1
|
Hough LB, Nalwalk JW, Ding X, Scheer N. Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms. Drug Metab Dispos 2015; 43:1326-30. [PMID: 26109562 DOI: 10.1124/dmd.115.065490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity (3)H-cimetidine ((3)HCIM) binding sites in the brain. (3)HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c, 9 Cyp2d, and 7 Cyp3a genes were studied for deficiencies in (3)HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal (3)HCIM binding values, indicating that gene products of Cyp2d, Cyp3a, and Cyp2c are not (3)HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Julia W Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Xinxin Ding
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Nico Scheer
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| |
Collapse
|
2
|
Hough LB, Nalwalk JW, Cleary RA, Phillips JG, Fang C, Yang W, Ding X. Deficits in neuronal cytochrome P450 activity attenuate opioid analgesia but not opioid side effects. Eur J Pharmacol 2014; 740:255-62. [PMID: 25062792 DOI: 10.1016/j.ejphar.2014.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/20/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
Abstract
Morphine-like analgesics act on µ opioid receptors in the CNS to produce highly effective pain relief, but the same class of receptors also mediates non-therapeutic side effects. The analgesic properties of morphine were recently shown to require the activity of a brain neuronal cytochrome P450 epoxygenase, but the significance of this pathway for opioid side effects is unknown. Here we show that brain P450 activity is not required for three of morphine׳s major side effects (respiratory depression, constipation, and locomotor stimulation). Following systemic or intracerebroventricular administration of morphine, transgenic mice with brain neuron - specific reductions in P450 activity showed highly attenuated analgesic responses as compared with wild-type (control) mice. However, brain P450-deficient mice showed normal morphine-induced side effects (respiratory depression, locomotor stimulation, and inhibition of intestinal motility). Pretreatment of control mice with the P450 inhibitor CC12 similarly reduced the analgesia, but not these side effects of morphine. Because activation of brain µ opioid receptors produces both opioid analgesia and opioid side effects, dissociation of the mechanisms for the therapeutic and therapy-limiting effects of opioids has important consequences for the development of analgesics with reduced side effects and/or limited addiction liability.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA.
| | - Julia W Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | - Rachel A Cleary
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | | | - Cheng Fang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Weizhu Yang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|
3
|
Conroy JL, Nalwalk JW, Phillips JG, Hough LB. CC12, a P450/epoxygenase inhibitor, acts in the rat rostral, ventromedial medulla to attenuate morphine antinociception. Brain Res 2013; 1499:1-11. [PMID: 23298831 DOI: 10.1016/j.brainres.2012.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 02/05/2023]
Abstract
Brain cytochrome P450 epoxygenases were recently shown to play an essential role in mediating the pain-relieving properties of morphine. To identify the CNS sites containing the morphine-relevant P450s, the effects of intracerebral (ic) microinjections of the P450 inhibitor CC12 were determined on morphine antinociception in rats. CC12 inhibited morphine antinociception when both drugs were injected into the rostral ventromedial medulla (RVM), but not following co-injections into the periaqueductal gray (PAG) or into the spinal subarachnoid space. In addition, intra-RVM CC12 pretreatment nearly completely blocked the effects of morphine following intracerebroventricular (icv) administration. Although morphine is thought to act in both the PAG and RVM by pre-synaptic inhibition of inhibitory GABAergic transmission, the present findings show that 1) the mechanism of morphine action differs between these two brainstem areas, and 2) P450 activity within the RVM is important for supraspinal morphine antinociception. Characterization of morphine-P450 interactions within RVM circuits will further enhance the understanding of the biochemistry of pain relief.
Collapse
Affiliation(s)
- Jennie L Conroy
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
4
|
Yang J, VanAlstine MA, Phillips JG, Wentland MP, Hough LB. Cytochrome P450 2C24: Expression, Tissue Distribution, High-Throughput Assay, and Pharmacological Inhibition. Acta Pharm Sin B 2012; 2:137-145. [PMID: 25068100 DOI: 10.1016/j.apsb.2012.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytochrome P450 (CYP)-mediated epoxidation of arachidonic acid (AA) contributes to important biological functions, including the pain-relieving responses produced by analgesic drugs. However, the relevant epoxygenase(s) remain unidentified. Presently, we describe the tissue distribution, high-throughput assay, and pharmacological characteristics of the rat epoxygenase CYP2C24. Following cloning from male rat liver, recombinant baculovirus containing the C-terminal His-tagged cDNA was constructed and used to express the protein in Spodoptera frugiperda (Sf9) cells. Enzymatic activity was detected with membranes, NADPH regenerating system and CYP reductase, and optimized for high throughput screening by use of the Vivid Blue© BOMCC fluorescence substrate. Quantitative real-time PCR identified CYP2C24 m-RNA in liver, kidney, heart, lung, gonad and brain. Screening of CYP2C24 activity against a panel of inhibitors showed a very strong correlation with activity against the human homologue CYP2C19. In agreement with recent findings on CYP2C19, the epoxygenase blockers PPOH and MS-PPOH inhibited CYP2C24 only weakly, confirming that these drugs are not universal epoxygenase inhibitors. Finally, comparisons of the CYP2C24 inhibitor profile with anti-analgesic activity suggests that this isoform does not contribute to brain analgesic drug action. The present methods and pharmacological data will aid in study of the biological significance of this CYP isoform.
