1
|
Vargas-Ortiz J, Lin L, Martinez VK, Liu RJ, Babij R, Duan ZRS, Wacks S, Sun L, Wang A, Khan S, Soto-Vargas JL, De Marco García NV, Che A. Translaminar synchronous neuronal activity is required for columnar synaptic strengthening in the mouse neocortex. Nat Commun 2025; 16:1296. [PMID: 39900899 DOI: 10.1038/s41467-024-55783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Synchronous neuronal activity is a hallmark of the developing mouse primary somatosensory cortex. While the patterns of synchronous neuronal activity in cortical layer 2/3 have been well described, the source of the robust layer 2/3 activity is still unknown. Using a novel microprism preparation and in vivo 2-photon imaging in neonatal mice, we show that synchronous neuronal activity is organized in barrel columns across layers. Monosynaptic rabies tracing and slice electrophysiology experiments reveal that layer 2/3 pyramidal neurons receive significant layer 5 inputs during the first postnatal week, and silencing layer 5 synaptic outputs results in a significant reduction in spontaneous activity, abnormal sensory-evoked activity and disrupted layer 4-layer 2/3 connectivity. Our results demonstrate that translaminar layer 5-layer 2/3 connectivity plays an important role in synchronizing the developing barrel column to ensure the strengthening of layer 4-layer 2/3 connections, supporting the formation of the canonical cortical organization in barrel cortex.
Collapse
Affiliation(s)
- John Vargas-Ortiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lin Lin
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Vena K Martinez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rong-Jian Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rachel Babij
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Zhe Ran S Duan
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Liyuan Sun
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Amanda Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sajida Khan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Alicia Che
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Niemeyer JE, Luo P, Pons C, Wu S, Ma H, Liou JY, Surinach D, Kodandaramaiah SB, Schwartz TH. Seizure network characterization by functional connectivity mapping and manipulation. NEUROPHOTONICS 2025; 12:S14605. [PMID: 39822587 PMCID: PMC11737237 DOI: 10.1117/1.nph.12.s1.s14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Significance Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks. Aim We aimed to develop an experimental paradigm that uses anatomical network information, functional connectivity, and in vivo seizure models to determine how brain networks, and their manipulation, affect seizure propagation. Approach Guided by a known anatomical network, we applied widefield calcium imaging to determine how neural activity and seizures spread through the network regions, focusing on the primary somatosensory cortex and secondary motor cortex. We used in vivo microstimulation to induce suprathreshold excitatory activation and compared this reproducible stimulus with acute pharmacologically induced spontaneous seizure propagation. In a proof-of-concept experiment, we ablated a single node within this bilateral network and measured the effect on propagation and recruitment. Similar preliminary experiments were repeated in a chronic seizure model. Results The microstimulation of the somatosensory cortex propagated in a distinct pattern throughout the bilateral network with sequential reproducible node recruitment. Seizures recapitulated this same pattern, indicating a hijacking of existing pathways. Ablation of a key node in the network in the secondary motor cortex changed contralateral spread. Early chronic cobalt seizure data are presented. Conclusion Here, we demonstrate a paradigm for combining widefield calcium imaging with microstimulation, cortical ablation, and seizure mapping to determine how anatomical networks inform the propagation patterns of cortical seizures. These experiments can be extended to long-term tracking of epilepsy to study epileptogenesis in other cortical networks. Our proof-of-concept findings suggest that this paradigm may be useful in the development of novel therapies for drug-resistant epilepsy patients and can be extended to the study of other disorders involving brain networks.
