1
|
Pereira Seabra J, Chopurian V, Souza AS, Christophel TB. Verbal Encoding Strategies in Visuo-Spatial Working Memory. J Cogn 2025; 8:2. [PMID: 39803180 PMCID: PMC11720477 DOI: 10.5334/joc.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/01/2024] [Indexed: 01/16/2025] Open
Abstract
Visual working memory and verbal storage are often investigated independently of one another. However, a growing body of evidence suggests that naming visual stimuli can provide an advantage in performance during visual working memory tasks. On the other hand, there is also evidence that labeling could lead to biases in recall. Here, we present an exploratory investigation of verbal labels associated with the memorization of simple visuo-spatial stimuli, and how the use of these labels informs recall behavior of the same stimuli in a separate working memory task. English-speaking participants performed a working memory task with orientation and location stimuli, followed by a separate naming task featuring the same stimuli. We found a diverse set of labels employed frequently and with a consistent distribution across stimulus types, the stimulus space, and among participants. The use of individual spatial words, predicted class 1 cardinal biases in memory (i.e. the observation that cardinal stimuli are more accurately recalled than non-cardinal ones). Conversely, words expressing uncertainty (e.g. 'slightly', 'near') predicted class 2 cardinal bias (i.e. recall biases away from the cardinal planes). This relationship between word use and recall biases is consistent with shared representational resources that are used for both visuo-spatial and verbal working memory.
Collapse
Affiliation(s)
- Joana Pereira Seabra
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, DE
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, DE
| | - Vivien Chopurian
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, DE
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, DE
| | | | - Thomas B. Christophel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, DE
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, DE
| |
Collapse
|
2
|
Woodry R, Curtis CE, Winawer J. Feedback scales the spatial tuning of cortical responses during both visual working memory and long-term memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589111. [PMID: 38659957 PMCID: PMC11042180 DOI: 10.1101/2024.04.11.589111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Perception, working memory, and long-term memory each evoke neural responses in visual cortex. While previous neuroimaging research on the role of visual cortex in memory has largely emphasized similarities between perception and memory, we hypothesized that responses in visual cortex would differ depending on the origins of the inputs. Using fMRI, we quantified spatial tuning in visual cortex while participants (both sexes) viewed, maintained in working memory, or retrieved from long-term memory a peripheral target. In each condition, BOLD responses were spatially tuned and aligned with the target's polar angle in all measured visual field maps including V1. As expected given the increasing sizes of receptive fields, polar angle tuning during perception increased in width up the visual hierarchy from V1 to V2, V3, hV4, and beyond. In stark contrast, the tuned responses were broad across the visual hierarchy during long-term memory (replicating a prior result) and during working memory. This pattern is consistent with the idea that mnemonic responses in V1 stem from top-down sources, even when the stimulus was recently viewed and is held in working memory. Moreover, in long-term memory, trial-to-trial biases in these tuned responses (clockwise or counterclockwise of target), predicted matched biases in memory, suggesting that the reinstated cortical responses influence memory guided behavior. We conclude that feedback widens spatial tuning in visual cortex during memory, where earlier visual maps inherit broader tuning from later maps thereby impacting the precision of memory.
Collapse
Affiliation(s)
- Robert Woodry
- Department of Psychology, New York University, New York City, NY 10003
| | - Clayton E. Curtis
- Department of Psychology, New York University, New York City, NY 10003
- Center for Neural Science, New York University, New York City, NY 10003
| | - Jonathan Winawer
- Department of Psychology, New York University, New York City, NY 10003
- Center for Neural Science, New York University, New York City, NY 10003
| |
Collapse
|
3
|
Fan Y, Wang M, Fang F, Ding N, Luo H. Two-dimensional neural geometry underpins hierarchical organization of sequence in human working memory. Nat Hum Behav 2024:10.1038/s41562-024-02047-8. [PMID: 39511344 DOI: 10.1038/s41562-024-02047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Working memory (WM) is constructive in nature. Instead of passively retaining information, WM reorganizes complex sequences into hierarchically embedded chunks to overcome capacity limits and facilitate flexible behaviour. Here, to investigate the neural mechanisms underlying hierarchical reorganization in WM, we performed two electroencephalography and one magnetoencephalography experiments, wherein humans retain in WM a temporal sequence of items, that is, syllables, which are organized into chunks, that is, multisyllabic words. We demonstrate that the one-dimensional sequence is represented by two-dimensional neural representational geometry in WM arising from left prefrontal and temporoparietal regions, with separate dimensions encoding item position within a chunk and chunk position in the sequence. Critically, this two-dimensional geometry is observed consistently in different experimental settings, even during tasks not encouraging hierarchical reorganization in WM and correlates with WM behaviour. Overall, these findings strongly support that complex sequences are reorganized into factorized multidimensional neural representational geometry in WM, which also speaks to general structure-based organizational principles given WM's involvement in many cognitive functions.
Collapse
Affiliation(s)
- Ying Fan
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Muzhi Wang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.
| |
Collapse
|
4
|
Xu Y. The human posterior parietal cortices orthogonalize the representation of different streams of information concurrently coded in visual working memory. PLoS Biol 2024; 22:e3002915. [PMID: 39570984 PMCID: PMC11620661 DOI: 10.1371/journal.pbio.3002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/05/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
The key to adaptive visual processing lies in the ability to maintain goal-directed visual representation in the face of distraction. In visual working memory (VWM), distraction may come from the coding of distractors or other concurrently retained targets. This fMRI study reveals a common representational geometry that our brain uses to combat both types of distractions in VWM. Specifically, using fMRI pattern decoding, the human posterior parietal cortex is shown to orthogonalize the representations of different streams of information concurrently coded in VWM, whether they are targets and distractors, or different targets concurrently held in VWM. The latter is also seen in the human occipitotemporal cortex. Such a representational geometry provides an elegant and simple solution to enable independent information readout, effectively combating distraction from the different streams of information, while accommodating their concurrent representations. This representational scheme differs from mechanisms that actively suppress or block the encoding of distractors to reduce interference. It is likely a general neural representational principle that supports our ability to represent information beyond VWM in other situations where multiple streams of visual information are tracked and processed simultaneously.
