOI: 10.1038/s41593-024-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the NaV1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Sara Nencini
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Kristina Zuza
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Sofia Lundh
- Department of Pathology and Imaging, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Carolina Araujo-Sousa
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Larissa I L Goetz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Gokul Manoj
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
3
|
Li C, Liu X, Hu C, Yan J, Qu Y, Li H, Zhou K, Li P. Genome-wide characterization of the TRP gene family and transcriptional expression profiles under different temperatures in gecko Hemiphyllodactylus yunnanensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101418. [PMID: 39809098 DOI: 10.1016/j.cbd.2025.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Temperature is closely linked to the life history of organisms, and thus thermoception is an important sensory mechanism. Transient receptor potential (TRP) ion channels are the key mediators of thermal sensation. In this study, we analyzed the sequence characteristics of TRPs in gecko Hemiphyllodactylus yunnanensis and compared the phylogenetic relationships of TRP family members among different Squamata species. In addition, we sequenced the transcriptome of skin and brain tissues of H. yunnanensis exposed to 12 °C (cold), 20 °C (cool), 28 °C (warm), and 36 °C (hot). The results showed that a total of 591 TRPs were identified in the genomes of 21 Squamate species, and these genes were classified into six subfamilies. Among them, 26 TRP genes were identified in H. yunnanensis and distributed on 13 chromosomes. Overall, TRP genes were conserved in squamates. Based on the transcriptome results, we found a total of 9 TRP genes expressed in the brain and skin of H. yunnanensis, of which six TRP genes were under positive selection. TRPP1L2, TRPP1L3, and TRPV1 were involved in heat-sensitive responses (> 36 °C), and TRPV3, TRPA1, and TRPM8 were involved in cold-sensitive responses (< 20 °C). TRPM8 and TRPP1L2 were important cold and heat sensors in H. yunnanensis, respectively.
Collapse
Affiliation(s)
- Chao Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaoying Liu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Chaochao Hu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jie Yan
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yanfu Qu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Hong Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Kaiya Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
4
|
Tóth B, Jiang Y, Szollosi A, Zhang Z, Csanády L. A conserved mechanism couples cytosolic domain movements to pore gating in the TRPM2 channel. Proc Natl Acad Sci U S A 2024; 121:e2415548121. [PMID: 39514307 PMCID: PMC11573590 DOI: 10.1073/pnas.2415548121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Transient Receptor Potential Melastatin 2 (TRPM2) cation channels contribute to immunocyte activation, insulin secretion, and central thermoregulation. TRPM2 opens upon binding cytosolic Ca2+ and ADP ribose (ADPR). We present here the 2.5 Å cryo-electronmicroscopy structure of TRPM2 from Nematostella vectensis (nvTRPM2) in a lipid nanodisc, complexed with Ca2+ and ADPR-2'-phosphate. Comparison with nvTRPM2 without nucleotide reveals that nucleotide binding-induced movements in the protein's three "core" layers deconvolve into a set of rigid-body rotations conserved from cnidarians to man. By covalently crosslinking engineered cysteine pairs we systematically trap the cytosolic layers in specific conformations and study effects on gate opening/closure. The data show that nucleotide binding in Layer 3 disrupts inhibitory intersubunit interactions, allowing rotation of Layer 2 which in turn expands the gate located in Layer 1. Channels trapped in that "activated" state are no longer nucleotide dependent, but are opened by binding of Ca2+ alone.
Collapse
Affiliation(s)
- Balázs Tóth
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Yuefeng Jiang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| |
Collapse
|
5
|
Rajan S, Shalygin A, Gudermann T, Chubanov V, Dietrich A. TRPM2 channels are essential for regulation of cytokine production in lung interstitial macrophages. J Cell Physiol 2024; 239:e31322. [PMID: 38785126 DOI: 10.1002/jcp.31322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Interstitial macrophages (IMs) are essential for organ homeostasis, inflammation, and autonomous immune response in lung tissues, which are achieved through polarization to a pro-inflammatory M1 and an M2 state for tissue repair. Their remote parenchymal localization and low counts, however, are limiting factors for their isolation and molecular characterization of their specific role during tissue inflammation. We isolated viable murine IMs in sufficient quantities by coculturing them with stromal cells and analyzed mRNA expression patterns of transient receptor potential (TRP) channels in naïve and M1 polarized IMs after application of lipopolysaccharide (LPS) and interferon γ. M-RNAs for the second member of the melastatin family of TRP channels, TRPM2, were upregulated in the M1 state and functional channels were identified by their characteristic currents induced by ADP-ribose, its specific activator. Most interestingly, cytokine production and secretion of interleukin-1α (IL-1α), IL-6 and tumor necrosis factor-α in M1 polarized but TRPM2-deficient IMs was significantly enhanced compared to WT cells. Activation of TRPM2 channels by ADP-ribose (ADPR) released from mitochondria by ROS-produced H2O2 significantly increases plasma membrane depolarization, which inhibits production of reactive oxygen species by NADPH oxidases and reduces cytokine production and secretion in a negative feedback loop. Therefore, TRPM2 channels are essential for the regulation of cytokine production in M1-polarized murine IMs. Specific activation of these channels may promote an anti-inflammatory phenotype and prevent a harmful cytokine storm often observed in COVID-19 patients.