Collapse
Affiliation(s)
- James E. Niemeyer
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| | - Peijuan Luo
- The First Hospital of Jilin University, Department of Neurology, Changchun, China
| | - Carmen Pons
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
- University of Chicago Medicine, Department of Neurosurgery, Chicago, Illinois, United States
| | - Shiqiang Wu
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
- Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, China
| | - Hongtao Ma
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| | - Jyun-you Liou
- Weill Cornell Medicine, Department of Anesthesiology, New York, United States
| | - Daniel Surinach
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota, United States
| | - Suhasa B. Kodandaramaiah
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota, United States
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota, United States
| | - Theodore H. Schwartz
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| |
Collapse
|
3
|
Murakami T. Spatial dynamics of spontaneous activity in the developing and adult cortices. Neurosci Res 2024:S0168-0102(24)00152-4. [PMID: 39653148 DOI: 10.1016/j.neures.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Even in the absence of external stimuli, the brain remains remarkably active, with neurons continuously firing and communicating with each other. It is not merely random firing of individual neurons but rather orchestrated patterns of activity that propagate throughout the intricate network. Over two decades, advancements in neuroscience observation tools for hemodynamics, membrane potential, and neural calcium signals, have allowed researchers to analyze the dynamics of spontaneous activity across different spatial scales, from individual neurons to macroscale brain networks. One of the remarkable findings from these studies is that the spatial patterns of spontaneous activity in the developing brain are vastly different from those in the mature adult brain. Spatial patterns of spontaneous activity during development are essential for connection refinement between brain regions, whereas the functional role in the adult brain is still controversial. In this paper, I review the differences in spatial dynamics of spontaneous activity between developing and adult cortices. Then, I delve into the cellular mechanisms underlying spontaneous activity, especially its generation and propagation manner, to contribute to a deeper understanding of brain function and its development.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Zhu Y, Gu L, Wang J, Han J, Gou J, Wu Z. DNA methylation profiling of CpG islands in trigeminal ganglion of rats with orofacial pain induced by experimental tooth movement. BMC Oral Health 2024; 24:1474. [PMID: 39633318 PMCID: PMC11619421 DOI: 10.1186/s12903-024-05269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Tooth movement induced orofacial pain is the most cited negative effect during orthodontic treatment, while treatment options without side effects are limited. The differential expression of pain-related genes due to DNA methylation and demethylation is instrumental in pain. The purpose of the study was to evaluate the DNA methylation profiling of CpG islands (CGI) and CGI shores in promoter regions in trigeminal ganglions (TG) of tooth movement induced orofacial pain rats, thus to further insight the DNA methylation regulation in orofacial pain. MATERIALS AND METHODS An orofacial pain rat model was constructed by ligating coil springs between the incisor and first maxillary molar with 40 g of force. The Rat Grimace Score (RGS) was used for pain evaluation. The genome methylation status was analyzed by the reduced representation bisulfite sequencing (RRBS) technique. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted in the differentially methylated regions (DMRs). Moreover, a protein-protein interaction (PPI) network was established to detect annotated genes associated with pain. RESULTS RGS was significantly higher in orofacial pain rats than in sham rats. RRBS showed widespread methylation changes in CGI and CGI shores in TG promoter regions. Both 902 hypermethylated DMRs and 862 hypomethylated DMRs were found in the CGIs of promoter regions. KEGG analysis revealed that annotated genes are participated in endocrine, nervous, immune, and sensory systems. Moreover, the "Calcium signaling pathway", "Wnt signaling pathway" and "Neuroactive ligand-receptor interaction" were significantly enriched pathways. Furthermore, PPI network showed several genes (Ctnnb1, Dlg4, Creb1, Camk2g, Bmp2, etc.) with different methylation statuses were reported to be associated with pain. CONCLUSIONS This study demonstrated methylation changes were existed in CGI and CGI shores in TG promoter regions when pain occurs, thus providing a basis for further study on the mechanism of DNA methylation in orofacial pain.
Collapse
Affiliation(s)
- Yafen Zhu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Liqun Gu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jian Wang
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jie Han
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Junzhuo Gou
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhifang Wu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
5
|
Zhong Z, Wang Z, Xie X, Pan D, Su Z, Fan J, Xiao Q, Sun R. Insights into Adaption and Growth Evolution: Genome-Wide Copy Number Variation Analysis in Chinese Hainan Yellow Cattle Using Whole-Genome Re-Sequencing Data. Int J Mol Sci 2024; 25:11919. [PMID: 39595990 PMCID: PMC11594005 DOI: 10.3390/ijms252211919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Copy number variation (CNV) serves as a crucial source of genomic variation and significantly aids in the mining of genomic information in cattle. This study aims to analyze re-sequencing data from Chinese Hainan yellow cattle, to uncover breed CNV information, and to elucidate the resources of population genetic variation. We conducted whole-genome sequencing on 30 Chinese Hainan yellow cattle, thus generating 814.50 Gb of raw data. CNVs were called using CNVnator software, and subsequent filtering with Plink and HandyCNV yielded 197,434 high-quality CNVs and 5852 CNV regions (CNVRs). Notably, the proportion of deleted sequences (81.98%) exceeded that of duplicated sequences (18.02%), with the lengths of CNVs predominantly ranging between 20 and 500 Kb This distribution demonstrated a decrease in CNVR count with increasing fragment length. Furthermore, an analysis of the population genetic structure using CNVR databases from Chinese, Indian, and European commercial cattle breeds revealed differences between Chinese Bos indicus and Indian Bos indicus. Significant differences were also observed between Hainan yellow cattle and European commercial breeds. We conducted gene annotation for both Hainan yellow cattle and European commercial cattle, as well as for Chinese Bos indicus and Indian Bos indicus, identifying 206 genes that are expressed in both Chinese and Indian Bos indicus. These findings may provide valuable references for future research on Bos indicus. Additionally, selection signatures analysis based on Hainan yellow cattle and three European commercial cattle breeds identified putative pathways related to heat tolerance, disease resistance, fat metabolism, environmental adaptation, candidate genes associated with reproduction and the development of sperm and oocytes (CABS1, DLD, FSHR, HSD17B2, KDM2A), environmental adaptation (CNGB3, FAM161A, DIAPH3, EYA4, AAK1, ERBB4, ERC2), oxidative stress anti-inflammatory response (COMMD1, OXR1), disease resistance (CNTN5, HRH4, NAALADL2), and meat quality (EHHADH, RHOD, GFPT1, SULT1B1). This study provides a comprehensive exploration of CNVs at the molecular level in Chinese Hainan yellow cattle, offering theoretical support for future breeding and selection programs aimed at enhancing qualities of this breed.
