1
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Iyer S, Maxson Jones K, Robinson JO, Provenza NR, Duncan D, Lázaro-Muñoz G, McGuire AL, Sheth SA, Majumder MA. The BRAIN Initiative data-sharing ecosystem: Characteristics, challenges, benefits, and opportunities. eLife 2024; 13:e94000. [PMID: 39602224 PMCID: PMC11602185 DOI: 10.7554/elife.94000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
In this paper, we provide an overview and analysis of the BRAIN Initiative data-sharing ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data archives germane to data sharing and reuse, namely data submission and access procedures and aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, focusing on issues largely specific to sharing human data and drawing on N = 34 interviews with diverse stakeholders. The BRAIN Initiative-funded archive ecosystem faces interoperability and data stewardship challenges, such as achieving and maintaining interoperability of data and archives and harmonizing research participants' informed consents for tiers of access for human data across multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more specialized archives to adapt to the needs of particular research communities. Finally, the multiple archives offer ample raw material for network evolution in response to the needs of neuroscientists over time. Our first objective in this paper is to provide a guide to the BRAIN Initiative data-sharing ecosystem for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the development of empirically informed policy and practice aimed at making neuroscience data more findable, accessible, interoperable, and reusable.
Collapse
Affiliation(s)
- Sudhanvan Iyer
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| | - Kathryn Maxson Jones
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
- Department of History, Purdue UniversityWest LafayetteUnited States
| | - Jill O Robinson
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesUnited States
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical SchoolBostonUnited States
- Department of Psychiatry, Massachusetts General HospitalBostonUnited States
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Mary A Majumder
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
3
|
Muirhead WR, Layard Horsfall H, Aicardi C, Carolan J, Akram H, Vanhoestenberghe A, Schaefer AT, Marcus HJ. Implanted cortical neuroprosthetics for speech and movement restoration. J Neurol 2024; 271:7156-7168. [PMID: 39446156 PMCID: PMC11561076 DOI: 10.1007/s00415-024-12604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
Implanted cortical neuroprosthetics (ICNs) are medical devices developed to replace dysfunctional neural pathways by creating information exchange between the brain and a digital system which can facilitate interaction with the external world. Over the last decade, researchers have explored the application of ICNs for diverse conditions including blindness, aphasia, and paralysis. Both transcranial and endovascular approaches have been used to record neural activity in humans, and in a laboratory setting, high-performance decoding of the signals associated with speech intention has been demonstrated. Particular progress towards a device which can move into clinical practice has been made with ICNs focussed on the restoration of speech and movement. This article provides an overview of contemporary ICNs for speech and movement restoration, their mechanisms of action and the unique ethical challenges raised by the field.
Collapse
Affiliation(s)
- William R Muirhead
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- The Francis Crick Institute, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Hugo Layard Horsfall
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christine Aicardi
- Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK
| | - Jacques Carolan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Harith Akram
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Anne Vanhoestenberghe
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Hani J Marcus
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Ngai J. BRAIN @ 10: A decade of innovation. Neuron 2024; 112:3003-3006. [PMID: 39326390 PMCID: PMC11502121 DOI: 10.1016/j.neuron.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Now entering its second decade, the National Institutes of Health Brain Research Through Advancing Innovative Neurotechnologies Initiative, or the NIH BRAIN Initiative, has yielded remarkable success, accelerating research on the neural circuit basis of behavior and breaking new ground toward the treatment of complex human brain disorders.
