1
|
Kim S, Pajarillo E, Nyarko-Danquah I, Aschner M, Lee E. Role of Astrocytes in Parkinson's Disease Associated with Genetic Mutations and Neurotoxicants. Cells 2023; 12:622. [PMID: 36831289 PMCID: PMC9953822 DOI: 10.3390/cells12040622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the aggregation of Lewy bodies in the basal ganglia, resulting in movement impairment referred to as parkinsonism. However, the etiology of PD is not well known, with genetic factors accounting only for 10-15% of all PD cases. The pathogenetic mechanism of PD is not completely understood, although several mechanisms, such as oxidative stress and inflammation, have been suggested. Understanding the mechanisms of PD pathogenesis is critical for developing highly efficacious therapeutics. In the PD brain, dopaminergic neurons degenerate mainly in the basal ganglia, but recently emerging evidence has shown that astrocytes also significantly contribute to dopaminergic neuronal death. In this review, we discuss the role of astrocytes in PD pathogenesis due to mutations in α-synuclein (PARK1), DJ-1 (PARK7), parkin (PARK2), leucine-rich repeat kinase 2 (LRRK2, PARK8), and PTEN-induced kinase 1 (PINK1, PARK6). We also discuss PD experimental models using neurotoxins, such as paraquat, rotenone, 6-hydroxydopamine, and MPTP/MPP+. A more precise and comprehensive understanding of astrocytes' modulatory roles in dopaminergic neurodegeneration in PD will help develop novel strategies for effective PD therapeutics.
Collapse
Affiliation(s)
- Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
2
|
Yuan Y, Zhang X, Wu Y, Lian P, Cao X, Xu Y. ONO-2506 Can Delay Levodopa-induced Dyskinesia in the Early Stage. Neuroscience 2023:S0306-4522(23)00068-4. [PMID: 36796751 DOI: 10.1016/j.neuroscience.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a common motor complication of levodopa (L-DOPA) treatment for Parkinson's disease (PD). In recent years, the role of astrocytes in LID has increasingly attracted attention. OBJECTIVE To explore the effect of an astrocyte regulator (ONO-2506) on LID in a rat model and the potential underlying physiological mechanism. METHODS Unilateral LID rat models, established by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle through stereotactic injection, were injected with ONO-2506 or saline into the striatum through brain catheterization and were administered L-DOPA to induce LID. Through a series of behavioral experiments, LID performance was observed. Relevant indicators were assessed through biochemical experiments. RESULTS In the LID model of 6-OHDA rats, ONO-2506 significantly delayed the development and reduced the degree of abnormal involuntary movement in the early stage of L-DOPA treatment and increased glial fibrillary acidic protein and glutamate transporter 1 (GLT-1) expression in the striatum compared to saline. However, there was no significant difference in the improvement in motor function between the ONO-2506 and saline groups. CONCLUSIONS ONO-2506 delays the emergence of L-DOPA-induced abnormal involuntary movements in the early stage of L-DOPA administration, without affecting the anti-PD effect of L-DOPA. The delaying effect of ONO-2506 on LID may be linked to the increased expression of GLT-1 in the rat striatum. Interventions targeting astrocytes and glutamate transporters are potential therapeutic strategies to delay the development of LID.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
4
|
Ishiguro H, Kaito T, Hashimoto K, Kushioka J, Okada R, Tsukazaki H, Kodama J, Bal Z, Ukon Y, Takenaka S, Makino T, Sakai Y, Yoshikawa H. Administration of ONO-2506 suppresses neuropathic pain after spinal cord injury by inhibition of astrocytic activation. Spine J 2019; 19:1434-1442. [PMID: 30974239 DOI: 10.1016/j.spinee.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) results in not only motor dysfunction but also chronic neuropathic pain. Allodynia, an abnormal sensation that evokes pain against non-noxious stimuli, is a major symptom of post-SCI neuropathic pain. Astrocytic activation is a cause of post-SCI neuropathic pain and is considered a key treatment target. However, no effective treatment for these problems is available to date. ONO-2506 is a novel agent that suppresses astrocytic activation by inhibition of S100B production from astrocytes. Recently, it has been demonstrated that ONO-2506 inhibits secondary injury and improves motor function after SCI. PURPOSE This study aimed to investigate the effect of ONO-2506 on post-SCI neuropathic pain. STUDY DESIGN Animal study of a rat model of spinal cord contusion. METHODS A total of 22 male Sprague-Dawley rats aged 6 weeks were used. Incomplete SCI was created at T10 level. Animals were divided into two groups: Saline group and ONO-2506 group. Nine animals in each group were finally included for this study. Intraperitoneal administration of ONO-2506 (20 mg/kg) or saline was continued daily for 1 week following SCI. Recovery of hind limb motor function was assessed using the Basso, Beattie, and Bresnahan (BBB) score. Mechanical and thermal allodynia of hind paws were evaluated by the withdrawal threshold using a von Frey filament and the withdrawal latency using the plantar test device. At 6 weeks after SCI, sagittal sections at the injured site and axial sections at L 4/5 were evaluated by fluorescent immunohistochemistry staining using S100B and glial fibrillary acidic protein (GFAP) antibodies. RESULTS The improvement course of BBB scores was similar between the two groups. However, the withdrawal thresholds for mechanical stimuli and the withdrawal latency for thermal stimuli were significantly higher in the ONO-2506 group than in the Saline group over 6 weeks after SCI. The histologic assessments at the injured site demonstrated a significant reduction in the cross-sectional area of the cysts and a high fluorescence intensity area of S100B and GFAP in the ONO-2506 group. By correlation analysis, a high absolute value of the correlation coefficient was confirmed between the intensity of S100B expression at the injured site and the allodynia severity. CONCLUSION Administration of ONO-2506 attenuated post-SCI neuropathic pain in a rat model of incomplete SCI. Histologic results support that the inhibition of S100B production and subsequent suppression of astrocytic activation contributed to the reduction in neuropathic pain.