Collapse
Affiliation(s)
- Yaoda Xu
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Yang J, Zhang H, Lim S. Sensory-memory interactions via modular structure explain errors in visual working memory. eLife 2024; 13:RP95160. [PMID: 39388221 PMCID: PMC11466453 DOI: 10.7554/elife.95160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Errors in stimulus estimation reveal how stimulus representation changes during cognitive processes. Repulsive bias and minimum variance observed near cardinal axes are well-known error patterns typically associated with visual orientation perception. Recent experiments suggest that these errors continuously evolve during working memory, posing a challenge that neither static sensory models nor traditional memory models can address. Here, we demonstrate that these evolving errors, maintaining characteristic shapes, require network interaction between two distinct modules. Each module fulfills efficient sensory encoding and memory maintenance, which cannot be achieved simultaneously in a single-module network. The sensory module exhibits heterogeneous tuning with strong inhibitory modulation reflecting natural orientation statistics. While the memory module, operating alone, supports homogeneous representation via continuous attractor dynamics, the fully connected network forms discrete attractors with moderate drift speed and nonuniform diffusion processes. Together, our work underscores the significance of sensory-memory interaction in continuously shaping stimulus representation during working memory.
Collapse
Affiliation(s)
- Jun Yang
- Weiyang College, Tsinghua UniversityBeijingChina
| | - Hanqi Zhang
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep LearningShanghaiChina
- Neural ScienceShanghaiChina
- NYU-ECNU Institute of Brain and Cognitive ScienceShanghaiChina
| | - Sukbin Lim
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep LearningShanghaiChina
- Neural ScienceShanghaiChina
- NYU-ECNU Institute of Brain and Cognitive ScienceShanghaiChina
| |
Collapse
|
6
|
Chunharas C, Wolff MJ, Hettwer MD, Rademaker RL. A gradual transition toward categorical representations along the visual hierarchy during working memory, but not perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541327. [PMID: 37292916 PMCID: PMC10245673 DOI: 10.1101/2023.05.18.541327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to stably maintain visual information over brief delays is central to healthy cognitive functioning, as is the ability to differentiate such internal representations from external inputs. One possible way to achieve both is via multiple concurrent mnemonic representations along the visual hierarchy that differ systematically from the representations of perceptual inputs. To test this possibility, we examine orientation representations along the visual hierarchy during perception and working memory. Human participants directly viewed, or held in mind, oriented grating patterns, and the similarity between fMRI activation patterns for different orientations was calculated throughout retinotopic cortex. During direct viewing of grating stimuli, similarity was relatively evenly distributed amongst all orientations, while during working memory the similarity was higher around oblique orientations. We modeled these differences in representational geometry based on the known distribution of orientation information in the natural world: The "veridical" model uses an efficient coding framework to capture hypothesized representations during visual perception. The "categorical" model assumes that different "psychological distances" between orientations result in orientation categorization relative to cardinal axes. During direct perception, the veridical model explained the data well. During working memory, the categorical model gradually gained explanatory power over the veridical model for increasingly anterior retinotopic regions. Thus, directly viewed images are represented veridically, but once visual information is no longer tethered to the sensory world there is a gradual progression to more categorical mnemonic formats along the visual hierarchy.
Collapse
Affiliation(s)
- Chaipat Chunharas
- Department of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Michael J Wolff
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| | - Meike D Hettwer
- Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Rosanne L Rademaker
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| |
Collapse
|
7
|
Pacheco-Estefan D, Fellner MC, Kunz L, Zhang H, Reinacher P, Roy C, Brandt A, Schulze-Bonhage A, Yang L, Wang S, Liu J, Xue G, Axmacher N. Maintenance and transformation of representational formats during working memory prioritization. Nat Commun 2024; 15:8234. [PMID: 39300141 DOI: 10.1038/s41467-024-52541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Visual working memory depends on both material-specific brain areas in the ventral visual stream (VVS) that support the maintenance of stimulus representations and on regions in the prefrontal cortex (PFC) that control these representations. How executive control prioritizes working memory contents and whether this affects their representational formats remains an open question, however. Here, we analyzed intracranial EEG (iEEG) recordings in epilepsy patients with electrodes in VVS and PFC who performed a multi-item working memory task involving a retro-cue. We employed Representational Similarity Analysis (RSA) with various Deep Neural Network (DNN) architectures to investigate the representational format of prioritized VWM content. While recurrent DNN representations matched PFC representations in the beta band (15-29 Hz) following the retro-cue, they corresponded to VVS representations in a lower frequency range (3-14 Hz) towards the end of the maintenance period. Our findings highlight the distinct coding schemes and representational formats of prioritized content in VVS and PFC.
Collapse
Affiliation(s)
- Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany.
| | - Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Peter Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Charlotte Roy
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Linglin Yang
- Department of Psychiatry, Second Affiliated Hospital, School of medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology, Epilepsy center, Second Affiliated Hospital, School of medicine, Zhejiang University, Hangzhou, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
8
|
Rademaker RL, Serences JT. Manipulating attentional priority creates a trade-off between memory and sensory representations in human visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613302. [PMID: 39345376 PMCID: PMC11429711 DOI: 10.1101/2024.09.16.613302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
People often remember visual information over brief delays while actively engaging with ongoing inputs from the surrounding visual environment. Depending on the situation, one might prioritize mnemonic contents (i.e., remembering details of a past event), or preferentially attend sensory inputs (i.e., minding traffic while crossing a street). Previous fMRI work has shown that early sensory regions can simultaneously represent both mnemonic and passively viewed sensory information. Here we test the limits of such simultaneity by manipulating attention towards sensory distractors during a working memory task performed by human subjects during fMRI scanning. Participants remembered the orientation of a target grating while a distractor grating was shown during the middle portion of the memory delay. Critically, there were several subtle changes in the contrast and the orientation of the distractor, and participants were cued to either ignore the distractor, detect a change in contrast, or detect a change in orientation. Despite sensory stimulation being matched in all three conditions, the fidelity of memory representations in early visual cortex was highest when the distractor was ignored, intermediate when participants attended distractor contrast, and lowest when participants attended the orientation of the distractor during the delay. In contrast, the fidelity of distractor representations was lowest when ignoring the distractor, intermediate when attending distractor-contrast, and highest when attending distractor-orientation. These data suggest a trade-off in early sensory representations when engaging top-down feedback to attend both seen and remembered features and may partially explain memory failures that occur when subjects are distracted by external events.