Collapse
Affiliation(s)
- Suhasini Rajan
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Alexey Shalygin
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| |
Collapse
|
6
|
Blomqvist A. Prostaglandin E 2 production in the brainstem parabrachial nucleus facilitates the febrile response. Temperature (Austin) 2024; 11:309-317. [PMID: 39583895 PMCID: PMC11583619 DOI: 10.1080/23328940.2024.2401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/26/2024] Open
Abstract
Our body temperature is normally kept within a narrow range of 1°C. For example, if our body temperature rises, such as in a hot environment or due to strenuous exercise, our thermoregulatory system will trigger a powerful heat defense response with vasodilation, sweating, and lowered metabolism. During fever, which often involves body temperatures of up to 41°C, this heat defense mechanism is apparently inhibited; otherwise, the rising body temperature would be immediately combated, and fever would not be allowed to develop. New evidence suggests how and where this inhibition takes place. In two consecutive studies from Cheng et al. and Xu et al., it has been shown that prostaglandin E2, which generates fever by acting on thermosensory neurons in the preoptic hypothalamus, also acts on neurons in the brainstem parabrachial nucleus, which receive temperature information from temperature-activated spinal cord neurons and relay this information to the thermoregulatory center in the hypothalamus to either induce cold or heat defenses. By acting on the same type of prostaglandin E2 receptor that is critical for fever generation in the preoptic hypothalamus, the EP3 receptor, prostaglandin E2 inhibits the signaling of the heat-responsive parabrachial neurons, while stimulating the cold-responsive neurons. These novel findings thus show that prostaglandin E2, by binding to the same receptor subtype in the parabrachial nucleus as in the preoptic hypothalamus, adjusts the sensitivity of the thermosensory system in a coordinated manner to allow the development of febrile body temperatures.
Collapse
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Fricke TC, Leffler A. TRPV2: a universal regulator in cellular physiology with a yet poorly defined thermosensitivity. J Physiol Sci 2024; 74:42. [PMID: 39285320 PMCID: PMC11403965 DOI: 10.1186/s12576-024-00936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Transient receptor potential (TRP) ion channels serve as sensors for variations in ambient temperature, modulating both thermoregulation and temperature responsive cellular processes. Among these, the vanilloid TRP subfamily (TRPV) comprises six members and at least four of these members (TRPV1-TRPV4) have been associated with thermal sensation. TRPV2 has been described as a sensor for noxious heat, but subsequent studies have unveiled a more complex role for TRPV2 beyond temperature perception. This comprehensive review aims to elucidate the intricate thermosensitivity of TRPV2 by synthesizing current knowledge on its biophysical properties, expression pattern and known physiological functions associated with thermosensation.
Collapse
Affiliation(s)
- Tabea C Fricke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Cutler B, Haesemeyer M. Vertebrate behavioral thermoregulation: knowledge and future directions. NEUROPHOTONICS 2024; 11:033409. [PMID: 38769950 PMCID: PMC11105118 DOI: 10.1117/1.nph.11.3.033409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Thermoregulation is critical for survival across species. In animals, the nervous system detects external and internal temperatures, integrates this information with internal states, and ultimately forms a decision on appropriate thermoregulatory actions. Recent work has identified critical molecules and sensory and motor pathways controlling thermoregulation. However, especially with regard to behavioral thermoregulation, many open questions remain. Here, we aim to both summarize the current state of research, the "knowledge," as well as what in our mind is still largely missing, the "future directions." Given the host of circuit entry points that have been discovered, we specifically see that the time is ripe for a neuro-computational perspective on thermoregulation. Such a perspective is largely lacking but is increasingly fueled and made possible by the development of advanced tools and modeling strategies.