Collapse
Affiliation(s)
- John Ngai
- NIH BRAIN Initiative, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Campbell JM, Davis TS, Anderson DN, Arain A, Davis Z, Inman CS, Smith EH, Rolston JD. Macroscale traveling waves evoked by single-pulse stimulation of the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.27.534002. [PMID: 37034691 PMCID: PMC10081214 DOI: 10.1101/2023.03.27.534002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the spatiotemporal dynamics of neural signal propagation is fundamental to unraveling the complexities of brain function. Emerging evidence suggests that cortico-cortical evoked potentials (CCEPs) resulting from single-pulse electrical stimulation may be used to characterize the patterns of information flow between and within brain networks. At present, the basic spatiotemporal dynamics of CCEP propagation cortically and subcortically are incompletely understood. We hypothesized that single-pulse electrical stimulation evokes neural traveling waves detectable in the three-dimensional space sampled by intracranial stereoelectroencephalography. Across a cohort of 21 adult patients with intractable epilepsy, we delivered 17,631 stimulation pulses and recorded CCEP responses in 1,019 electrode contacts. The distance between each pair of electrode contacts was approximated using three different metrics (Euclidean distance, path length, and geodesic distance), representing direct, tractographic, and transcortical propagation, respectively. For each robust CCEP, we extracted amplitude-, spectral-, and phase-based features to identify traveling waves emanating from the site of stimulation. Many evoked responses to stimulation appear to propagate as traveling waves (~14-28%), despite sparse sampling throughout the brain. These stimulation-evoked traveling waves exhibited biologically plausible propagation velocities (range 0.1-9.6 m/s). Our results reveal that direct electrical stimulation elicits neural activity with variable spatiotemporal dynamics, including the initiation of neural traveling waves.
Collapse
Affiliation(s)
- Justin M. Campbell
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Tyler S. Davis
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Amir Arain
- Department of Neurology, University of Utah, Salt Lake City School of Medicine, UT, USA
| | - Zac Davis
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cory S. Inman
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Elliot H. Smith
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Pigorini A, Avanzini P, Barborica A, Bénar CG, David O, Farisco M, Keller CJ, Manfridi A, Mikulan E, Paulk AC, Roehri N, Subramanian A, Vulliémoz S, Zelmann R. Simultaneous invasive and non-invasive recordings in humans: A novel Rosetta stone for deciphering brain activity. J Neurosci Methods 2024; 408:110160. [PMID: 38734149 DOI: 10.1016/j.jneumeth.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.
Collapse
Affiliation(s)
- Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | | | - Christian-G Bénar
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Olivier David
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, P.O. Box 256, Uppsala, SE 751 05, Sweden; Science and Society Unit Biogem, Biology and Molecular Genetics Institute, Via Camporeale snc, Ariano Irpino, AV 83031, Italy
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Alfredo Manfridi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angelique C Paulk
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicolas Roehri
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Ajay Subramanian
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Rina Zelmann
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Lee AT, Chang EF, Paredes MF, Nowakowski TJ. Large-scale neurophysiology and single-cell profiling in human neuroscience. Nature 2024; 630:587-595. [PMID: 38898291 DOI: 10.1038/s41586-024-07405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.
Collapse
Affiliation(s)
- Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Dominik T, Mele A, Schurger A, Maoz U. Libet's legacy: A primer to the neuroscience of volition. Neurosci Biobehav Rev 2024; 157:105503. [PMID: 38072144 DOI: 10.1016/j.neubiorev.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The neuroscience of volition is an emerging subfield of the brain sciences, with hundreds of papers on the role of consciousness in action formation published each year. This makes the state-of-the-art in the discipline poorly accessible to newcomers and difficult to follow even for experts in the field. Here we provide a comprehensive summary of research in this field since its inception that will be useful to both groups. We also discuss important ideas that have received little coverage in the literature so far. We systematically reviewed a set of 2220 publications, with detailed consideration of almost 500 of the most relevant papers. We provide a thorough introduction to the seminal work of Benjamin Libet from the 1960s to 1980s. We also discuss common criticisms of Libet's method, including temporal introspection, the interpretation of the assumed physiological correlates of volition, and various conceptual issues. We conclude with recent advances and potential future directions in the field, highlighting modern methodological approaches to volition, as well as important recent findings.