Collapse
Affiliation(s)
- Rosanne L Rademaker
- Ernst Strüngmann Institute for Neuroscience in cooperation with the Max Planck Society, Frankfurt, Germany
- Department of Psychology, University of California San Diego, La Jolla, California, USA
| | - John T Serences
- Department of Psychology, University of California San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Kandemir G, Olivers C. Comparing Neural Correlates of Memory Encoding and Maintenance for Foveal and Peripheral Stimuli. J Cogn Neurosci 2024; 36:1807-1826. [PMID: 38940724 PMCID: PMC11324249 DOI: 10.1162/jocn_a_02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Visual working memory is believed to rely on top-down attentional mechanisms that sustain active sensory representations in early visual cortex, a mechanism referred to as sensory recruitment. However, both bottom-up sensory input and top-down attentional modulations thereof appear to prioritize the fovea over the periphery, such that initially peripheral percepts may even be assimilated by foveal processes. This raises the question whether and how visual working memory differs for central and peripheral input. To address this, we conducted a delayed orientation recall task in which an orientation was presented either at the center of the screen or at 15° eccentricity to the left or right. Response accuracy, EEG activity, and gaze position were recorded from 30 participants. Accuracy was slightly but significantly higher for foveal versus peripheral memories. Decoding of EEG recordings revealed a clear dissociation between early sensory and later maintenance signals. Although sensory signals were clearly decodable for foveal stimuli, they were not for peripheral input. In contrast, maintenance signals were equally decodable for both foveal and peripheral memories, suggesting comparable top-down components regardless of eccentricity. Moreover, although memory representations were initially spatially specific and reflected in voltage fluctuations, later during the maintenance period, they generalized across locations, as emerged in alpha oscillations, thus revealing a dynamic transformation within memory from separate sensory traces to what we propose are common output-related codes. Furthermore, the combined absence of reliable decoding of sensory signals and robust presence of maintenance decoding indicates that storage activity patterns as measured by EEG reflect signals beyond primary visual cortex. We discuss the implications for the sensory recruitment hypothesis.
Collapse
|
10
|
Bae GY, Chen KW. EEG decoding reveals task-dependent recoding of sensory information in working memory. Neuroimage 2024; 297:120710. [PMID: 38942100 DOI: 10.1016/j.neuroimage.2024.120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Working memory (WM) supports future behavior by retaining perceptual information obtained in the recent past. The present study tested the hypothesis that WM recodes sensory information in a format that better supports behavioral goals. We recorded EEG while participants performed color delayed-estimation tasks where the colorwheel for the response was either randomly rotated or held fixed across trials. Accordingly, observers had to remember the exact colors in the Rotation condition, whereas they could prepare for a response based on the fixed mapping between the colors and their corresponding locations on the colorwheel in the No-Rotation condition. Results showed that the color reports were faster and more precise in the No-Rotation condition even when exactly the same set of colors were tested in both conditions. To investigate how the color information was maintained in the brain, we decoded the color using a multivariate EEG classification method. The decoding was limited to the stimulus encoding period in the Rotation condition, whereas it continued to be significant during the maintenance period in the No-Rotation condition, indicating that the color information was actively maintained in the condition. Follow-up analyses suggested that the prolonged decoding was not merely driven by the covert shift of attention but rather by the recoding of sensory information into an action-oriented response format. Together, these results provide converging evidence that WM flexibly recodes sensory information depending on the specific task context to optimize subsequent behavioral performance.
Collapse
Affiliation(s)
- Gi-Yeul Bae
- Department of Psychology, Arizona State University, Tempe, 950 S. McAllister Ave., Tempe, AZ 85287, United States.
| | - Kuo-Wei Chen
- Department of Psychology, Arizona State University, Tempe, 950 S. McAllister Ave., Tempe, AZ 85287, United States
| |
Collapse
|
11
|
Zhu P, Qiu Y, Shen M, Huang L, Chen H. Boolean map and object reconcile as the unit of visual working memory. Cereb Cortex 2024; 34:bhae306. [PMID: 39077919 DOI: 10.1093/cercor/bhae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The unit of visual working memory is a fundamental issue under debate in the fields of cognitive psychology and neuroscience, with some traditional research suggesting that it is an object, while other recent studies demonstrating that a Boolean map offers a better account. The controversy surrounding the unit of visual working memory often centers on the representation of objects consist of same dimensional features (e.g. bicolor objects). For 2 colors in a bicolor object, some behavioral studies have suggested that they need to be represented by separate units, while some other studies using electrophysiological measures have found that they can be represented within a single unit. This apparent conflict hints that Boolean map and object may reconcile as the unit of visual working memory. Adopting the contralateral delay activity as an electrophysiological marker of visual working memory, experiments 1 and 2 consistently found that the contralateral delay activity amplitude for memorizing bicolor circles at P7/P8 conformed the Boolean map-based storage throughout the whole maintenance, while the contralateral delay activity amplitude at P3/P4 just conformed the object-based storage during the early period. It suggests though Boolean map got stronger supporting evidence than object, they 2 may coexist as the unit of visual working memory.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Yiheng Qiu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Mowei Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Liqiang Huang
- Department of Psychology, The Chinese University of Hong Kong, Sino Building, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Hui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
12
|
Duan Z, Curtis CE. Visual working memories are abstractions of percepts. eLife 2024; 13:RP94191. [PMID: 38819426 PMCID: PMC11147505 DOI: 10.7554/elife.94191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
During perception, decoding the orientation of gratings depends on complex interactions between the orientation of the grating, aperture edges, and topographic structure of the visual map. Here, we aimed to test how aperture biases described during perception affect working memory (WM) decoding. For memoranda, we used gratings multiplied by radial and angular modulators to generate orthogonal aperture biases for identical orientations. Therefore, if WM representations are simply maintained sensory representations, they would have similar aperture biases. If they are abstractions of sensory features, they would be unbiased and the modulator would have no effect on orientation decoding. Neural patterns of delay period activity while maintaining the orientation of gratings with one modulator (e.g. radial) were interchangeable with patterns while maintaining gratings with the other modulator (e.g. angular) in visual and parietal cortex, suggesting that WM representations are insensitive to aperture biases during perception. Then, we visualized memory abstractions of stimuli using models of visual field map properties. Regardless of aperture biases, WM representations of both modulated gratings were recoded into a single oriented line. These results provide strong evidence that visual WM representations are abstractions of percepts, immune to perceptual aperture biases, and compel revisions of WM theory.