Collapse
Affiliation(s)
- Bradley Cutler
- Graduate program in Molecular, Cellular and Developmental Biology, Columbus, Ohio, United States
- The Ohio State University, Columbus, Ohio, United States
| | | |
Collapse
|
9
|
Sur S, Sharma A. Understanding the role of temperature in seasonal timing: Effects on behavioural, physiological and molecular phenotypes. Mol Ecol 2024:e17447. [PMID: 38946196 DOI: 10.1111/mec.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Organisms adapt to daily and seasonal environmental changes to maximise their metabolic and reproductive fitness. For seasonally breeding animals, photoperiod is considered the most robust cue to drive these changes. It, however, does not explain the interannual variations in different seasonal phenotypes. Several studies have repeatedly shown the influence of ambient temperature on the timing of different seasonal physiologies including the timing of migration, reproduction and its associated behaviours, etc. In the present review, we have discussed the effects of changes in ambient temperature on different seasonal events in endotherms with a focus on migratory birds as they have evolved to draw benefits from distinct but largely predictable seasonal patterns of natural resources. We have further discussed the physiological and molecular mechanisms by which temperature affects seasonal timings. The primary brain area involved in detecting temperature changes is the hypothalamic preoptic area. This area receives thermal inputs via sensory neurons in the peripheral ganglia that measure changes in thermoregulatory tissues such as the skin and spinal cord. For the input signals, several thermal sensory TRP (transient receptor potential ion channels) channels have been identified across different classes of vertebrates. These channels are activated at specific thermal ranges. Once perceived, this information should activate an effector function. However, the link between temperature sensation and the effector pathways is not properly understood yet. Here, we have summarised the available information that may help us understand how temperature information is translated into seasonal timing.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Aakansha Sharma
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
10
|
Huang P, Qu C, Rao Z, Wu D, Zhao J. Bidirectional regulation mechanism of TRPM2 channel: role in oxidative stress, inflammation and ischemia-reperfusion injury. Front Immunol 2024; 15:1391355. [PMID: 39007141 PMCID: PMC11239348 DOI: 10.3389/fimmu.2024.1391355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that exhibits Ca2+ permeability. The TRPM2 channel is expressed in various tissues and cells and can be activated by multiple factors, including endogenous ligands, Ca2+, reactive oxygen species (ROS) and temperature. This article reviews the multiple roles of the TRPM2 channel in physiological and pathological processes, particularly on oxidative stress, inflammation and ischemia-reperfusion (I/R) injury. In oxidative stress, the excessive influx of Ca2+ caused by the activation of the TRPM2 channel may exacerbate cellular damage. However, under specific conditions, activating the TRPM2 channel can have a protective effect on cells. In inflammation, the activation of the TRPM2 channel may not only promote inflammatory response but also inhibit inflammation by regulating ROS production and bactericidal ability of macrophages and neutrophils. In I/R, the activation of the TRPM2 channel may worsen I/R injury to various organs, including the brain, heart, kidney and liver. However, activating the TRPM2 channel may protect the myocardium from I/R injury by regulating calcium influx and phosphorylating proline-rich tyrosine kinase 2 (Pyk2). A thorough investigation of the bidirectional role and regulatory mechanism of the TRPM2 channel in these physiological and pathological processes will aid in identifying new targets and strategies for treatment of related diseases.
Collapse
Affiliation(s)
- Peng Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiexiu Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
11
|
Wang Z, Wu Y, Li X, Ji X, Liu W. The gut microbiota facilitate their host tolerance to extreme temperatures. BMC Microbiol 2024; 24:131. [PMID: 38643098 PMCID: PMC11031955 DOI: 10.1186/s12866-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.
Collapse
Affiliation(s)
- Ziguang Wang
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- First Clinical Medical College, Mudanjiang Medical College, Mudanjiang, China
| | - Yujie Wu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
| | - Xinxin Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaowen Ji
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| | - Wei Liu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
12
|
Tóth ÁV, Bartók Á. Reviewing critical TRPM2 variants through a structure-function lens. J Biotechnol 2024; 385:49-57. [PMID: 38442841 DOI: 10.1016/j.jbiotec.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel plays a central role in connecting redox state with calcium signaling in living cells. This coupling makes TRPM2 essential for physiological functions such as pancreatic insulin secretion or cytokine production, but also allows it to contribute to pathological processes, including neuronal cell death or ischemia-reperfusion injury. Genetic deletion of the channel, albeit not lethal, alters physiological functions in mice. In humans, population genetic studies and whole-exome sequencing have identified several common and rare genetic variants associated with mental disorders and neurodegenerative diseases, including single nucleotide variants (SNVs) in exonic regions. In this review, we summarize available information on the four best-documented SNVs: one common (rs1556314) and three rare genetic variants (rs139554968, rs35288229, and rs145947009), manifested in amino acid substitutions D543E, R707C, R755C, and P1018L respectively. We discuss existing evidence supporting or refuting the associations between SNVs and disease. Furthermore, we aim to interpret the molecular impacts of these amino acid substitutions based on recently published structures of human TRPM2. Finally, we formulate testable hypotheses and suggest means to investigate them. Studying the function of proteins with rare mutations might provide insight into disease etiology and delineate new drug targets.
Collapse
Affiliation(s)
- Ádám V Tóth
- Department of Biochemistry, Semmelweis University, 37-47 Tűzoltó street, Budapest 1094, Hungary; HCEMM-SE Molecular Channelopathies Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary; HUN-REN-SE Ion Channel Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary
| | - Ádám Bartók
- Department of Biochemistry, Semmelweis University, 37-47 Tűzoltó street, Budapest 1094, Hungary; HCEMM-SE Molecular Channelopathies Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary; HUN-REN-SE Ion Channel Research Group, 37-47 Tűzoltó street, Budapest 1094, Hungary.