Collapse
Affiliation(s)
- Jun Yang
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Melissa A VanAlstine
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | - Mark P Wentland
- Dept. of Chemistry, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
5
|
Hough LB, Nalwalk JW, Yang J, Conroy JL, VanAlstine MA, Yang W, Gargano J, Shan Z, Zhang SZ, Wentland MP, Phillips JG, Knapp BI, Bidlack JM, Zuiderveld OP, Leurs R, Ding X. Brain P450 epoxygenase activity is required for the antinociceptive effects of improgan, a nonopioid analgesic. Pain 2011; 152:878-887. [PMID: 21316152 DOI: 10.1016/j.pain.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 12/01/2010] [Accepted: 01/04/2011] [Indexed: 01/16/2023]
Abstract
The search for the mechanism of action of improgan (a nonopioid analgesic) led to the recent discovery of CC12, a compound that blocks improgan antinociception. Because CC12 is a cytochrome P450 inhibitor, and brain P450 mechanisms were recently shown to be required in opioid analgesic signaling, pharmacological and transgenic studies were performed in rodents to test the hypothesis that improgan antinociception requires brain P450 epoxygenase activity. Intracerebroventricular (i.c.v.) administration of the P450 inhibitors miconazole and fluconazole, and the arachidonic acid (AA) epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) potently inhibited improgan antinociception in rats at doses that were inactive alone. MW06-25, a new P450 inhibitor that combines chemical features of CC12 and miconazole, also potently blocked improgan antinociception. Although miconazole and CC12 were weakly active at opioid and histamine H(3) receptors, MW06-25 showed no activity at these sites, yet retained potent P450-inhibiting properties. The P450 hypothesis was also tested in Cpr(low) mice, a viable knock-in model with dramatically reduced brain P450 activity. Improgan (145 nmol, i.c.v.) antinociception was reduced by 37% to 59% in Cpr(low) mice, as compared with control mice. Moreover, CC12 pretreatment (200 nmol, i.c.v.) abolished improgan action (70% to 91%) in control mice, but had no significant effect in Cpr(low) mice. Thus, improgan's activation of bulbospinal nonopioid analgesic circuits requires brain P450 epoxygenase activity. A model is proposed in which (1) improgan activates an unknown receptor to trigger downstream P450 activity, and (2) brainstem epoxygenase activity is a point of convergence for opioid and nonopioid analgesic signaling.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA Curragh Chemistries, Valley View, OH, USA Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA Leiden/Amsterdam Center for Drug Research, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Heinricher MM, Maire JJ, Lee D, Nalwalk JW, Hough LB. Physiological basis for inhibition of morphine and improgan antinociception by CC12, a P450 epoxygenase inhibitor. J Neurophysiol 2010; 104:3222-30. [PMID: 20926616 PMCID: PMC3007650 DOI: 10.1152/jn.00681.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/06/2010] [Indexed: 12/29/2022] Open
Abstract
Many analgesic drugs, including μ-opioids, cannabinoids, and the novel nonopioid analgesic improgan, produce antinociception by actions in the rostral ventromedial medulla (RVM). There they activate pain-inhibiting neurons, termed "OFF-cells," defined by a nociceptive reflex-related pause in activity. Based on recent functional evidence that neuronal P450 epoxygenases are important for the central antinociceptive actions of morphine and improgan, we explored the convergence of opioid and nonopioid analgesic drug actions in RVM by studying the effects of the P450 epoxygenase inhibitor CC12 on the analgesic drug-induced activation of these OFF-cells and on behavioral antinociception. In rats lightly anesthetized with isoflurane, we recorded the effects of intraventricular morphine and improgan, with and without CC12 pretreatment, on tail flick latency and activity of identified RVM neurons: OFF-cells, ON-cells (pronociceptive neurons), and neutral cells (unresponsive to analgesic drugs). CC12 pretreatment preserved reflex-related changes in OFF-cell firing and blocked the analgesic actions of both drugs, without interfering with the increase in spontaneous firing induced by improgan or morphine. CC12 blocked suppression of evoked ON-cell firing by improgan, but not morphine. CC12 pretreatment had no effect by itself on RVM neurons or behavior. These data show that the epoxygenase inhibitor CC12 works downstream from receptors for both μ-opioid and improgan, at the inhibitory input mediating the OFF-cell pause. This circuit-level analysis thus provides a cellular basis for the convergence of opioid and nonopioid analgesic actions in the RVM. A presynaptic P450 epoxygenase may therefore be an important target for development of clinically useful nonopioid analgesic drugs.