Collapse
Affiliation(s)
- Ziyi Duan
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Clayton E Curtis
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
13
|
Riddle J, McPherson T, Sheikh A, Shin H, Hadar E, Frohlich F. Internal Representations Are Prioritized by Frontoparietal Theta Connectivity and Suppressed by alpha Oscillation Dynamics: Evidence from Concurrent Transcranial Magnetic Stimulation EEG and Invasive EEG. J Neurosci 2024; 44:e1381232024. [PMID: 38395616 PMCID: PMC11007311 DOI: 10.1523/jneurosci.1381-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Control over internal representations requires the prioritization of relevant information and suppression of irrelevant information. The frontoparietal network exhibits prominent neural oscillations during these distinct cognitive processes. Yet, the causal role of this network-scale activity is unclear. Here, we targeted theta-frequency frontoparietal coherence and dynamic alpha oscillations in the posterior parietal cortex using online rhythmic transcranial magnetic stimulation (TMS) in women and men while they prioritized or suppressed internally maintained working memory (WM) representations. Using concurrent high-density EEG, we provided evidence that we acutely drove the targeted neural oscillation and TMS improved WM capacity only when the evoked activity corresponded with the desired cognitive process. To suppress an internal representation, we increased the amplitude of lateralized alpha oscillations in the posterior parietal cortex contralateral to the irrelevant visual field. For prioritization, we found that TMS to the prefrontal cortex increased theta-frequency connectivity in the prefrontoparietal network contralateral to the relevant visual field. To understand the spatial specificity of these effects, we administered the WM task to participants with implanted electrodes. We found that theta connectivity during prioritization was directed from the lateral prefrontal to the superior posterior parietal cortex. Together, these findings provide causal evidence in support of a model where a frontoparietal theta network prioritizes internally maintained representations and alpha oscillations in the posterior parietal cortex suppress irrelevant representations.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, Tallahassee, Florida 32304
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Trevor McPherson
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Neurosciences, University of California, San Diego, San Diego, California 92161
| | - Atif Sheikh
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Haewon Shin
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico 87106
| | - Eldad Hadar
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
14
|
Duan Z, Curtis CE. Visual working memories are abstractions of percepts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569634. [PMID: 38076859 PMCID: PMC10705465 DOI: 10.1101/2023.12.01.569634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Pioneering studies demonstrating that the contents of visual working memory (WM) can be decoded from the patterns of multivoxel activity in early visual cortex transformed not only how we study WM, but theories of how memories are stored. For instance, the ability to decode the orientation of memorized gratings is hypothesized to depend on the recruitment of the same neural encoding machinery used for perceiving orientations. However, decoding evidence cannot be used to test the so-called sensory recruitment hypothesis without understanding the underlying nature of what is being decoded. Although unknown during WM, during perception decoding the orientation of gratings does not simply depend on activities of orientation tuned neurons. Rather, it depends on complex interactions between the orientation of the grating, the aperture edges, and the topographic structure of the visual map. Here, our goals are to 1) test how these aperture biases described during perception may affect WM decoding, and 2) leverage carefully manipulated visual stimulus properties of gratings to test how sensory-like are WM codes. For memoranda, we used gratings multiplied by radial and angular modulators to generate orthogonal aperture biases despite having identical orientations. Therefore, if WM representations are simply maintained sensory representations, they would have similar aperture biases. If they are abstractions of sensory features, they would be unbiased and the modulator would have no effect on orientation decoding. Results indicated that fMRI patterns of delay period activity while maintaining the orientation of a grating with one modulator (eg, radial) were interchangeable with patterns while maintaining a grating with the other modulator (eg, angular). We found significant cross-classification in visual and parietal cortex, suggesting that WM representations are insensitive to aperture biases during perception. Then, we visualized memory abstractions of stimuli using a population receptive field model of the visual field maps. Regardless of aperture biases, WM representations of both modulated gratings were recoded into a single oriented line. These results provide strong evidence that visual WM representations are abstractions of percepts, immune to perceptual aperture biases, and compel revisions of WM theory.
Collapse
Affiliation(s)
- Ziyi Duan
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
15
|
Linde-Domingo J, Spitzer B. Geometry of visuospatial working memory information in miniature gaze patterns. Nat Hum Behav 2024; 8:336-348. [PMID: 38110511 PMCID: PMC10896725 DOI: 10.1038/s41562-023-01737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/25/2023] [Indexed: 12/20/2023]
Abstract
Stimulus-dependent eye movements have been recognized as a potential confound in decoding visual working memory information from neural signals. Here we combined eye-tracking with representational geometry analyses to uncover the information in miniature gaze patterns while participants (n = 41) were cued to maintain visual object orientations. Although participants were discouraged from breaking fixation by means of real-time feedback, small gaze shifts (<1°) robustly encoded the to-be-maintained stimulus orientation, with evidence for encoding two sequentially presented orientations at the same time. The orientation encoding on stimulus presentation was object-specific, but it changed to a more object-independent format during cued maintenance, particularly when attention had been temporarily withdrawn from the memorandum. Finally, categorical reporting biases increased after unattended storage, with indications of biased gaze geometries already emerging during the maintenance periods before behavioural reporting. These findings disclose a wealth of information in gaze patterns during visuospatial working memory and indicate systematic changes in representational format when memory contents have been unattended.