| |
Collapse
|
13
|
Bartók Á, Csanády L. TRPM2 - An adjustable thermostat. Cell Calcium 2024; 118:102850. [PMID: 38237549 DOI: 10.1016/j.ceca.2024.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
The Transient Receptor Potential Melastatin 2 (TRPM2) channel is a homotetrameric ligand-gated cation channel opened by the binding of cytosolic ADP ribose (ADPR) and Ca2+. In addition, strong temperature dependence of its activity has lately become a center of attention for both physiological and biophysical studies. TRPM2 temperature sensitivity has been affirmed to play a role in central and peripheral thermosensation, pancreatic insulin secretion, and immune cell function. On the other hand, a number of different underlying mechanisms have been proposed from studies in intact cells. This review summarizes available information on TRPM2 temperature sensitivity, with a focus on recent mechanistic insight obtained in a cell-free system. Those biophysical results outline TRPM2 as a channel with an intrinsically endothermic opening transition, a temperature threshold strongly modulated by cytosolic agonist concentrations, and a response steepness greatly enhanced through a positive feedback loop generated by Ca2+ influx through the channel's pore. Complex observations in intact cells and apparent discrepancies between studies using in vivo and in vitro models are discussed and interpreted in light of the intrinsic biophysical properties of the channel protein.
Collapse
Affiliation(s)
- Ádám Bartók
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary.
| |
Collapse
|
14
|
Benzi A, Heine M, Spinelli S, Salis A, Worthmann A, Diercks B, Astigiano C, Pérez Mato R, Memushaj A, Sturla L, Vellone V, Damonte G, Jaeckstein MY, Koch-Nolte F, Mittrücker HW, Guse AH, De Flora A, Heeren J, Bruzzone S. The TRPM2 ion channel regulates metabolic and thermogenic adaptations in adipose tissue of cold-exposed mice. Front Endocrinol (Lausanne) 2024; 14:1251351. [PMID: 38390373 PMCID: PMC10882718 DOI: 10.3389/fendo.2023.1251351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/16/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the β-adrenergic receptor agonist CL316,243. Results Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.
Collapse
Affiliation(s)
- Andrea Benzi
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecilia Astigiano
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Raúl Pérez Mato
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Adela Memushaj
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Valerio Vellone
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy
- Pathology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonio De Flora
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Santina Bruzzone
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
15
|
Wu X, Yoshino T, Maeda-Minami A, Ishida S, Tanaka M, Nishi A, Tahara Y, Inami R, Sugiyama A, Horiba Y, Watanabe K, Mimura M. Exploratory study of cold hypersensitivity in Japanese women: genetic associations and somatic symptom burden. Sci Rep 2024; 14:1918. [PMID: 38253633 PMCID: PMC11231259 DOI: 10.1038/s41598-024-52119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Temperature perception is essential for humans to discern the environment and maintain homeostasis. However, some individuals experience cold hypersensitivity, characterized by a subjective feeling of coldness despite ambient environmental temperatures being normal, the underlying mechanisms of which are unknown. In this study, we aimed to investigate the relationship between subjective cold symptoms and somatic burden or single nucleotide polymorphisms to understand the causes of cold hypersensitivity. We conducted an online questionnaire survey [comprising 30 questions, including past medical history, subjective symptoms of cold hypersensitivity, and the Somatic Symptom Scale-8 (SSS-8)]. Respondents were 1200 Japanese adult female volunteers (age: 20-59 years), recruited between April 21 and May 25, 2022, who were customers of MYCODE, a personal genome service in Japan. Among the 1111 participants, 599 (54%) reported cold hypersensitivity. Higher cold hypersensitivity severity was positively associated with the SSS-8 scores. Additionally, a genome-wide association study for cold hypersensitivity was conducted using array-based genomic data obtained from genetic testing. We identified 11 lead variants showing suggestive associations (P < 1 × 10-5) with cold hypersensitivity, some of which showed a reasonable change in expression in specific tissues in the Genotype-Tissue Expression database. The study findings shed light on the underlying causes of cold hypersensitivity.