Collapse
Affiliation(s)
- Hiroyuki Ishiguro
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan.
| | - Kunihiko Hashimoto
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Junichi Kushioka
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Rintaro Okada
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Hiroyuki Tsukazaki
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Joe Kodama
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Zeynep Bal
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yuichiro Ukon
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Shota Takenaka
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takahiro Makino
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yusuke Sakai
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Arundic acid administration protects astrocytes, recovers histological damage and memory deficits induced by neonatal hypoxia ischemia in rats. Int J Dev Neurosci 2019; 76:41-51. [DOI: 10.1016/j.ijdevneu.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
|
6
|
Karki P, Hong P, Johnson J, Pajarillo E, Son DS, Aschner M, Lee EY. Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-κB Pathways. Mol Neurobiol 2017; 55:5031-5046. [PMID: 28812276 PMCID: PMC5964991 DOI: 10.1007/s12035-017-0709-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, but excessive synaptic glutamate must be removed to prevent excitotoxic injury and death. Two astrocytic glutamate transporters, excitatory amino acid transporter (EAAT) 1 and 2, play a major role in eliminating excess glutamate from the synapse. Dysregulation of EAAT1 contributes to the pathogenesis of multiple neurological disorders, such as Alzheimer's disease (AD), ataxia, traumatic brain injuries, and glaucoma. In the present study, we investigated the effect of arundic acid on EAAT1 to determine its efficacy in enhancing the expression and function of EAAT1, and its possible mechanisms of action. The studies were carried out in human astrocyte H4 cells as well as in human primary astrocytes. Our findings show that arundic acid upregulated EAAT1 expression at the transcriptional level by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Arundic acid increased astrocytic EAAT1 promoter activity, messenger RNA (mRNA)/protein levels, and glutamate uptake, while pharmacological inhibition of NF-κB or mutation on NF-κB binding sites in the EAAT1 promoter region abrogated these effects. Arundic acid increased NF-κB reporter activity and induced NF-κB nuclear translocation as well as its bindings to the EAAT1 promoter. Furthermore, arundic acid activated the Akt and ERK signaling pathways to enhance EAAT1 mRNA/protein levels. Finally, arundic acid attenuated manganese-induced decrease in EAAT1 expression by inhibiting expression of the transcription factor Ying Yang 1 (YY1). These results demonstrate that arundic acid increases the expression and function of EAAT1 via the Akt, ERK, and NF-κB signaling pathways, and reverses Mn-induced EAAT1 repression by inhibiting the Mn-induced YY1 activation.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Peter Hong
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - James Johnson
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Deok-Soo Son
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Y Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
7
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
8
|
Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson's disease mice. Chem Biol Interact 2013; 206:239-47. [PMID: 24095822 DOI: 10.1016/j.cbi.2013.09.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/04/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022]
Abstract
Mangiferin, a polyphenol compound of C-glucoside, is well-known for its anti-inflammatory, antioxidant, anticancer, antidiabetic and cognitive enhancement properties. In this study, we investigated the neuroprotective effect of mangiferin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), which is most popular and widely used to evaluate therapeutic implications of new protective agents. Male C57BL/6 mice were orally treated with mangiferin (10, 20 and 40 mg/kg body wt.) for 14 days and from 10th day onwards MPTP (30 mg/kg, i.p.) was injected for last 5 days. MPTP treatment leads to enhanced oxidative stress, induction of apoptosis (upregulates the expression of Bax, proapoptotic protein and downregulates the expression of anti-apoptotic marker Bcl-2), and loss of dopominergic neurons which results in motor impairments. Results of our study confirmed that mangiferin prevented MPTP-induced behavioral deficits, oxidative stress, apoptosis, dopaminergic neuronal degeneration and dopamine depletion. Taken together, we conclude that mangiferin attenuates the dopaminergic neurodegeneration mainly through its potent antioxidant and antiapoptotic properties.