Collapse
Affiliation(s)
- Juan Linde-Domingo
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
- Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain.
- Department of Experimental Psychology, University of Granada, Granada, Spain.
| | - Bernhard Spitzer
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
16
|
Xu Y. Parietal-driven visual working memory representation in occipito-temporal cortex. Curr Biol 2023; 33:4516-4523.e5. [PMID: 37741281 PMCID: PMC10615870 DOI: 10.1016/j.cub.2023.08.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023]
Abstract
Human fMRI studies have documented extensively that the content of visual working memory (VWM) can be reliably decoded from fMRI voxel response patterns during the delay period in both the occipito-temporal cortex (OTC), including early visual areas (EVC), and the posterior parietal cortex (PPC).1,2,3,4 Further work has revealed that VWM signal in OTC is largely sustained by feedback from associative areas such as prefrontal cortex (PFC) and PPC.4,5,6,7,8,9 It is unclear, however, if feedback during VWM simply restores sensory representations initially formed in OTC or if it can reshape the representational content of OTC during VWM delay. Taking advantage of a recent finding showing that object representational geometry differs between OTC and PPC in perception,10 here we find that, during VWM delay, the object representational geometry in OTC becomes more aligned with that of PPC during perception than with itself during perception. This finding supports the role of feedback in shaping the content of VWM in OTC, with the VWM content of OTC more determined by information retained in PPC than by the sensory information initially encoded in OTC.
Collapse
Affiliation(s)
- Yaoda Xu
- Department of Psychology, Yale University, 100 College Street, New Haven, CT 06510, USA.
| |
Collapse
|
17
|
Teng C, Kaplan SM, Shomstein S, Kravitz DJ. Assessing the interaction between working memory and perception through time. Atten Percept Psychophys 2023; 85:2196-2209. [PMID: 37740152 DOI: 10.3758/s13414-023-02785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Content maintained in visual working memory changes concurrent visual processing, suggesting that visual working memory may recruit an overlapping neural representation with visual perception. However, it remains unclear whether visual working memory representations persist as a sensory code through time, or are recoded later into an abstract code. Here, we directly contrasted a temporal decay + visual code account and a temporal decay + abstract code account within the temporal dynamics of the interaction between working memory and perception. By manipulating the ISI (inter-stimulus interval) between working memory encoding and a perceptual discrimination task, we found that task-relevant and therefore actively maintained perceptual information parametrically altered participants' ability to discriminate perceptual stimuli even 4 s after encoding, whereas task-irrelevant information caused only an acutely transient effect. While continuously present, the size of this shift in discrimination thresholds gradually decreased over time. Concomitantly, the size of the bias in working memory reports increased over time. The opposing directions of threshold and bias effects are consistent with the local maintenance of information in perceptual areas, explained by a temporal decay + visual code account. As the maintained representation decays over time, its ability to alter incoming perceptual signals decreases (reduced threshold effects) while its likelihood of being impacted by those same signals increases (increased bias effects). Altogether, these results suggest that the readout of working memory relies on a sensory representation at a cost of increased interference by ongoing perception.
Collapse
Affiliation(s)
- Chunyue Teng
- Department of Neuroscience, Lawrence University, Appleton, WI, USA.
| | - Simon M Kaplan
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| | - Sarah Shomstein
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| | - Dwight J Kravitz
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
- Directorate for Social, Behavioral, and Economic Sciences, National Science Foundation, Arlington, VA, USA
| |
Collapse
|
18
|
Block N. Perception is iconic, perceptual working memory is discursive. Behav Brain Sci 2023; 46:e265. [PMID: 37766617 DOI: 10.1017/s0140525x23001899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The evidence that the target article cites for language-of-thought (LoT) structure in perceptual object representations concerns perceptual working memory, not perception. Perception is iconic, not structured like an LoT. Perceptual working memory representations contain the remnants of iconic perceptual representations, often recoded, in a discursive envelope.
Collapse
Affiliation(s)
- Ned Block
- Department of Philosophy, New York University, New York, NY, USA ://www.nedblock.us
| |
Collapse
|
19
|
Li S, Zeng X, Shao Z, Yu Q. Neural Representations in Visual and Parietal Cortex Differentiate between Imagined, Perceived, and Illusory Experiences. J Neurosci 2023; 43:6508-6524. [PMID: 37582626 PMCID: PMC10513072 DOI: 10.1523/jneurosci.0592-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/09/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Humans constantly receive massive amounts of information, both perceived from the external environment and imagined from the internal world. To function properly, the brain needs to correctly identify the origin of information being processed. Recent work has suggested common neural substrates for perception and imagery. However, it has remained unclear how the brain differentiates between external and internal experiences with shared neural codes. Here we tested this question in human participants (male and female) by systematically investigating the neural processes underlying the generation and maintenance of visual information from voluntary imagery, veridical perception, and illusion. The inclusion of illusion allowed us to differentiate between objective and subjective internality: while illusion has an objectively internal origin and can be viewed as involuntary imagery, it is also subjectively perceived as having an external origin like perception. Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, we observed superior orientation representations in parietal cortex during imagery compared with perception, and conversely in early visual cortex. This imagery dominance gradually developed along a posterior-to-anterior cortical hierarchy from early visual to parietal cortex, emerged in the early epoch of imagery and sustained into the delay epoch, and persisted across varied imagined contents. Moreover, representational strength of illusion was more comparable to imagery in early visual cortex, but more comparable to perception in parietal cortex, suggesting content-specific representations in parietal cortex differentiate between subjectively internal and external experiences, as opposed to early visual cortex. These findings together support a domain-general engagement of parietal cortex in internally generated experience.SIGNIFICANCE STATEMENT How does the brain differentiate between imagined and perceived experiences? Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, the current study revealed enhanced stimulus-specific representations in visual imagery originating from parietal cortex, supporting the subjective experience of imagery. This neural principle was further validated by evidence from visual illusion, wherein illusion resembled perception and imagery at different levels of cortical hierarchy. Our findings provide direct evidence for the critical role of parietal cortex as a domain-general region for content-specific imagery, and offer new insights into the neural mechanisms underlying the differentiation between subjectively internal and external experiences.