Collapse
Affiliation(s)
- Xuefeng Wu
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tetsuhiro Yoshino
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Holistic Kampo Diagnosis Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Ayako Maeda-Minami
- Holistic Kampo Diagnosis Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-0022, Japan
| | | | | | - Akinori Nishi
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Yoshio Tahara
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Ryohei Inami
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Aiko Sugiyama
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Yuko Horiba
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
16
|
Muzik O, Diwadkar VA. Depth and hierarchies in the predictive brain: From reaction to action. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1664. [PMID: 37518831 DOI: 10.1002/wcs.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The human brain is a prediction device, a view widely accepted in neuroscience. Prediction is a rational and efficient response that relies on the brain's ability to create and employ generative models to optimize actions over unpredictable time horizons. We argue that extant predictive frameworks while compelling, have not explicitly accounted for the following: (a) The brain's generative models must incorporate predictive depth (i.e., rely on degrees of abstraction to enable predictions over different time horizons); (b) The brain's implementation scheme to account for varying predictive depth relies on dynamic predictive hierarchies formed using the brain's functional networks. We show that these hierarchies incorporate the ascending processes (driven by reaction), and the descending processes (related to prediction), eventually driving action. Because they are dynamically formed, predictive hierarchies allow the brain to address predictive challenges in virtually any domain. By way of application, we explain how this framework can be applied to heretofore poorly understood processes of human behavioral thermoregulation. Although mammalian thermoregulation has been closely tied to deep brain structures engaged in autonomic control such as the hypothalamus, this narrow conception does not translate well to humans. In addition to profound differences in evolutionary history, the human brain is bestowed with substantially increased functional complexity (that itself emerged from evolutionary differences). We argue that behavioral thermoregulation in humans is possible because, (a) ascending signals shaped by homeostatic sub-networks, interject with (b) descending signals related to prediction (implemented in interoceptive and executive sub-networks) and action (implemented in executive sub-networks). These sub-networks cumulatively form a predictive hierarchy for human thermoregulation, potentiating a range of viable responses to known and unknown thermoregulatory challenges. We suggest that our proposed extensions to the predictive framework provide a set of generalizable principles that can further illuminate the many facets of the predictive brain. This article is categorized under: Neuroscience > Behavior Philosophy > Action Psychology > Prediction.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
17
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
18
|
Tsuneoka Y, Nishikawa T, Furube E, Okamoto K, Yoshimura R, Funato H, Miyata S. Characterization of TRPM8-expressing neurons in the adult mouse hypothalamus. Neurosci Lett 2023; 814:137463. [PMID: 37640249 DOI: 10.1016/j.neulet.2023.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a menthol receptor that detects cold temperatures and influences behaviors and autonomic functions under cold stimuli. Despite the well-documented peripheral roles of TRPM8, the evaluation of its central functions is still of great interest. The present study clarifies the nature of a subpopulation of TRPM8-expressing neurons in the adult mice. Combined in situ hybridization and immunohistochemistry revealed that TRPM8-expressing neurons are exclusively positive for glutamate decarboxylase 67 mRNA signals in the lateral septal nucleus (LS) and preoptic area (POA) but produced no positive signal for vesicular glutamate transporter 2. Double labeling immunohistochemistry showed the colocalization of TRPM8 with vesicular GABA transporter at axonal terminals. Immunohistochemistry further revealed that TRPM8-expressing neurons frequently expressed calbindin and calretinin in the LS, but not in the POA. TRPM8-expressing neurons in the POA expressed a prostaglandin E2 receptor, EP3, and neurotensin, whereas expression in the LS was minimal. These results indicate that hypothalamic TRPM8-expressing neurons are inhibitory GABAergic, while the expression profile of calcium-binding proteins, neurotensin, and EP3 differs between the POA and LS.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Taichi Nishikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Anatomy, Asahikawa Medical University School of Medicine, Midorigaoka, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan; International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
19
|
Feketa VV, Bagriantsev SN, Gracheva EO. Ground squirrels - experts in thermoregulatory adaptation. Trends Neurosci 2023; 46:505-507. [PMID: 37188617 DOI: 10.1016/j.tins.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Ground squirrels exemplify one of the most extreme forms of mammalian hibernation and a convenient model for studying its mechanisms. Their thermoregulatory system demonstrates remarkable adaptive capabilities by maintaining optimal levels of body temperature both in active and hibernation states. Here, we review recent findings and unresolved issues regarding the neural mechanisms of body temperature control in ground squirrels.
Collapse
Affiliation(s)
- Viktor V Feketa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Takahashi TM, Sakurai T, Hirano A. Measuring body temperature of freely moving mice under an optogenetics-induced long-term hypothermic state. STAR Protoc 2023; 4:102321. [PMID: 37267111 DOI: 10.1016/j.xpro.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 06/04/2023] Open
Abstract
We present a protocol for inducing a hibernation-like state in free-moving mice using optogenetics. We have recently developed an optogenetic technique utilizing modified Opsin4, which is activated by weak blue light, resulting in prolonged neuronal excitation. We describe a protocol that includes detailed instructions for virus injection, implantation of optic fibers and temperature transmitters, photostimulation, and real-time recording of body temperature in mice. This method is valuable for investigating the mechanisms underlying torpor and thermoregulation in mice. For complete details on the use and execution of this protocol, please refer to Takahashi et al.1.