Collapse
Affiliation(s)
| | - Alfred Mele
- Department of Philosophy, Florida State University, FL, USA
| | | | - Uri Maoz
- Brain Institute, Chapman University, CA, USA
| |
Collapse
|
9
|
Paulk AC, Salami P, Zelmann R, Cash SS. Electrode Development for Epilepsy Diagnosis and Treatment. Neurosurg Clin N Am 2024; 35:135-149. [PMID: 38000837 DOI: 10.1016/j.nec.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Recording neural activity has been a critical aspect in the diagnosis and treatment of patients with epilepsy. For those with intractable epilepsy, intracranial neural monitoring has been of substantial importance. Clinically, however, methods for recording neural information have remained essentially unchanged for decades. Over the last decade or so, rapid advances in electrode technology have begun to change this landscape. New systems allow for the observation of neural activity with high spatial resolution and, in some cases, at the level of the activity of individual neurons. These new tools have contributed greatly to our understanding of brain function and dysfunction. Here, the authors review the primary technologies currently in use in humans. The authors discuss other possible systems, some of the challenges which come along with these devices, and how they will become incorporated into the clinical workflow. Ultimately, the expectation is that these new, high-density, high-spatial-resolution recording systems will become a valuable part of the clinical arsenal used in the diagnosis and surgical management of epilepsy.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Rina Zelmann
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
10
|
Rahimzadeh V, Jones KM, Majumder MA, Kahana MJ, Rutishauser U, Williams ZM, Cash SS, Paulk AC, Zheng J, Beauchamp MS, Collinger JL, Pouratian N, McGuire AL, Sheth SA. Benefits of sharing neurophysiology data from the BRAIN Initiative Research Opportunities in Humans Consortium. Neuron 2023; 111:3710-3715. [PMID: 37944519 PMCID: PMC10995938 DOI: 10.1016/j.neuron.2023.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Sharing human brain data can yield scientific benefits, but because of various disincentives, only a fraction of these data is currently shared. We profile three successful data-sharing experiences from the NIH BRAIN Initiative Research Opportunities in Humans (ROH) Consortium and demonstrate benefits to data producers and to users.
Collapse
Affiliation(s)
- Vasiliki Rahimzadeh
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathryn Maxson Jones
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA; Department of History, Purdue University, West Lafayette, IN 47907, USA
| | - Mary A Majumder
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jie Zheng
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Kocsis Z, Jenison RL, Taylor PN, Calmus RM, McMurray B, Rhone AE, Sarrett ME, Deifelt Streese C, Kikuchi Y, Gander PE, Berger JI, Kovach CK, Choi I, Greenlee JD, Kawasaki H, Cope TE, Griffiths TD, Howard MA, Petkov CI. Immediate neural impact and incomplete compensation after semantic hub disconnection. Nat Commun 2023; 14:6264. [PMID: 37805497 PMCID: PMC10560235 DOI: 10.1038/s41467-023-42088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.
Collapse
Affiliation(s)
- Zsuzsanna Kocsis
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Rick L Jenison
- Departments of Neuroscience and Psychology, University of Wisconsin, Madison, WI, USA
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Ryan M Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Bob McMurray
- Department of Psychological and Brain Science, University of Iowa, Iowa City, IA, USA
| | - Ariane E Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | | | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Coughlin B, Muñoz W, Kfir Y, Young MJ, Meszéna D, Jamali M, Caprara I, Hardstone R, Khanna A, Mustroph ML, Trautmann EM, Windolf C, Varol E, Soper DJ, Stavisky SD, Welkenhuysen M, Dutta B, Shenoy KV, Hochberg LR, Mark Richardson R, Williams ZM, Cash SS, Paulk AC. Modified Neuropixels probes for recording human neurophysiology in the operating room. Nat Protoc 2023; 18:2927-2953. [PMID: 37697108 DOI: 10.1038/s41596-023-00871-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/08/2023] [Indexed: 09/13/2023]
Abstract
Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.