Collapse
Affiliation(s)
- Siyi Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuemei Zeng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhujun Shao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
20
|
Li HH, Curtis CE. Neural population dynamics of human working memory. Curr Biol 2023; 33:3775-3784.e4. [PMID: 37595590 PMCID: PMC10528783 DOI: 10.1016/j.cub.2023.07.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
The activity of neurons in macaque prefrontal cortex (PFC) persists during working memory (WM) delays, providing a mechanism for memory.1,2,3,4,5,6,7,8,9,10,11 Although theory,11,12 including formal network models,13,14 assumes that WM codes are stable over time, PFC neurons exhibit dynamics inconsistent with these assumptions.15,16,17,18,19 Recently, multivariate reanalyses revealed the coexistence of both stable and dynamic WM codes in macaque PFC.20,21,22,23 Human EEG studies also suggest that WM might contain dynamics.24,25 Nonetheless, how WM dynamics vary across the cortical hierarchy and which factors drive dynamics remain unknown. To elucidate WM dynamics in humans, we decoded WM content from fMRI responses across multiple cortical visual field maps.26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 We found coexisting stable and dynamic neural representations of WM during a memory-guided saccade task. Geometric analyses of neural subspaces revealed that early visual cortex exhibited stronger dynamics than high-level visual and frontoparietal cortex. Leveraging models of population receptive fields, we visualized and made the neural dynamics interpretable. We found that during WM delays, V1 population initially encoded a narrowly tuned bump of activation centered on the peripheral memory target. Remarkably, this bump then spread inward toward foveal locations, forming a vector along the trajectory of the forthcoming memory-guided saccade. In other words, the neural code transformed into an abstraction of the stimulus more proximal to memory-guided behavior. Therefore, theories of WM must consider both sensory features and their task-relevant abstractions because changes in the format of memoranda naturally drive neural dynamics.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
21
|
Chen Y, Liu H, Shi K, Zhang M, Qu H. Spiking neural network with working memory can integrate and rectify spatiotemporal features. Front Neurosci 2023; 17:1167134. [PMID: 37389360 PMCID: PMC10300445 DOI: 10.3389/fnins.2023.1167134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
In the real world, information is often correlated with each other in the time domain. Whether it can effectively make a decision according to the global information is the key indicator of information processing ability. Due to the discrete characteristics of spike trains and unique temporal dynamics, spiking neural networks (SNNs) show great potential in applications in ultra-low-power platforms and various temporal-related real-life tasks. However, the current SNNs can only focus on the information a short time before the current moment, its sensitivity in the time domain is limited. This problem affects the processing ability of SNN in different kinds of data, including static data and time-variant data, and reduces the application scenarios and scalability of SNN. In this work, we analyze the impact of such information loss and then integrate SNN with working memory inspired by recent neuroscience research. Specifically, we propose Spiking Neural Networks with Working Memory (SNNWM) to handle input spike trains segment by segment. On the one hand, this model can effectively increase SNN's ability to obtain global information. On the other hand, it can effectively reduce the information redundancy between adjacent time steps. Then, we provide simple methods to implement the proposed network architecture from the perspectives of biological plausibility and neuromorphic hardware friendly. Finally, we test the proposed method on static and sequential data sets, and the experimental results show that the proposed model can better process the whole spike train, and achieve state-of-the-art results in short time steps. This work investigates the contribution of introducing biologically inspired mechanisms, e.g., working memory, and multiple delayed synapses to SNNs, and provides a new perspective to design future SNNs.
Collapse
|
22
|
Kay K, Bonnen K, Denison RN, Arcaro MJ, Barack DL. Tasks and their role in visual neuroscience. Neuron 2023; 111:1697-1713. [PMID: 37040765 DOI: 10.1016/j.neuron.2023.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/13/2023]
Abstract
Vision is widely used as a model system to gain insights into how sensory inputs are processed and interpreted by the brain. Historically, careful quantification and control of visual stimuli have served as the backbone of visual neuroscience. There has been less emphasis, however, on how an observer's task influences the processing of sensory inputs. Motivated by diverse observations of task-dependent activity in the visual system, we propose a framework for thinking about tasks, their role in sensory processing, and how we might formally incorporate tasks into our models of vision.
Collapse
Affiliation(s)
- Kendrick Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kathryn Bonnen
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Rachel N Denison
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Mike J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - David L Barack
- Departments of Neuroscience and Philosophy, University of Pennsylvania, Philadelphia, PA 19146, USA
| |
Collapse
|
23
|
Chu Q, Ma O, Hang Y, Tian X. Dual-stream cortical pathways mediate sensory prediction. Cereb Cortex 2023:7169133. [PMID: 37197767 DOI: 10.1093/cercor/bhad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Predictions are constantly generated from diverse sources to optimize cognitive functions in the ever-changing environment. However, the neural origin and generation process of top-down induced prediction remain elusive. We hypothesized that motor-based and memory-based predictions are mediated by distinct descending networks from motor and memory systems to the sensory cortices. Using functional magnetic resonance imaging (fMRI) and a dual imagery paradigm, we found that motor and memory upstream systems activated the auditory cortex in a content-specific manner. Moreover, the inferior and posterior parts of the parietal lobe differentially relayed predictive signals in motor-to-sensory and memory-to-sensory networks. Dynamic causal modeling of directed connectivity revealed selective enabling and modulation of connections that mediate top-down sensory prediction and ground the distinctive neurocognitive basis of predictive processing.