Collapse
Affiliation(s)
- Tohru M Takahashi
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takeshi Sakurai
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Arisa Hirano
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
21
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
22
|
Zhou Q, Fu X, Xu J, Dong S, Liu C, Cheng D, Gao C, Huang M, Liu Z, Ni X, Hua R, Tu H, Sun H, Shen Q, Chen B, Zhang J, Zhang L, Yang H, Hu J, Yang W, Pei W, Yao Q, Sheng X, Zhang J, Yang WZ, Shen WL. Hypothalamic warm-sensitive neurons require TRPC4 channel for detecting internal warmth and regulating body temperature in mice. Neuron 2023; 111:387-404.e8. [PMID: 36476978 DOI: 10.1016/j.neuron.2022.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Precise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (Tcore). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined. Via a pilot genetic screen, we found that silencing the TRPC4 channel in mice substantially attenuated hypothermia induced by light-mediated heating of the POA. Loss-of-function studies of TRPC4 confirmed its role in warm sensing in GABAergic WSNs, causing additional defects in basal temperature setting, warm defense, and fever responses. Furthermore, TRPC4 antagonists and agonists bidirectionally regulated Tcore. Thus, our data indicate that TRPC4 is essential for sensing internal warmth and that TRPC4-expressing GABAergic WSNs function as a novel cellular sensor for preventing Tcore from exceeding set-point temperatures. TRPC4 may represent a potential therapeutic target for managing Tcore.
Collapse
Affiliation(s)
- Qian Zhou
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Shiming Dong
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Changhao Liu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Dali Cheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Cuicui Gao
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minhua Huang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiduo Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xinyan Ni
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hongqing Tu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Hongbin Sun
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Baoting Chen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Liye Zhang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Yang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xing Sheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China.
| | - Wen Z Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Wei L Shen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
23
|
Evtushenko AA, Voronova IP, Kozyreva TV. Effect of Long-Term Adaptation to Cold and Short-Term Cooling on the Expression of the TRPM2 Ion Channel Gene in the Hypothalamus of Rats. Curr Issues Mol Biol 2023; 45:1002-1011. [PMID: 36826010 PMCID: PMC9955288 DOI: 10.3390/cimb45020065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The present study is aimed to elucidate the possible involvement of the thermosensitive TRPM2 ion channel in changing of the temperature sensitivity of the hypothalamus after different cold exposures-long-term adaptation to cold and short-term cooling. Quantitative RT-PCR was used to study the expression of the gene of thermosensitive TRPM2 ion channel in the hypothalamus in the groups of control (kept for 5 weeks at +20 to +22 °C) and cold-adapted (5 weeks at +4 to +6 °C) rats, as well as in the groups of animals which were subjected to acute cooling (rapid or slow) with subsequent restoration of body temperature to the initial level. It has been shown that after long-term adaptation to cold, the decrease in the Trpm2 gene expression was observed in the hypothalamus, while a short-term cooling does not affect the expression of the gene of this ion channel. Thus, long-term adaptation to cold results in the decrease in the activity not only of the TRPV3 ion channel gene, as shown earlier, but also of the Trpm2 gene in the hypothalamus. The overlapping temperature ranges of the functioning of these ion channels and their unidirectional changes during the adaptation of the homoeothermic organism to cold suggest their functional interaction. The decrease in the Trpm2 gene expression may indicate the participation of this ion channel in adaptive changes in hypothalamic thermosensitivity, but only as a result of long-term cold exposure and not of a short-term cooling. These processes occurring at the genomic level are one of the molecular mechanisms of the adaptive changes.
Collapse
|
24
|
Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors. Proc Natl Acad Sci U S A 2022; 119:e2212378119. [PMID: 36409885 PMCID: PMC9881722 DOI: 10.1073/pnas.2212378119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca2+ and ADP ribose (ADPR)-activated cation channel TRPM2 is the closest homolog of the cold sensor TRPM8 but serves as a deep-brain warmth sensor. To unravel the molecular mechanism of heat sensing by the TRPM2 protein, we study here temperature dependence of TRPM2 currents in cell-free membrane patches across ranges of agonist concentrations. We find that channel gating remains strictly agonist-dependent even at 40°C: heating alone or in combination with just Ca2+, just ADPR, Ca2+ + cyclic ADPR, or H2O2 pretreatment only marginally activates TRPM2. For fully liganded TRPM2, pore opening is intrinsically endothermic, due to ~10-fold larger activation enthalpy for opening (~200 kJ/mol) than for closure (~20 kJ/mol). However, the temperature threshold is too high (>40°C) for unliganded but too low (<15°C) for fully liganded channels. Thus, warmth sensitivity around 37°C is restricted to narrow ranges of agonist concentrations. For ADPR, that range matches, but for Ca2+, it exceeds bulk cytosolic values. The supraphysiological [Ca2+] needed for TRPM2 warmth sensitivity is provided by Ca2+ entering through the channel's pore. That positive feedback provides further strong amplification to the TRPM2 temperature response (Q10 ~ 1,000), enabling the TRPM2 protein to autonomously respond to tiny temperature fluctuations around 37°C. These functional data together with published structures suggest a molecular mechanism for opposite temperature dependences of two closely related channel proteins.