Collapse
Affiliation(s)
- Brian Coughlin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Yoav Kfir
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Domokos Meszéna
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mohsen Jamali
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Irene Caprara
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Richard Hardstone
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Arjun Khanna
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Martina L Mustroph
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University Medical Center, New York, NY, USA
| | - Charlie Windolf
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Computer Science and Engineering, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Dan J Soper
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sergey D Stavisky
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | | | - Krishna V Shenoy
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - R Mark Richardson
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Angelique C Paulk
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Ishida S, Nishitsutsumi Y, Kashioka H, Taguchi T, Shineha R. A comparative review on neuroethical issues in neuroscientific and neuroethical journals. Front Neurosci 2023; 17:1160611. [PMID: 37781239 PMCID: PMC10536163 DOI: 10.3389/fnins.2023.1160611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
This study is a pilot literature review that compares the interest of neuroethicists and neuroscientists. It aims to determine whether there is a significant gap between the neuroethical issues addressed in philosophical neuroethics journals and neuroscience journals. We retrieved 614 articles from two specialist neuroethics journals (Neuroethics and AJOB Neuroscience) and 82 neuroethics-focused articles from three specialist neuroscience journals (Neuron, Nature Neuroscience, and Nature Reviews Neuroscience). We classified these articles in light of the neuroethical issue in question before we compared the neuroethical issues addressed in philosophical neuroethics with those addressed by neuroscientists. A notable result is a parallelism between them as a general tendency. Neuroscientific articles cover most neuroethical issues discussed by philosophical ethicists and vice versa. Subsequently, there are notable discrepancies between the two bodies of neuroethics literature. For instance, theoretical questions, such as the ethics of moral enhancement and the philosophical implications of neuroscientific findings on our conception of personhood, are more intensely discussed in philosophical-neuroethical articles. Conversely, neuroscientific articles tend to emphasize practical questions, such as how to successfully integrate ethical perspectives into scientific research projects and justifiable practices of animal-involving neuroscientific research. These observations will help us settle the common starting point of the attempt at "ethics integration" in emerging neuroscience, contributing to better governance design and neuroethical practice.
Collapse
Affiliation(s)
- Shu Ishida
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yu Nishitsutsumi
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Hideki Kashioka
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Takahisa Taguchi
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Ryuma Shineha
- Research Center on Ethical, Legal, and Social Issues, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Krause BM, Campbell DI, Kovach CK, Mueller RN, Kawasaki H, Nourski KV, Banks MI. Analogous cortical reorganization accompanies entry into states of reduced consciousness during anesthesia and sleep. Cereb Cortex 2023; 33:9850-9866. [PMID: 37434363 PMCID: PMC10472497 DOI: 10.1093/cercor/bhad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.
Collapse
Affiliation(s)
- Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Declan I Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Christopher K Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Rashmi N Mueller
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
15
|
Banks MI, Krause BM, Berger DG, Campbell DI, Boes AD, Bruss JE, Kovach CK, Kawasaki H, Steinschneider M, Nourski KV. Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology. PLoS Biol 2023; 21:e3002239. [PMID: 37651504 PMCID: PMC10499207 DOI: 10.1371/journal.pbio.3002239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - D. Graham Berger
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Declan I. Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron D. Boes
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joel E. Bruss
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher K. Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Mitchell Steinschneider
- Department of Neurology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Kirill V. Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
16
|
Qasim SE. The human brain: The final frontier and the wild west. J Clin Invest 2023; 133:e173352. [PMID: 37463453 DOI: 10.1172/jci173352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
|
17
|
Kons Z, Hadanny A, Bush A, Nanda P, Herrington TM, Richardson RM. Accurate Deep Brain Stimulation Lead Placement Concurrent With Research Electrocorticography. Oper Neurosurg (Hagerstown) 2023; 24:524-532. [PMID: 36701668 PMCID: PMC10158863 DOI: 10.1227/ons.0000000000000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/14/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Using electrocorticography for research (R-ECoG) during deep brain stimulation (DBS) surgery has advanced our understanding of human cortical-basal ganglia neurophysiology and mechanisms of therapeutic circuit modulation. The safety of R-ECoG has been established, but potential effects of temporary ECoG strip placement on targeting accuracy have not been reported. OBJECTIVE To determine whether temporary subdural electrode strip placement during DBS implantation surgery affects lead implantation accuracy. METHODS Twenty-four consecutive patients enrolled in a prospective database who underwent awake DBS surgery were identified. Ten of 24 subjects participated in R-ECoG. Lead locations were determined after fusing postoperative computed tomography scans into the surgical planning software. The effect of brain shift was quantified using Lead-DBS and analyzed in a mixed-effects model controlling for time interval to postoperative computed tomography. Targeting accuracy was reported as radial and Euclidean distance errors and compared with Mann-Whitney tests. RESULTS Neither radial error nor Euclidean distance error differed significantly between R-ECoG participants and nonparticipants. Pneumocephalus volume did not differ between the 2 groups, but brain shift was slightly greater with R-ECoG. Pneumocephalus volume correlated with brain shift, but neither of these measures significantly correlated with Euclidean distance error. There were no complications in either group. CONCLUSION In addition to an excellent general safety profile as has been reported previously, these results suggest that performing R-ECoG during DBS implantation surgery does not affect the accuracy of lead placement.