Collapse
Affiliation(s)
- Qian Chu
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, Division of Arts and Sciences, New York University Shanghai, Shanghai 200126, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON M5S 2E4, Canada
| | - Ou Ma
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yuqi Hang
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Department of Administration, Leadership, and Technology, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY 10003, United States
| | - Xing Tian
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, Division of Arts and Sciences, New York University Shanghai, Shanghai 200126, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
24
|
Palenciano AF, Senoussi M, Formica S, González-García C. Canonical template tracking: Measuring the activation state of specific neural representations. FRONTIERS IN NEUROIMAGING 2023; 1:974927. [PMID: 37555182 PMCID: PMC10406196 DOI: 10.3389/fnimg.2022.974927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/13/2022] [Indexed: 08/10/2023]
Abstract
Multivariate analyses of neural data have become increasingly influential in cognitive neuroscience since they allow to address questions about the representational signatures of neurocognitive phenomena. Here, we describe Canonical Template Tracking: a multivariate approach that employs independent localizer tasks to assess the activation state of specific representations during the execution of cognitive paradigms. We illustrate the benefits of this methodology in characterizing the particular content and format of task-induced representations, comparing it with standard (cross-)decoding and representational similarity analyses. Then, we discuss relevant design decisions for experiments using this analysis approach, focusing on the nature of the localizer tasks from which the canonical templates are derived. We further provide a step-by-step tutorial of this method, stressing the relevant analysis choices for functional magnetic resonance imaging and magneto/electroencephalography data. Importantly, we point out the potential pitfalls linked to canonical template tracking implementation and interpretation of the results, together with recommendations to mitigate them. To conclude, we provide some examples from previous literature that highlight the potential of this analysis to address relevant theoretical questions in cognitive neuroscience.
Collapse
Affiliation(s)
- Ana F. Palenciano
- Mind, Brain, and Behavior Research Center, University of Granada, Granada, Spain
| | - Mehdi Senoussi
- CLLE Lab, CNRS UMR 5263, University of Toulouse, Toulouse, France
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Silvia Formica
- Department of Psychology, Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
25
|
Pascucci D, Tanrikulu ÖD, Ozkirli A, Houborg C, Ceylan G, Zerr P, Rafiei M, Kristjánsson Á. Serial dependence in visual perception: A review. J Vis 2023; 23:9. [PMID: 36648418 PMCID: PMC9871508 DOI: 10.1167/jov.23.1.9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
How does the visual system represent continuity in the constantly changing visual input? A recent proposal is that vision is serially dependent: Stimuli seen a moment ago influence what we perceive in the present. In line with this, recent frameworks suggest that the visual system anticipates whether an object seen at one moment is the same as the one seen a moment ago, binding visual representations across consecutive perceptual episodes. A growing body of work supports this view, revealing signatures of serial dependence in many diverse visual tasks. Yet, the variety of disparate findings and interpretations calls for a more general picture. Here, we survey the main paradigms and results over the past decade. We also focus on the challenge of finding a relationship between serial dependence and the concept of "object identity," taking centuries-long history of research into account. Among the seemingly contrasting findings on serial dependence, we highlight common patterns that may elucidate the nature of this phenomenon and attempt to identify questions that are unanswered.
Collapse
Affiliation(s)
- David Pascucci
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ömer Daglar Tanrikulu
- Department of Psychology, University of New Hampshire, Durham, NH, USA
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ayberk Ozkirli
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Houborg
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gizay Ceylan
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paul Zerr
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Mohsen Rafiei
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Árni Kristjánsson
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
26
|
Adam KCS, Rademaker RL, Serences JT. Dynamics Are the Only Constant in Working Memory. J Cogn Neurosci 2023; 35:24-26. [PMID: 36322835 PMCID: PMC9722602 DOI: 10.1162/jocn_a_01941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In this short perspective, we reflect upon our tendency to use oversimplified and idiosyncratic tasks in a quest to discover general mechanisms of working memory. We discuss how the work of Mark Stokes and collaborators has looked beyond localized, temporally persistent neural activity and shifted focus toward the importance of distributed, dynamic neural codes for working memory. A critical lesson from this work is that using simplified tasks does not automatically simplify the neural computations supporting behavior (even if we wish it were so). Moreover, Stokes' insights about multidimensional dynamics highlight the flexibility of the neural codes underlying cognition and have pushed the field to look beyond static measures of working memory.
Collapse
Affiliation(s)
| | - Rosanne L. Rademaker
- Ernst Strüngmann Institute for Neuroscience in cooperation with the Max Planck Society, Frankfurt, Germany
| | | |
Collapse
|
27
|
Preparatory attention to visual features primarily relies on non-sensory representation. Sci Rep 2022; 12:21726. [PMID: 36526653 PMCID: PMC9758135 DOI: 10.1038/s41598-022-26104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Prior knowledge of behaviorally relevant information promotes preparatory attention before the appearance of stimuli. A key question is how our brain represents the attended information during preparation. A sensory template hypothesis assumes that preparatory signals evoke neural activity patterns that resembled the perception of the attended stimuli, whereas a non-sensory, abstract template hypothesis assumes that preparatory signals reflect the abstraction of attended stimuli. To test these hypotheses, we used fMRI and multivariate analysis to characterize neural activity patterns when human participants were prepared to attend a feature and then select it from a compound stimulus. In an fMRI experiment using basic visual feature (motion direction), we observed reliable decoding of the to-be-attended feature from the preparatory activity in both visual and frontoparietal areas. However, while the neural patterns constructed by a single feature from a baseline task generalized to the activity patterns during stimulus selection, they could not generalize to the activity patterns during preparation. Our findings thus suggest that neural signals during attentional preparation are predominantly non-sensory in nature that may reflect an abstraction of the attended feature. Such a representation could provide efficient and stable guidance of attention.