Collapse
|
25
|
Thermoregulatory heat-escape/cold-seeking behavior in mice and the influence of TRPV1 channels. PLoS One 2022; 17:e0276748. [DOI: 10.1371/journal.pone.0276748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The present study assessed heat-escape/cold-seeking behavior during thermoregulation in mice and the influence of TRPV1 channels. Mice received subcutaneous injection of capsaicin (50 mg/kg; CAP group) for desensitization of TRPV1 channels or vehicle (control [CON] group). In Experiment 1, heat-escape/cold-seeking behavior was assessed using a newly developed system comprising five temperature-controlled boards placed in a cross-shape. Each mouse completed three 90-min trials. In the trials, the four boards, including the center board, were set at either 36˚C, 38˚C, or 40˚C, while one corner board was set at 32˚C, which was rotated every 5 min. In Experiment 2, mice were exposed to an ambient temperature of 37˚C for 30 min. cFos expression in the preoptic area of the hypothalamus (POA) was assessed. In Experiment 1, the CON group stayed on the 32˚C board for the longest duration relative to that on other boards, and intra-abdominal temperature (Tabd) was maintained. In the CAP group, no preference for the 32˚C board was observed, and Tabd increased. In Experiment 2, cFos expression in the POA decreased in the CAP group. Capsaicin-induced desensitization of TRPV1 channels suppressed heat-escape/cold-seeking behavior in mice during heat exposure, resulting in hyperthermia. In conclusion, our findings suggest that heat sensation from the body surface may be a key inducer of thermoregulatory behaviors in mice.
Collapse
|
26
|
Hypothermia evoked by stimulation of medial preoptic nucleus protects the brain in a mouse model of ischaemia. Nat Commun 2022; 13:6890. [PMID: 36371436 PMCID: PMC9653397 DOI: 10.1038/s41467-022-34735-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia at 32-34 °C during or after cerebral ischaemia is neuroprotective. However, peripheral cold sensor-triggered hypothermia is ineffective and evokes vigorous counteractive shivering thermogenesis and complications that are difficult to tolerate in awake patients. Here, we show in mice that deep brain stimulation (DBS) of warm-sensitive neurones (WSNs) in the medial preoptic nucleus (MPN) produces tolerable hypothermia. In contrast to surface cooling-evoked hypothermia, DBS mice exhibit a torpor-like state without counteractive shivering. Like hypothermia evoked by chemogenetic activation of WSNs, DBS in free-moving mice elicits a rapid lowering of the core body temperature to 32-34 °C, which confers significant brain protection and motor function reservation. Mechanistically, activation of WSNs contributes to DBS-evoked hypothermia. Inhibition of WSNs prevents DBS-evoked hypothermia. Maintaining the core body temperature at normothermia during DBS abolishes DBS-mediated brain protection. Thus, the MPN is a DBS target to evoke tolerable therapeutic hypothermia for stroke treatment.
Collapse
|
27
|
Luo Y, Chen S, Wu F, Jiang C, Fang M. The identification of the key residues E829 and R845 involved in transient receptor potential melastatin 2 channel gating. Front Aging Neurosci 2022; 14:1033434. [DOI: 10.3389/fnagi.2022.1033434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel, is involved in many physiological and pathological processes, including temperature sensing, synaptic plasticity regulation, and neurodegenerative diseases. However, the gating mechanism of TRPM2 channel is complex, which hinders its functional research. With the discovery of the Ca2+ binding site in the S2–S3 domain of TRPM2 channel, more and more attention has been drawn to the role of the transmembrane segments in channel gating. In this study, we focused on the D820-F867 segment around the S2 domain, and identified the key residues on it. Functional assays of the deletion mutants displayed that the deletions of D820-W835 and L836-P851 destroyed channel function totally, indicating the importance of these two segments. Sequence alignments on them found three polar and charged residues with high conservation (D820, E829, and R845). D820A, E829A, and R845A which removed the charge and the side chain of the residues were tested by 500 μM adenosine diphosphate-ribose (ADPR) or 50 mM Ca2+. E829A and R845A affected the characteristic of channel currents, while D820A behaved similarly to WT, indicating the participations of E829 and R845 in channel gating. The charge reversing mutants, E829K and R845D were then constructed and the electrophysiological tests showed that E829A and E829K made the channel lose function. Interestingly, R845A and R845D exhibited an inactivation process when using 500 μM ADPR, but activated normally by 50 mM Ca2+. Our data suggested that the negative charge at E829 took a vital part in channel activation, and R845 increased the stability of the Ca2+ combination in S2-S3 domain, thus guaranteeing the opening of TRPM2 channel. In summary, our identification of the key residues E829 and R845 in the transmembrane segments of TRPM2. By exploring the gating process of TRPM2 channel, our work helps us better understand the mechanism of TRPM2 as a potential biomarker in neurodegenerative diseases, and provides a new approach for the prediction, diagnosis, and prognosis of neurodegenerative diseases.