Collapse
Affiliation(s)
- Ziqi Zhong
- Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research, Haikou 571100, China;
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.); (X.X.); (D.P.); (Z.S.); (J.F.)
| | - Ziyi Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.); (X.X.); (D.P.); (Z.S.); (J.F.)
| | - Xinfeng Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.); (X.X.); (D.P.); (Z.S.); (J.F.)
| | - Deyou Pan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.); (X.X.); (D.P.); (Z.S.); (J.F.)
| | - Zhiqing Su
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.); (X.X.); (D.P.); (Z.S.); (J.F.)
| | - Jinwei Fan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.); (X.X.); (D.P.); (Z.S.); (J.F.)
| | - Qian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.); (X.X.); (D.P.); (Z.S.); (J.F.)
| | - Ruiping Sun
- Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research, Haikou 571100, China;
| |
Collapse
|
6
|
Fang W, Chen X, He J. Cholecystokinin-expressing interneurons mediated inhibitory transmission and plasticity in basolateral amygdala modulate stress-induced anxiety-like behaviors in mice. Neurobiol Stress 2024; 33:100680. [PMID: 39502835 PMCID: PMC11536064 DOI: 10.1016/j.ynstr.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
The basolateral amygdala (BLA) hyperactivity has been implicated in the pathophysiology of anxiety disorders. We recently found that enhancing inhibitory transmission in BLA by chemo-genetic activation of local interneurons (INs) can reduce stress-induced anxiety-like behaviors in mice. Cholecystokinin interneurons (CCK-INs) are a major part of INs in BLA. It remains unknown whether CCK-INs modulated inhibition in BLA can mediate anxiety. In the present study, we found that BLA CCK-INs project extensively to most local excitatory neurons. Activating these CCK-INs using chemo-genetics and optogenetics can both effectively suppress electrical-induced neuronal activity within the BLA. Additionally, we observed that direct and sustained activation of CCK-INs within the BLA via chemo-genetics can mitigate stress-induced anxiety-like behaviors in mice and reduce stress-induced hyperactivity within the BLA itself. Furthermore, augmenting inhibitory plasticity within the BLA through a brief, 10-min high-frequency laser stimulation (HFLS) of CCK-INs also reduce stress-induced anxiety-like behaviors in mice. Collectively, these findings underscore the pivotal role of BLA CCK-IN-mediated inhibitory transmission and plasticity in modulating anxiety.
Collapse
Affiliation(s)
- Wei Fang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Javier-Torrent M, Bonafina A, Nguyen L. Early neuronal inhibition sculpts adult cortical interhemispheric connectivity. Trends Neurosci 2024; 47:667-668. [PMID: 39142912 DOI: 10.1016/j.tins.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
The maturation of cerebral cortical networks during early life involves a major reorganization of long-range axonal connections. In a recent study, Bragg-Gonzalo, Aguilera, et al. discovered that in mice, the interhemispheric connections sent by S1L4 callosal projection neurons are pruned via the tight control of their ipsilateral synaptic integration, which relies on the early activity of specific interneurons.
