1
|
Gava GP, Lefèvre L, Broadbelt T, McHugh SB, Lopes-Dos-Santos V, Brizee D, Hartwich K, Sjoberg H, Perestenko PV, Toth R, Sharott A, Dupret D. Organizing the coactivity structure of the hippocampus from robust to flexible memory. Science 2024; 385:1120-1127. [PMID: 39236189 PMCID: PMC7616439 DOI: 10.1126/science.adk9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
New memories are integrated into prior knowledge of the world. But what if consecutive memories exert opposing demands on the host brain network? We report that acquiring a robust (food-context) memory constrains the mouse hippocampus within a population activity space of highly correlated spike trains that prevents subsequent computation of a flexible (object-location) memory. This densely correlated firing structure developed over repeated mnemonic experience, gradually coupling neurons in the superficial sublayer of the CA1 stratum pyramidale to whole-population activity. Applying hippocampal theta-driven closed-loop optogenetic suppression to mitigate this neuronal recruitment during (food-context) memory formation relaxed the topological constraint on hippocampal coactivity and restored subsequent flexible (object-location) memory. These findings uncover an organizational principle for the peer-to-peer coactivity structure of the hippocampal cell population to meet memory demands.
Collapse
Affiliation(s)
- Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tabitha Broadbelt
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hanna Sjoberg
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Shirdhankar RN, Malkemper EP. Cognitive maps and the magnetic sense in vertebrates. Curr Opin Neurobiol 2024; 86:102880. [PMID: 38657284 DOI: 10.1016/j.conb.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Navigation requires a network of neurons processing inputs from internally generated cues and external landmarks. Most studies on the neuronal basis of navigation in vertebrates have focused on rats and mice and the canonical senses vision, hearing, olfaction, and somatosensation. Some animals have evolved the ability to sense the Earth's magnetic field and use it for orientation. It can be expected that in these animals magnetic cues are integrated with other sensory cues in the cognitive map. We provide an overview of the behavioral evidence and brain regions involved in magnetic sensing in support of this idea, hoping that this will guide future experiments.
Collapse
Affiliation(s)
- Runita N Shirdhankar
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany; International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - E Pascal Malkemper
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany.
| |
Collapse
|
3
|
Fenton AA. Remapping revisited: how the hippocampus represents different spaces. Nat Rev Neurosci 2024; 25:428-448. [PMID: 38714834 DOI: 10.1038/s41583-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
The representation of distinct spaces by hippocampal place cells has been linked to changes in their place fields (the locations in the environment where the place cells discharge strongly), a phenomenon that has been termed 'remapping'. Remapping has been assumed to be accompanied by the reorganization of subsecond cofiring relationships among the place cells, potentially maximizing hippocampal information coding capacity. However, several observations challenge this standard view. For example, place cells exhibit mixed selectivity, encode non-positional variables, can have multiple place fields and exhibit unreliable discharge in fixed environments. Furthermore, recent evidence suggests that, when measured at subsecond timescales, the moment-to-moment cofiring of a pair of cells in one environment is remarkably similar in another environment, despite remapping. Here, I propose that remapping is a misnomer for the changes in place fields across environments and suggest instead that internally organized manifold representations of hippocampal activity are actively registered to different environments to enable navigation, promote memory and organize knowledge.
Collapse
Affiliation(s)
- André A Fenton
- Center for Neural Science, New York University, New York, NY, USA.
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Yang X, Cacucci F, Burgess N, Wills TJ, Chen G. Visual boundary cues suffice to anchor place and grid cells in virtual reality. Curr Biol 2024; 34:2256-2264.e3. [PMID: 38701787 DOI: 10.1016/j.cub.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The hippocampal formation contains neurons responsive to an animal's current location and orientation, which together provide the organism with a neural map of space.1,2,3 Spatially tuned neurons rely on external landmark cues and internally generated movement information to estimate position.4,5 An important class of landmark cue are the boundaries delimiting an environment, which can define place cell field position6,7 and stabilize grid cell firing.8 However, the precise nature of the sensory information used to detect boundaries remains unknown. We used 2-dimensional virtual reality (VR)9 to show that visual cues from elevated walls surrounding the environment are both sufficient and necessary to stabilize place and grid cell responses in VR, when only visual and self-motion cues are available. By contrast, flat boundaries formed by the edges of a textured floor did not stabilize place and grid cells, indicating only specific forms of visual boundary stabilize hippocampal spatial firing. Unstable grid cells retain internally coherent, hexagonally arranged firing fields, but these fields "drift" with respect to the virtual environment over periods >5 s. Optic flow from a virtual floor does not slow drift dynamics, emphasizing the importance of boundary-related visual information. Surprisingly, place fields are more stable close to boundaries even with floor and wall cues removed, suggesting invisible boundaries are inferred using the motion of a discrete, separate cue (a beacon signaling reward location). Subsets of place cells show allocentric directional tuning toward the beacon, with strength of tuning correlating with place field stability when boundaries are removed.