Collapse
|
28
|
Kashio M, Masubuchi S, Tominaga M. Protein kinase C-mediated phosphorylation of transient receptor potential melastatin type 2 Thr738 counteracts the effect of cytosolic Ca 2+ and elevates the temperature threshold. J Physiol 2022; 600:4287-4302. [PMID: 36042566 PMCID: PMC9826287 DOI: 10.1113/jp283350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023] Open
Abstract
The transient receptor potential melastatin type 2 (TRPM2) channel is a non-selective cation channel that has high Ca2+ permeability. TRPM2 is sensitive to warm temperatures and is expressed in cells and tissues that are maintained at core body temperature. TRPM2 activity is also regulated by endogenous factors including redox signalling, cytosolic Ca2+ and adenosine diphosphate ribose. As a result of its wide expression and function at core body temperature, these endogenous factors could regulate TRPM2 activity at body temperature under physiological and pathophysiological conditions. We previously reported that cellular redox signalling can lower TRPM2 temperature thresholds, although the mechanism that regulates these thresholds is unclear. Here, we used biochemical and electrophysiological techniques to explore another regulatory mechanism for TRPM2 temperature thresholds that is mediated by TRPM2 phosphorylation. Our results show that: (1) the temperature threshold for TRPM2 activation is lowered by cytosolic Ca2+ ; (2) protein kinase C-mediated phosphorylation of TRPM2 counteracts the effect of cytosolic Ca2+ ; and (3) Thr738 in mouse TRPM2 that lies near the Ca2+ binding site in the cytosolic cleft of the transmembrane domain is a potential phosphorylation site that may be involved in phosphorylation-mediated elevation of TRPM2 thresholds. These findings provide structure-based evidence to understand how temperature thresholds of thermo-sensitive TRP channels (thermo-TRPs) are determined and regulated. KEY POINTS: The transient receptor potential melastatin type 2 (TRPM2) ion channel is temperature-sensitive and Ca2+ -permeable. Endogenous factors and pathways such as redox signalling can regulate TRPM2 activity at body temperature under physiological and pathophysiological conditions. In the present study, we report the novel finding that cytosolic Ca2+ lowers the temperature threshold for TRPM2 activation in a concentration-dependent manner. Protein kinase C-mediated phosphorylation of TRPM2 at amino acid Thr782 elevates the temperature threshold for activation by counteracting the effects of cytosolic Ca2+ . These findings provide structure-based evidence to understand how temperature thresholds of thermo-sensitive TRP channels are determined and regulated.
Collapse
Affiliation(s)
- Makiko Kashio
- Division of Cell SignalingNational Institute for Physiological SciencesNational Institutes for Natural SciencesOkazakiAichiJapan
| | - Satoru Masubuchi
- Department of PhysiologyAichi Medical UniversityNagakuteAichiJapan
| | - Makoto Tominaga
- Division of Cell SignalingNational Institute for Physiological SciencesNational Institutes for Natural SciencesOkazakiAichiJapan,Thermal Biology GroupExploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesOkazakiAichiJapan
| |
Collapse
|
29
|
Kashio M, Tominaga M. TRP channels in thermosensation. Curr Opin Neurobiol 2022; 75:102591. [PMID: 35728275 DOI: 10.1016/j.conb.2022.102591] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
The ability to sense external temperature is assumed by somatosensory neurons, in which temperature information is converted to neural activity by afferent input to the central nervous system. Somatosensory neurons consist of various populations with specialized gene expression, including thermosensitive transient receptor potential ion channels (thermo-TRPs). Thermo-TRPs are responsible for thermal transduction at the peripheral ends of somatosensory neurons and over a wide range of temperatures. In this review, we focus on several thermo-TRPs expressed in sensory neurons: TRPV1, TRPV4, TRPM2, TRPM3, TRPM8, TRPC5, and TRPA1. TRPV3, TRPV4, and TRPC5 expressed in non-neuronal cells that are also involved in somatosensation are also discussed, whereas TRPM2 and TRPM8 are involved in thermosensation in the brain.
Collapse
Affiliation(s)
- Makiko Kashio
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University, Chiba, Japan.
| |
Collapse
|
30
|
Ujisawa T, Sasajima S, Kashio M, Tominaga M. Thermal gradient ring reveals different temperature-dependent behaviors in mice lacking thermosensitive TRP channels. J Physiol Sci 2022; 72:11. [PMID: 35624442 PMCID: PMC10717490 DOI: 10.1186/s12576-022-00835-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/09/2022] [Indexed: 01/02/2023]
Abstract
Transient receptor potential (TRP) channels are known as temperature receptors. Each channel has an activation temperature in vitro within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors. However, the role of TRP channels in mouse thermal behavior is not fully understood. We measured thermal behavior using a new type of thermal gradient system, where mice can freely move around the ring floor, thereby avoiding the stereotypical habit that mice have of staying in a corner, as occurs in a rectangular system. With this system, we can also analyze various factors, such as "Spent time," "Travel distance," "Moving speed," and "Acceleration," to provide more accurate information about mouse behaviors. Further analysis using this system would lead to a better understanding of the molecular basis of thermal behaviors in mice, which could help us develop ways of making humans comfortable in different temperature conditions.
Collapse
Affiliation(s)
- Tomoyo Ujisawa
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center On Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Sachiko Sasajima
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center On Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Makiko Kashio
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center On Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, Sokendai (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Thermal Biology Group, Exploratory Research Center On Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, Sokendai (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|