Collapse
|
9
|
Improvement of some physicochemical properties of arundic acid, (R)-(−)-2-propyloctanonic acid, by complexation with hydrophilic cyclodextrins. Int J Pharm 2011; 413:63-72. [DOI: 10.1016/j.ijpharm.2011.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 11/22/2022]
|
10
|
Xu G, Xiong Z, Yong Y, Wang Z, Ke Z, Xia Z, Hu Y. Catalpol attenuates MPTP induced neuronal degeneration of nigral-striatal dopaminergic pathway in mice through elevating glial cell derived neurotrophic factor in striatum. Neuroscience 2010; 167:174-84. [PMID: 20123001 DOI: 10.1016/j.neuroscience.2010.01.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/18/2010] [Accepted: 01/23/2010] [Indexed: 11/16/2022]
Abstract
The protective effect of an iridoid catalpol extracted and purified from the traditional Chinese medicinal herb Rehmannia glutinosa on the neuronal degeneration of nigral-striatal dopaminergic pathway was studied in a chronic 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP)/probenecid C57BL/6 mouse model and in 1-methyl-4-phenylpyridimium (MPP(+)) intoxicated cultured mesencephalic neurons. Rotarod performance revealed that the locomotor ability of mice was significantly impaired after completion of model production and maintained thereafter for at least 4 weeks. Catalpol orally administered for 8 weeks (starting from the second week of model production) dose dependently improved the locomotor ability. HPLC revealed that catalpol significantly elevated striatal dopamine levels without changing the metabolite/dopamine ratios. Nor did it bind to dopamine receptors. Therefore it is unlikely that catalpol resembles any of the known compounds for treating Parkinsonism. Instead, catalpol dose dependently raised the tyrosine hydroxylase (TH) neuron number in substantia nigra pars compacta (SNpc), the striatal dopamine transporter (DAT) density and the striatal glial cell derived neurotrophic factor (GDNF) protein level. Linear regression revealed that both the TH neuron number and DAT density were positively correlated to the GDNF level. In the cultured mesencephalic neurons, MPP(+) decreased the dopaminergic neuron number and shortened the neurite length, whereas catalpol showed protective effect dose dependently. Furthermore, the expression of GDNF mRNA was up-regulated by catalpol to a peak nearly double of normal control in neurons intoxicated with MPP(+) for 24 h but not in normal neurons. The GDNF receptor tyrosine kinase RET inhibitor 4-amino-5-(4-methyphenyl)-7-(t-butyl)-pyrazolo-[3,4-d]pyrimidine (PP1) abolished the protective effect of catalpol either partially (TH positive neuron number) or completely (neurite length). Taken together, catalpol improves locomotor ability by attenuating the neuronal degeneration of nigral-striatal dopaminergic pathway, and this attenuation is at least partially through elevating the striatal GDNF expression.
Collapse
Affiliation(s)
- G Xu
- Research Laboratory of Cell Regulation, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Lagrue E, Abert B, Nadal L, Tabone L, Bodard S, Medja F, Lombes A, Chalon S, Castelnau P. MPTP intoxication in mice: a useful model of Leigh syndrome to study mitochondrial diseases in childhood. Metab Brain Dis 2009; 24:321-35. [PMID: 19319673 DOI: 10.1007/s11011-009-9132-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/22/2008] [Indexed: 02/02/2023]
Abstract
The basal ganglia, which are interconnected in the striato-nigral dopaminergic network, are affected in several childhood diseases including Leigh syndrome (LS). LS is the most common mitochondrial disorder affecting children and usually arise from inhibition of the respiratory chain. This vulnerability is attributed to a particular susceptibility to energetic stress, with mitochondrial inhibition as a common pathogenic pathway. In this study we developed a LS model for neuroprotection trials in mice by using the complex I inhibitor MPTP. We first verified that MPTP significantly inhibits the mitochondrial complex I in the brain (p = 0.018). This model also reproduced the biochemical and pathological features of LS: MPTP increased plasmatic lactate levels (p = 0.023) and triggered basal ganglia degeneration, as evaluated through dopamine transporter (DAT) autoradiography, tyrosine hydroxylase (TH) immunohistochemistry, and dopamine dosage. Striatal DAT levels were markedly decreased after MPTP treatment (p = 0.003). TH immunoreactivity was reduced in the striatum and substantia nigra (p = 0.005), and striatal dopamine was significantly reduced (p < 0.01). Taken together, these results confirm that acute MPTP intoxication in young mice provides a reproducible pharmacological paradigm of LS, thus opening new avenues for neuroprotection research.