Collapse
Affiliation(s)
- Míriam Javier-Torrent
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Antonela Bonafina
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium; WELBIO department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
8
|
Falcão M, Monteiro P, Jacinto L. Tactile sensory processing deficits in genetic mouse models of autism spectrum disorder. J Neurochem 2024; 168:2105-2123. [PMID: 38837765 DOI: 10.1111/jnc.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although altered responses to tactile stimuli are observed in over 60% of individuals with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD has a strong genetic component and genetic mouse models can provide valuable insights into the mechanisms underlying tactile abnormalities in ASD. This review critically addresses recent findings regarding tactile processing deficits found in mouse models of ASD, with a focus on behavioral, anatomical, and functional alterations. Particular attention was given to cellular and circuit-level functional alterations, both in the peripheral and central nervous systems, with the objective of highlighting possible convergence mechanisms across models. By elucidating the impact of mutations in ASD candidate genes on somatosensory circuits and correlating them with behavioral phenotypes, this review significantly advances our understanding of tactile deficits in ASD. Such insights not only broaden our comprehension but also pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Margarida Falcão
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Luis Jacinto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
9
|
Iannone AF, Akgül G, Zhang R, Wacks S, Hussein N, Macias CG, Donatelle A, Bauriedel JMJ, Wright C, Abramov D, Johnson MA, Govek EE, Burré J, Milner TA, De Marco García NV. The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex. Cell Rep 2024; 43:114531. [PMID: 39058591 PMCID: PMC11373301 DOI: 10.1016/j.celrep.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Gülcan Akgül
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robin Zhang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nisma Hussein
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carmen Ginelly Macias
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia M J Bauriedel
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cora Wright
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA; Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
10
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
De Marco García NV, Fishell G. Interneuron Diversity: How Form Becomes Function. Cold Spring Harb Perspect Biol 2024:a041513. [PMID: 39038846 PMCID: PMC11751130 DOI: 10.1101/cshperspect.a041513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A persistent question in neuroscience is how early neuronal subtype identity is established during the development of neuronal circuits. Despite significant progress in the transcriptomic characterization of cortical interneurons, the mechanisms that control the acquisition of such identities as well as how they relate to function are not clearly understood. Accumulating evidence indicates that interneuron identity is achieved through the interplay of intrinsic genetic and activity-dependent programs. In this work, we focus on how progressive interactions between interneurons and pyramidal cells endow maturing interneurons with transient identities fundamental for their function during circuit assembly and how the elimination of transient connectivity triggers the consolidation of adult subtypes.
Collapse
Affiliation(s)
- Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
12
|
Kourdougli N, Nomura T, Wu MW, Heuvelmans A, Dobler Z, Contractor A, Portera-Cailliau C. The NKCC1 Inhibitor Bumetanide Restores Cortical Feedforward Inhibition and Lessens Sensory Hypersensitivity in Early Postnatal Fragile X Mice. Biol Psychiatry 2024:S0006-3223(24)01427-6. [PMID: 38950809 DOI: 10.1016/j.biopsych.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Exaggerated responses to sensory stimuli, a hallmark of fragile X syndrome, contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of fragile X syndrome. Recent studies in Fmr1 KO mice have demonstrated differences in the activity of cortical interneurons and a delayed switch in the polarity of GABA (gamma-aminobutyric acid) signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide could rescue synaptic circuit phenotypes in the primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS We demonstrated that layer 2/3 pyramidal neurons in the S1 of Fmr1 KO mice showed a higher frequency of synchronous events on postnatal day 6 than wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (postnatal days 5-14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of layer 2/3 neurons in the S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the Food and Drug Administration-approved diuretic bumetanide.
Collapse
Affiliation(s)
- Nazim Kourdougli
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
| | - Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michelle W Wu
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California; UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, California
| | - Anouk Heuvelmans
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
| | - Zoë Dobler
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Carlos Portera-Cailliau
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
13
|
Bragg-Gonzalo L, Aguilera A, González-Arias C, De León Reyes NS, Sánchez-Cruz A, Carballeira P, Leroy F, Perea G, Nieto M. Early cortical GABAergic interneurons determine the projection patterns of L4 excitatory neurons. SCIENCE ADVANCES 2024; 10:eadj9911. [PMID: 38728406 PMCID: PMC11086621 DOI: 10.1126/sciadv.adj9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.