Collapse
Affiliation(s)
- Zachary Kons
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA;
| | - Amir Hadanny
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Medical School, Boston, Massachusetts, USA;
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Todd M. Herrington
- Harvard Medical School, Boston, Massachusetts, USA;
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
18
|
Peabody Smith A, Pouratian N, Feinsinger A. Two Practices to Improve Informed Consent for Intraoperative Brain Research. Neurosurgery 2023; 92:e97-e101. [PMID: 36700725 PMCID: PMC10158867 DOI: 10.1227/neu.0000000000002336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/01/2022] [Indexed: 01/27/2023] Open
Abstract
As the clinical applications of neurologically implanted devices increase, so do opportunities for intracranial investigations in human patients. In some of these studies, patients participate in research during their awake brain surgery, performing additional tasks without the prospect of personal therapeutic benefit. These intraoperative studies raise persistent ethical challenges because they are conducted during a clinical intervention, in a clinical space, and often by the treating clinician. Whether intraoperative research necessitates innovative informed consent methods has become a pressing conversation. Familiar worries about inadequate participant understanding and undue influence dominate these discussions, as do calls for increasing information retention (e.g., using methods such as "teach-back") and minimizing enrollment pressures (e.g., preventing surgeons from consenting their own patients). However, efforts have yet to inspire widespread consent practices that mirror the scope of ethical concern. Focusing on awake, intraoperative intracranial research, we identify 2 underappreciated problems in approaches to informed consent. The first is epistemic: Many practices do not fully consider when and under which conditions participants are adequately informed. The second is relational: Many practices do not fully consider the effects of trust between patient-participants and surgeon-researchers. In exploring these concerns, we also raise questions about whether additional steps beyond preoperative consent may improve the process because decisions at this time are decoupled from both the experiences and vulnerability of awake brain surgery. Motivated by these considerations, we propose 2 practices: first, requiring a third-party patient advocate in initial consent and second, requiring verbal intraoperative reconsent before initiating research.
Collapse
Affiliation(s)
- Ally Peabody Smith
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ashley Feinsinger
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
19
|
Saez I, Gu X. Invasive Computational Psychiatry. Biol Psychiatry 2023; 93:661-670. [PMID: 36641365 PMCID: PMC10038930 DOI: 10.1016/j.biopsych.2022.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 01/16/2023]
Abstract
Computational psychiatry, a relatively new yet prolific field that aims to understand psychiatric disorders with formal theories about the brain, has seen tremendous growth in the past decade. Despite initial excitement, actual progress made by computational psychiatry seems stagnant. Meanwhile, understanding of the human brain has benefited tremendously from recent progress in intracranial neuroscience. Specifically, invasive techniques such as stereotactic electroencephalography, electrocorticography, and deep brain stimulation have provided a unique opportunity to precisely measure and causally modulate neurophysiological activity in the living human brain. In this review, we summarize progress and drawbacks in both computational psychiatry and invasive electrophysiology and propose that their combination presents a highly promising new direction-invasive computational psychiatry. The value of this approach is at least twofold. First, it advances our mechanistic understanding of the neural computations of mental states by providing a spatiotemporally precise depiction of neural activity that is traditionally unattainable using noninvasive techniques with human subjects. Second, it offers a direct and immediate way to modulate brain states through stimulation of algorithmically defined neural regions and circuits (i.e., algorithmic targeting), thus providing both causal and therapeutic insights. We then present depression as a use case where the combination of computational and invasive approaches has already shown initial success. We conclude by outlining future directions as a road map for this exciting new field as well as presenting cautions about issues such as ethical concerns and generalizability of findings.