Collapse
Affiliation(s)
- Xiuting Yang
- School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Guifen Chen
- School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK.
| |
Collapse
|
5
|
Froula JM, Rose JJ, Krook-Magnuson C, Krook-Magnuson E. Distinct functional classes of CA1 hippocampal interneurons are modulated by cerebellar stimulation in a coordinated manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594213. [PMID: 38798335 PMCID: PMC11118308 DOI: 10.1101/2024.05.14.594213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is mounting evidence that the cerebellum impacts hippocampal functioning, but the impact of the cerebellum on hippocampal interneurons remains obscure. Using miniscopes in freely behaving animals, we find optogenetic stimulation of Purkinje cells alters the calcium activity of a large percentage of CA1 interneurons. This includes both increases and decreases in activity. Remarkably, this bidirectional impact occurs in a coordinated fashion, in line with interneurons' functional properties. Specifically, CA1 interneurons activated by cerebellar stimulation are commonly locomotion-active, while those inhibited by cerebellar stimulation are commonly rest-active interneurons. We additionally find that subsets of CA1 interneurons show altered activity during object investigations, suggesting a role in the processing of objects in space. Importantly, these neurons also show coordinated modulation by cerebellar stimulation: CA1 interneurons that are activated by cerebellar stimulation are more likely to be activated, rather than inhibited, during object investigations, while interneurons that show decreased activity during cerebellar stimulation show the opposite profile. Therefore, CA1 interneurons play a role in object processing and in cerebellar impacts on the hippocampus, providing insight into previously noted altered CA1 processing of objects in space with cerebellar stimulation. We examined two different stimulation locations (IV/V Vermis; Simplex) and two different stimulation approaches (7Hz or a single 1s light pulse) - in all cases, the cerebellum induces similar coordinated CA1 interneuron changes congruent with an explorative state. Overall, our data show that the cerebellum impacts CA1 interneurons in a bidirectional and coordinated fashion, positioning them to play an important role in cerebello-hippocampal communication. Significance Statement Acute manipulation of the cerebellum can affect the activity of cells in CA1, and perturbing normal cerebellar functioning can affect hippocampal-dependent spatial processing, including the processing of objects in space. Despite the importance of interneurons on the local hippocampal circuit, it was unknown how cerebellar activation impacts CA1 inhibitory neurons. We find that stimulating the cerebellum robustly affects multiple populations of CA1 interneurons in a bidirectional, coordinated manner, according to their functional profiles during behavior, including locomotion and object investigations. Our work also provides support for a role of CA1 interneurons in spatial processing of objects, with populations of interneurons showing altered activity during object investigations.