Collapse
Affiliation(s)
- E Lagrue
- Unité Imagerie et Cerveau, Inserm, U930, Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Thomas B, Saravanan KS, Mohanakumar KP. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem Int 2008; 52:990-1001. [DOI: 10.1016/j.neuint.2007.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/11/2007] [Accepted: 10/15/2007] [Indexed: 12/21/2022]
|
13
|
Sibson NR, Lowe JP, Blamire AM, Martin MJ, Obrenovitch TP, Anthony DC. Acute astrocyte activation in brain detected by MRI: new insights into T(1) hypointensity. J Cereb Blood Flow Metab 2008; 28:621-32. [PMID: 17851455 DOI: 10.1038/sj.jcbfm.9600549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increases in the T(1) of brain tissue, which give rise to dark or hypointense areas on T(1)-weighted images using magnetic resonance imaging (MRI), are common to a number of neuropathologies including multiple sclerosis (MS) and ischaemia. However, the biologic significance of T(1) increases remains unclear. Using a multiparametric MRI approach and well-defined experimental models, we have experimentally induced increases in tissue T(1) to determine the underlying cellular basis of such changes. We have shown that a rapid acute increase in T(1) relaxation in the brain occurs in experimental models of both low-flow ischaemia induced by intrastriatal injection of endothelin-1 (ET-1), and excitotoxicity induced by intrastriatal injection of N-methyl-D-aspartate (NMDA). However, there appears to be no consistent correlation between increases in T(1) relaxation and changes in other MRI parameters (apparent diffusion coefficient, T(2) relaxation, or magnetisation transfer ratio of tissue water). Immunohistochemically, one common morphologic feature shared by the ET-1 and NMDA models is acute astrocyte activation, which was detectable within 2 h of intracerebral ET-1 injection. Pretreatment with an inhibitor of astrocyte activation, arundic acid, significantly reduced the spatial extent of the T(1) signal change induced by intrastriatal ET-1 injection. These findings suggest that an increase in T(1) relaxation may identify the acute development of reactive astrocytes within a central nervous system lesion. Early changes in T(1) may, therefore, provide insight into acute and reversible injury processes in neurologic patients, such as those observed before contrast enhancement in MS.
Collapse
Affiliation(s)
- Nicola R Sibson
- Experimental Neuroimaging Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Tripanichkul W, Sripanichkulchai K, Duce JA, Finkelstein DI. 17β-Estradiol reduces nitrotyrosine immunoreactivity and increases SOD1 and SOD2 immunoreactivity in nigral neurons in male mice following MPTP insult. Brain Res 2007; 1164:24-31. [PMID: 17640623 DOI: 10.1016/j.brainres.2007.05.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Emerging evidence suggests the beneficial effects of estrogen on Parkinson's disease (PD), yet the mechanisms of action implicated remain elusive. While experimental evidence suggests that estrogen possesses potent antioxidative properties, it is still unknown whether the hormone exhibits a neuroprotection in a PD animal model through its antioxidant activities. This study therefore investigated the effects of 17beta-estradiol (E2) on the immunoreactivity of nigral neurons and glia for nitrotyrosine (NT, a stable marker for oxidative stress), Cu/Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. Adult male mice were treated with E2 or vehicle for 11 days during which they were injected with MPTP or saline on the sixth day. The brains were collected on day 11 and quantitative immunohistochemistry was used to assess the number of NT-, SOD1- and SOD2-immunoreactive (IR) cells in the substantia nigra pars compacta (SNpc). In saline-treated group, E2 decreased NT-IR neuronal number and raised SOD1 and SOD2 expression in neurons and glia in the SNpc. MPTP induced a significant increase in the number of NT- and SOD2-IR neurons, but decreased the number of SOD1-IR neurons. MPTP also triggered a significant increase of SOD2- and SOD1-IR glial number. E2 pretreatment in MPTP mice reduced the number of NT-IR neurons, increased the number of SOD1- and SOD2-IR neurons, but did not alter the MPTP effect on glia immunoreactive to either SOD. Stimulation of SOD1 and SOD2 expression in nigral neurons suggests that E2 provides neuroprotection against MPTP-induced oxidative stress, partly through its ability to act as an antioxidant.