Collapse
|
28
|
Himmelberg MM, Gardner JL, Winawer J. What has vision science taught us about functional MRI? Neuroimage 2022; 261:119536. [PMID: 35931310 PMCID: PMC9756767 DOI: 10.1016/j.neuroimage.2022.119536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022] Open
Abstract
In the domain of human neuroimaging, much attention has been paid to the question of whether and how the development of functional magnetic resonance imaging (fMRI) has advanced our scientific knowledge of the human brain. However, the opposite question is also important; how has our knowledge of the brain advanced our understanding of fMRI? Here, we discuss how and why scientific knowledge about the human and animal visual system has been used to answer fundamental questions about fMRI as a brain measurement tool and how these answers have contributed to scientific discoveries beyond vision science.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA.
| | | | - Jonathan Winawer
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA
| |
Collapse
|
29
|
Abstract
Despite the fundamental importance of visual motion processing, our understanding of how the brain represents basic aspects of motion is incomplete. While it is generally believed that direction is the main representational feature of motion, motion processing is also influenced by nondirectional orientation signals that are present in most motion stimuli. Here, we aimed to test whether this nondirectional motion axis contributes motion perception even when orientation is completely absent from the stimulus. Using stimuli with and without orientation signals, we found that serial dependence in a simple motion direction estimation task was predominantly determined by the orientation of the previous motion stimulus. Moreover, the observed attraction profiles closely matched the characteristic pattern of serial attraction found in orientation perception. Evidently, the sequential integration of motion signals strongly depends on the orientation of motion, indicating a fundamental role of nondirectional orientation in the coding of visual motion direction.
Collapse
|
30
|
Zhou Y, Curtis CE, Sreenivasan KK, Fougnie D. Common Neural Mechanisms Control Attention and Working Memory. J Neurosci 2022; 42:7110-7120. [PMID: 35927036 PMCID: PMC9480871 DOI: 10.1523/jneurosci.0443-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Although previous studies point to qualitative similarities between working memory (WM) and attention, the degree to which these two constructs rely on shared neural mechanisms remains unknown. Focusing on one such potentially shared mechanism, we tested the hypothesis that selecting an item within WM utilizes similar neural mechanisms as selecting a visible item via a shift of attention. We used fMRI and machine learning to decode both the selection among items visually available and the selection among items stored in WM in human subjects (both sexes). Patterns of activity in visual, parietal, and to a lesser extent frontal cortex predicted the locations of the selected items. Critically, these patterns were strikingly interchangeable; classifiers trained on data during attentional selection predicted selection from WM, and classifiers trained on data during selection from memory predicted attentional selection. Using models of voxel receptive fields, we visualized topographic population activity that revealed gain enhancements at the locations of the externally and internally selected items. Our results suggest that selecting among perceived items and selecting among items in WM share a common mechanism. This common mechanism, analogous to a shift of spatial attention, controls the relative gains of neural populations that encode behaviorally relevant information.SIGNIFICANCE STATEMENT How we allocate our attention to external stimuli that we see and to internal representations of stimuli stored in memory might rely on a common mechanism. Supporting this hypothesis, we demonstrated that not only could patterns of human brain activity predict which items were selected during perception and memory, but that these patterns were interchangeable during external and internal selection. Additionally, this generalized selection mechanism operates by changes in the gains of the neural populations both encoding attended sensory representations and storing relevant memory representations.
Collapse
Affiliation(s)
- Ying Zhou
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
- Department of Psychology, New York University, New York, New York 10003
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
| | - Kartik K Sreenivasan
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
- Department of Psychology, New York University, New York, New York 10003
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
| | - Daryl Fougnie
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
- Department of Psychology, New York University, New York, New York 10003
| |
Collapse
|
31
|
Ivanchei II, Servetnik M. Metacognitive awareness is needed for analogical transfer between dissimilar tasks. JOURNAL OF COGNITIVE PSYCHOLOGY 2022. [DOI: 10.1080/20445911.2022.2115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ivan I. Ivanchei
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Cognitive Research Lab, Russian Academy of National Economy and Public Administration, Moscow, Russia
| | - Maria Servetnik
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Printzlau FAB, Myers NE, Manohar SG, Stokes MG. Neural Reinstatement Tracks Spread of Attention between Object Features in Working Memory. J Cogn Neurosci 2022; 34:1681-1701. [PMID: 35704549 DOI: 10.1162/jocn_a_01879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Attention can be allocated in working memory (WM) to select and privilege relevant content. It is unclear whether attention selects individual features or whole objects in WM. Here, we used behavioral measures, eye-tracking, and EEG to test the hypothesis that attention spreads between an object's features in WM. Twenty-six participants completed a WM task that asked them to recall the angle of one of two oriented, colored bars after a delay while EEG and eye-tracking data were collected. During the delay, an orthogonal "incidental task" cued the color of one item for a match/mismatch judgment. On congruent trials (50%), the cued item was probed for subsequent orientation recall; on incongruent trials (50%), the other memory item was probed. As predicted, selecting the color of an object in WM brought other features of the cued object into an attended state as revealed by EEG decoding, oscillatory α-power, gaze bias, and improved orientation recall performance. Together, the results show that attentional selection spreads between an object's features in WM, consistent with object-based attentional selection. Analyses of neural processing at recall revealed that the selected object was automatically compared with the probe, whether it was the target for recall or not. This provides a potential mechanism for the observed benefits of nonpredictive cueing in WM, where a selected item is prioritized for subsequent decision-making.
Collapse
|
33
|
Flexible recoding of visual input for memory storage. Neuron 2022; 110:1747-1749. [PMID: 35654021 DOI: 10.1016/j.neuron.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Working memory enables us to maintain relevant past information for future behavior. In this issue of Neuron, Kwak and Curtis (2022) demonstrate that early visual areas do not simply maintain but flexibly recode sensory percepts into mnemonic codes containing goal-relevant information.
Collapse
|