Collapse
|
6
|
Sun Y, Nitz DA, Xu X, Giocomo LM. Subicular neurons encode concave and convex geometries. Nature 2024; 627:821-829. [PMID: 38448584 PMCID: PMC10972755 DOI: 10.1038/s41586-024-07139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Animals in the natural world constantly encounter geometrically complex landscapes. Successful navigation requires that they understand geometric features of these landscapes, including boundaries, landmarks, corners and curved areas, all of which collectively define the geometry of the environment1-12. Crucial to the reconstruction of the geometric layout of natural environments are concave and convex features, such as corners and protrusions. However, the neural substrates that could underlie the perception of concavity and convexity in the environment remain elusive. Here we show that the dorsal subiculum contains neurons that encode corners across environmental geometries in an allocentric reference frame. Using longitudinal calcium imaging in freely behaving mice, we find that corner cells tune their activity to reflect the geometric properties of corners, including corner angles, wall height and the degree of wall intersection. A separate population of subicular neurons encode convex corners of both larger environments and discrete objects. Both corner cells are non-overlapping with the population of subicular neurons that encode environmental boundaries. Furthermore, corner cells that encode concave or convex corners generalize their activity such that they respond, respectively, to concave or convex curvatures within an environment. Together, our findings suggest that the subiculum contains the geometric information needed to reconstruct the shape and layout of naturalistic spatial environments.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, Irvine, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Sosa M, Plitt MH, Giocomo LM. Hippocampal sequences span experience relative to rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573490. [PMID: 38234842 PMCID: PMC10793396 DOI: 10.1101/2023.12.27.573490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hippocampal place cells fire in sequences that span spatial environments and non-spatial modalities, suggesting that hippocampal activity can anchor to the most behaviorally salient aspects of experience. As reward is a highly salient event, we hypothesized that sequences of hippocampal activity can anchor to rewards. To test this, we performed two-photon imaging of hippocampal CA1 neurons as mice navigated virtual environments with changing hidden reward locations. When the reward moved, the firing fields of a subpopulation of cells moved to the same relative position with respect to reward, constructing a sequence of reward-relative cells that spanned the entire task structure. The density of these reward-relative sequences increased with task experience as additional neurons were recruited to the reward-relative population. Conversely, a largely separate subpopulation maintained a spatially-based place code. These findings thus reveal separate hippocampal ensembles can flexibly encode multiple behaviorally salient reference frames, reflecting the structure of the experience.
Collapse
Affiliation(s)
- Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| | - Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
8
|
Aoun A, Shetler O, Raghuraman R, Rodriguez GA, Hussaini SA. Beyond correlation: optimal transport metrics for characterizing representational stability and remapping in neurons encoding spatial memory. Front Cell Neurosci 2024; 17:1273283. [PMID: 38303974 PMCID: PMC10831886 DOI: 10.3389/fncel.2023.1273283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Spatial representations in the entorhinal cortex (EC) and hippocampus (HPC) are fundamental to cognitive functions like navigation and memory. These representations, embodied in spatial field maps, dynamically remap in response to environmental changes. However, current methods, such as Pearson's correlation coefficient, struggle to capture the complexity of these remapping events, especially when fields do not overlap, or transformations are non-linear. This limitation hinders our understanding and quantification of remapping, a key aspect of spatial memory function. Methods We propose a family of metrics based on the Earth Mover's Distance (EMD) as a versatile framework for characterizing remapping. Results The EMD provides a granular, noise-resistant, and rate-robust description of remapping. This approach enables the identification of specific cell types and the characterization of remapping in various scenarios, including disease models. Furthermore, the EMD's properties can be manipulated to identify spatially tuned cell types and to explore remapping as it relates to alternate information forms such as spatiotemporal coding. Discussion We present a feasible, lightweight approach that complements traditional methods. Our findings underscore the potential of the EMD as a powerful tool for enhancing our understanding of remapping in the brain and its implications for spatial navigation, memory studies and beyond.
Collapse
Affiliation(s)
- Andrew Aoun
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Oliver Shetler
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Radha Raghuraman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Gustavo A. Rodriguez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - S. Abid Hussaini
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
9
|
Gonzalo Cogno S, Obenhaus HA, Lautrup A, Jacobsen RI, Clopath C, Andersson SO, Donato F, Moser MB, Moser EI. Minute-scale oscillatory sequences in medial entorhinal cortex. Nature 2024; 625:338-344. [PMID: 38123682 PMCID: PMC10781645 DOI: 10.1038/s41586-023-06864-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
The medial entorhinal cortex (MEC) hosts many of the brain's circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience1. Whereas location is known to be encoded by spatially tuned cell types in this brain region2,3, little is known about how the activity of entorhinal cells is tied together over time at behaviourally relevant time scales, in the second-to-minute regime. Here we show that MEC neuronal activity has the capacity to be organized into ultraslow oscillations, with periods ranging from tens of seconds to minutes. During these oscillations, the activity is further organized into periodic sequences. Oscillatory sequences manifested while mice ran at free pace on a rotating wheel in darkness, with no change in location or running direction and no scheduled rewards. The sequences involved nearly the entire cell population, and transcended epochs of immobility. Similar sequences were not observed in neighbouring parasubiculum or in visual cortex. Ultraslow oscillatory sequences in MEC may have the potential to couple neurons and circuits across extended time scales and serve as a template for new sequence formation during navigation and episodic memory formation.