Collapse
Affiliation(s)
- Wanida Tripanichkul
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | | | | | | |
Collapse
|
15
|
Ohtani R, Tomimoto H, Wakita H, Kitaguchi H, Nakaji K, Takahashi R. Expression of S100 protein and protective effect of arundic acid on the rat brain in chronic cerebral hypoperfusion. Brain Res 2007; 1135:195-200. [PMID: 17210147 DOI: 10.1016/j.brainres.2006.11.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/24/2006] [Accepted: 11/30/2006] [Indexed: 11/17/2022]
Abstract
S100 protein is expressed primarily by astroglia in the brain, and accumulates in and around the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in acute cerebral infarction, whereas the protective effects remain unknown during chronic cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to a bilateral ligation of the common carotid arteries, and were allowed to survive for 3, 7 and 14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle, for 14 days. Alternatively, other groups of rats received a delayed intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1, 3 or 7 days after ligation and continued to 14 days. The degree of white matter (WM) lesions and the numerical density of S100 protein-immunoreactive astroglia were estimated. In the WM of rats with vehicle injections, the number of S100 protein-immunoreactive astroglia increased significantly after chronic cerebral hypoperfusion as compared to the sham-operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical increase in S100 protein-immunoreactive astroglia and the WM lesions. These pathological changes were suppressed with delayed treatment up to 7 days in terms of astroglial activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid against WM lesions were demonstrated in a dose-dependent manner, and even after postischemic treatments. These results suggest the potential usefulness of arundic acid in the treatment of cerebrovascular WM lesions.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Neurology, Kyoto University Graduate School of Medicine, Shogoin, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Scatena R, Martorana GE, Bottoni P, Botta G, Pastore P, Giardina B. An update on pharmacological approaches to neurodegenerative diseases. Expert Opin Investig Drugs 2007; 16:59-72. [PMID: 17155854 DOI: 10.1517/13543784.16.1.59] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases are now generally considered as a group of disorders that seriously and progressively impair the functions of the nervous system through selective neuronal vulnerability of specific brain regions. Alzheimer's disease is the most common neurodegenerative disease, followed in incidence by Parkinson's disease; much less common are frontotemporal dementia, Huntington's disease, amyothrophic lateral sclerosis (Lou Gehrig's disease), progressive supranuclear palsy, spinocerebellar ataxia, Pick's disease and, lastly, prion disease. In this review, the authors intend to survey new drugs in different clinical phases but not in the preclinical or discovery stages nor already in the market, with new molecules aimed at interrupting or at attenuating different pathogenic pathways of neurodegeneration and/or at ameliorating symptoms. Drugs in different pharmacological phases are under study or are ready to be introduced into therapy for Alzheimer's disease, which display anti-beta-amyloid activity or nerve growth factor-like activity or anti-inflammatory properties. Other drugs possess mixed mechanisms of action, such as acetylcholinesterase inhibition and impairment of beta-amyloid formation through inhibition of beta-amyloid precursor protein synthesis and/or modulation of secretase activity. Other therapeutic approaches are based on immunotherapy, control of metal ions interactions with beta-amyloid and ensuing oxidative reactions as well as metabolic or hormonal regulation. The symptomatic therapy of motor behaviour in Parkinson's disease, based on l-DOPA, is registering adenosine A(2A) receptor antagonists, monoamine oxidase B inhibitors and ion channel modulators, as well as dopamine uptake inhibitors and glutamate AMPA receptor antagonists. There are also many other drugs involved, including astrocyte-modulating agents, 5-HT(1A) agonists and alpha(2)-adrenergic receptor antagonists, which are targeted at preventing or ameliorating Parkinson's disease-related or l-DOPA-induced dyskinesias. Huntington's disease therapy envisages a Phase III drug, LAX-101, which displays antiapoptotic properties by promoting membrane stabilisation and mitochondrial integrity. Other drugs with antioxidant and antiapoptotic steroid-like and neuroprotective activity are under investigation for the therapy of the less common neurodegenerative diseases.
Collapse
Affiliation(s)
- Roberto Scatena
- Istituto di Biochimica e Biochimica Clinica, Universita' Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|