Collapse
Affiliation(s)
- Ignacio Saez
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Xiaosi Gu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
20
|
Smith AP, Taiclet L, Ebadi H, Levy L, Weber M, Caruso EM, Pouratian N, Feinsinger A. "They were already inside my head to begin with": Trust, Translational Misconception, and Intraoperative Brain Research. AJOB Empir Bioeth 2023; 14:111-124. [PMID: 36137012 PMCID: PMC10030379 DOI: 10.1080/23294515.2022.2123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Background: Patients undergoing invasive neurosurgical procedures offer researchers unique opportunities to study the brain. Deep brain stimulation patients, for example, may participate in research during the surgical implantation of the stimulator device. Although this research raises many ethical concerns, little attention has been paid to basic studies, which offer no therapeutic benefits, and the value of patient-participant perspectives.Methods: Semi-structured interviews were conducted with fourteen individuals across two studies who participated in basic intraoperative research during their deep brain stimulator surgery. Interviews explored interpretations of risks and benefits, enrollment motivations, and experiences of participating in awake brain research. Reflexive thematic analysis was conducted.Results: Seven themes were identified from participant narratives, including robust attitudes of trust, high valuations of basic science research, impacts of the surgical context, and mixed experiences of participation.Conclusion: We argue that these narratives raise the potential for a translational misconception and motivate intraoperative re-consent procedures.
Collapse
Affiliation(s)
- Ally Peabody Smith
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Lauren Taiclet
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Hamasa Ebadi
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, United States
| | - Liliana Levy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Megan Weber
- Anderson School of Management, University of California, Los Angeles, United States
| | - Eugene M. Caruso
- Anderson School of Management, University of California, Los Angeles, United States
| | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ashley Feinsinger
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| |
Collapse
|
21
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
22
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Meisenhelter S, Rutishauser U. Probing the human brain at single-neuron resolution with high-density cortical recordings. Neuron 2022; 110:2353-2355. [PMID: 35926448 DOI: 10.1016/j.neuron.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recording in vivo from large numbers of neurons is a core neuroscience technique not typically possible in humans. In this issue of Neuron, Chung et al. (2022) show high-density acute recordings in human cortex using the Neuropixels probe.
Collapse
Affiliation(s)
- Stephen Meisenhelter
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
24
|
Chung JE, Sellers KK, Leonard MK, Gwilliams L, Xu D, Dougherty ME, Kharazia V, Metzger SL, Welkenhuysen M, Dutta B, Chang EF. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 2022; 110:2409-2421.e3. [PMID: 35679860 DOI: 10.1016/j.neuron.2022.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
The action potential is a fundamental unit of neural computation. Even though significant advances have been made in recording large numbers of individual neurons in animal models, translation of these methodologies to humans has been limited because of clinical constraints and electrode reliability. Here, we present a reliable method for intraoperative recording of dozens of neurons in humans using the Neuropixels probe, yielding up to ∼100 simultaneously recorded single units. Most single units were active within 1 min of reaching target depth. The motion of the electrode array had a strong inverse correlation with yield, identifying a major challenge and opportunity to further increase the probe utility. Cell pairs active close in time were spatially closer in most recordings, demonstrating the power to resolve complex cortical dynamics. Altogether, this approach provides access to population single-unit activity across the depth of human neocortex at scales previously only accessible in animal models.
Collapse
Affiliation(s)
- Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kristin K Sellers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura Gwilliams
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Duo Xu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maximilian E Dougherty
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Viktor Kharazia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sean L Metzger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; University of California Berkeley, University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | | | | | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|