Collapse
Affiliation(s)
- Lorena Bragg-Gonzalo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alfonso Aguilera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Candela González-Arias
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Noelia S. De León Reyes
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Alonso Sánchez-Cruz
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Paula Carballeira
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Félix Leroy
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Gertrudis Perea
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
14
|
Mihalj D, Borbelyova V, Pirnik Z, Bacova Z, Ostatnikova D, Bakos J. Shank3 Deficiency Results in a Reduction in GABAergic Postsynaptic Puncta in the Olfactory Brain Areas. Neurochem Res 2024; 49:1008-1016. [PMID: 38183586 PMCID: PMC10902016 DOI: 10.1007/s11064-023-04097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Dysfunctional sensory systems, including altered olfactory function, have recently been reported in patients with autism spectrum disorder (ASD). Disturbances in olfactory processing can potentially result from gamma-aminobutyric acid (GABA)ergic synaptic abnormalities. The specific molecular mechanism by which GABAergic transmission affects the olfactory system in ASD remains unclear. Therefore, the present study aimed to evaluate selected components of the GABAergic system in olfactory brain regions and primary olfactory neurons isolated from Shank3-deficient (-/-) mice, which are known for their autism-like behavioral phenotype. Shank3 deficiency led to a significant reduction in GEPHYRIN/GABAAR colocalization in the piriform cortex and in primary neurons isolated from the olfactory bulb, while no change of cell morphology was observed. Gene expression analysis revealed a significant reduction in the mRNA levels of GABA transporter 1 in the olfactory bulb and Collybistin in the frontal cortex of the Shank3-/- mice compared to WT mice. A similar trend of reduction was observed in the expression of Somatostatin in the frontal cortex of Shank3-/- mice. The analysis of the expression of other GABAergic neurotransmission markers did not yield statistically significant results. Overall, it appears that Shank3 deficiency leads to changes in GABAergic synapses in the brain regions that are important for olfactory information processing, which may represent basis for understanding functional impairments in autism.
Collapse
Affiliation(s)
- Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Borbelyova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zdeno Pirnik
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
15
|
Havranek T, Bacova Z, Bakos J. Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 2024; 58:105-114. [PMID: 38656256 DOI: 10.2478/enr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.
Collapse
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
16
|
Lynton Z, Suárez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles. Front Neuroanat 2023; 17:1296779. [PMID: 38020213 PMCID: PMC10657877 DOI: 10.3389/fnana.2023.1296779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The corpus callosum is the largest axonal tract in the human brain, connecting the left and right cortical hemipheres. This structure is affected in myriad human neurodevelopmental disorders, and can be entirely absent as a result of congenital or surgical causes. The age when callosal loss occurs, for example via surgical section in cases of refractory epilepsy, correlates with resulting brain morphology and neuropsychological outcomes, whereby an earlier loss generally produces relatively improved interhemispheric connectivity compared to a loss in adulthood (known as the "Sperry's paradox"). However, the mechanisms behind these age-dependent differences remain unclear. Perhaps the best documented and most striking of the plastic changes that occur due to developmental, but not adult, callosal loss is the formation of large, bilateral, longitudinal ectopic tracts termed Probst bundles. Despite over 100 years of research into these ectopic tracts, which are the largest and best described stereotypical ectopic brain tracts in humans, much remains unclear about them. Here, we review the anatomy of the Probst bundles, along with evidence for their faciliatory or detrimental function, the required conditions for their formation, patterns of etiology, and mechanisms of development. We provide hypotheses for many of the remaining mysteries of the Probst bundles, including their possible relationship to preserved interhemispheric communication following corpus callosum absence. Future research into naturally occurring plastic tracts such as Probst bundles will help to inform the general rules governing axon plasticity and disorders of brain miswiring.
Collapse
Affiliation(s)
- Zorana Lynton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rodrigo Suárez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
17
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. Commun Biol 2023; 6:738. [PMID: 37460780 PMCID: PMC10352318 DOI: 10.1038/s42003-023-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drive vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes.
Collapse
Affiliation(s)
- Kyle W Gheres
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hayreddin S Ünsal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Xu Han
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA.
- Departments of Neurosurgery and Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Stoufflet J, Tielens S, Nguyen L. Shaping the cerebral cortex by cellular crosstalk. Cell 2023; 186:2733-2747. [PMID: 37352835 DOI: 10.1016/j.cell.2023.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.
Collapse
Affiliation(s)
- Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Sylvia Tielens
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium.
| |
Collapse
|
19
|
Lewis S. Two-way communication. Nat Rev Neurosci 2023; 24:59. [PMID: 36536077 DOI: 10.1038/s41583-022-00667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|