Collapse
Affiliation(s)
- Soledad Gonzalo Cogno
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Horst A Obenhaus
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ane Lautrup
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway
| | - R Irene Jacobsen
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK
| | - Sebastian O Andersson
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Flavio Donato
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway
- Biozentrum Universität Basel, Basel, Switzerland
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Fred Kavli Building, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
10
|
Levy ERJ, Carrillo-Segura S, Park EH, Redman WT, Hurtado JR, Chung S, Fenton AA. A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields. Cell Rep 2023; 42:113142. [PMID: 37742193 PMCID: PMC10842170 DOI: 10.1016/j.celrep.2023.113142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Hippocampus place cell discharge is temporally unreliable across seconds and days, and place fields are multimodal, suggesting an "ensemble cofiring" spatial coding hypothesis with manifold dynamics that does not require reliable spatial tuning, in contrast to hypotheses based on place field (spatial tuning) stability. We imaged mouse CA1 (cornu ammonis 1) ensembles in two environments across three weeks to evaluate these coding hypotheses. While place fields "remap," being more distinct between than within environments, coactivity relationships generally change less. Decoding location and environment from 1-s ensemble location-specific activity is effective and improves with experience. Decoding environment from cell-pair coactivity relationships is also effective and improves with experience, even after removing place tuning. Discriminating environments from 1-s ensemble coactivity relies crucially on the cells with the most anti-coactive cell-pair relationships because activity is internally organized on a low-dimensional manifold of non-linear coactivity relationships that intermittently reregisters to environments according to the anti-cofiring subpopulation activity.
Collapse
Affiliation(s)
| | - Simón Carrillo-Segura
- Center for Neural Science, New York University, New York, NY 10003, USA; Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Eun Hye Park
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - William Thomas Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - SueYeon Chung
- Center for Neural Science, New York University, New York, NY 10003, USA; Flatiron Institute Center for Computational Neuroscience, New York, NY 10010, USA
| | - André Antonio Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
11
|
Fenton AA, Hurtado JR, Broek JAC, Park E, Mishra B. Do Place Cells Dream of Deceptive Moves in a Signaling Game? Neuroscience 2023; 529:129-147. [PMID: 37591330 PMCID: PMC10592151 DOI: 10.1016/j.neuroscience.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
We consider the possibility of applying game theory to analysis and modeling of neurobiological systems. Specifically, the basic properties and features of information asymmetric signaling games are considered and discussed as having potential to explain diverse neurobiological phenomena; we focus on neuronal action potential discharge that can represent cognitive variables in memory and purposeful behavior. We begin by arguing that there is a pressing need for conceptual frameworks that can permit analysis and integration of information and explanations across many scales of biological function including gene regulation, molecular and biochemical signaling, cellular and metabolic function, neuronal population, and systems level organization to generate plausible hypotheses across these scales. Developing such integrative frameworks is crucial if we are to understand cognitive functions like learning, memory, and perception. The present work focuses on systems neuroscience organized around the connected brain regions of the entorhinal cortex and hippocampus. These areas are intensely studied in rodent subjects as model neuronal systems that undergo activity-dependent synaptic plasticity to form neuronal circuits and represent memories and spatial knowledge used for purposeful navigation. Examples of cognition-related spatial information in the observed neuronal discharge of hippocampal place cell populations and medial entorhinal head-direction cell populations are used to illustrate possible challenges to information maximization concepts. It may be natural to explain these observations using the ideas and features of information asymmetric signaling games.
Collapse
Affiliation(s)
- André A Fenton
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| | - José R Hurtado
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA
| | - Jantine A C Broek
- Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - EunHye Park
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA
| | - Bud Mishra
- Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA; Department of Cell Biology, NYU Langone Medical Center, New York, NY, USA; Simon Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|