Collapse
MESH Headings
- Action Potentials/drug effects
- Analgesics/antagonists & inhibitors
- Animals
- Cimetidine/analogs & derivatives
- Cimetidine/antagonists & inhibitors
- Cytochrome P-450 CYP2J2
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System
- Imidazoles/pharmacology
- Male
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/physiology
- Models, Neurological
- Morphine/antagonists & inhibitors
- Pain Perception/drug effects
- Pain Perception/physiology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Signal Transduction/drug effects
- Sulfides/pharmacology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- Mary M Heinricher
- Department of Neurological Surgery, CR-137, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
7
|
Stadel R, Carpenter AB, Nalwalk JW, de Esch IJP, Janssen E, Hough LB. Inhibition of brain [(3)H]cimetidine binding by improgan-like antinociceptive drugs. Eur J Pharmacol 2010; 632:33-8. [PMID: 20138862 DOI: 10.1016/j.ejphar.2010.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/07/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
[(3)H]cimetidine, a radiolabeled histamine H(2) receptor antagonist, binds with high affinity to an unknown hemoprotein in the brain which is not the histamine H(2) receptor. Improgan, a close chemical congener of cimetidine, is a highly effective pain-relieving drug following CNS administration, yet its mechanism of action remains unknown. To test the hypothesis that the [(3)H]cimetidine-binding site is the improgan antinociceptive target, improgan, cimetidine, and 8 other chemical congeners were studied as potential inhibitors of [(3)H]cimetidine binding in membrane fractions from the rat brain. All compounds produced a concentration-dependent inhibition of [(3)H]cimetidine binding over a 500-fold range of potencies (K(i) values were 14.5 to >8000nM). However, antinociceptive potencies in rats did not significantly correlate with [(3)H]cimetidine-binding affinities (r=0.018, p=0.97, n=10). These results suggest that the [(3)H]cimetidine-binding site is not the analgesic target for improgan-like drugs.
Collapse
Affiliation(s)
- Rebecca Stadel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
8
|
Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nat Neurosci 2010; 13:284-6. [PMID: 20139973 PMCID: PMC2828325 DOI: 10.1038/nn.2497] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/07/2010] [Indexed: 11/08/2022]
|
9
|
Grimberg BT, Jaworska MM, Hough LB, Zimmerman PA, Phillips JG. Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials. Bioorg Med Chem Lett 2009; 19:5452-7. [PMID: 19666223 PMCID: PMC3131497 DOI: 10.1016/j.bmcl.2009.07.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.
Collapse
Affiliation(s)
- Brian T Grimberg
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106-7286, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Stadel R, Yang J, Nalwalk JW, Phillips JG, Hough LB. High-affinity binding of [3H]cimetidine to a heme-containing protein in rat brain. Drug Metab Dispos 2007; 36:614-21. [PMID: 18094038 DOI: 10.1124/dmd.107.017889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
[(3)H]Cimetidine (3HCIM) specifically binds to an unidentified site in the rat brain. Because recently described ligands for this site have pharmacological activity, 3HCIM binding was characterized. 3HCIM binding was saturable, heat-labile, and distinct from the histamine H(2) receptor. To test the hypothesis that 3HCIM binds to a cytochrome P450 (P450), the effects of nonselective and isoform-selective P450 inhibitors were studied. The heme inhibitor KCN and the nonselective P450 inhibitor metyrapone both produced complete, concentration-dependent inhibition of 3HCIM binding (K(i) = 1.3 mM and 11.9 muM, respectively). Binding was largely unaffected by inhibitors of CYP1A2, 2B6, 2C8, 2C9, 2D6, 2E1, and 19A1 but was eliminated by inhibitors of CYP2C19 (tranylcypromine) and CYP3A4 (ketoconazole). Synthesis and testing of CC11 [4(5)-(benzylthiomethyl)-1H-imidazole] and CC12 [4(5)-((4-iodobenzyl)-thiomethyl)-1H-imidazole] confirmed both drugs to be high-affinity inhibitors of 3HCIM binding. On recombinant human P450s, CC12 was a potent inhibitor of CYP2B6 (IC(50) = 11.7 nM), CYP2C19 (51.4 nM), and CYP19A1 (140.7 nM) and had a range of activities (100-494 nM) on nine other isoforms. Although the 3HCIM binding site pharmacologically resembles some P450s, eight recombinant human P450s and three recombinant rat P450s did not exhibit 3HCIM binding. Inhibition by KCN and metyrapone suggests that 3HCIM binds to a heme-containing brain protein (possibly a P450). However, results with selective P450 inhibitors, recombinant P450 isoforms, and a P450 antibody did not identify a 3HCIM-binding P450 isoform. Finally, CC12 is a new, potent inhibitor of CYP2B6 and CYP2C19 that may be a valuable tool for P450 research.
Collapse
Affiliation(s)
- Rebecca Stadel
- Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, 47 New Scotland Ave, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
12
|
Salussolia CL, Nalwalk JW, Hough LB. Improgan-induced hypothermia: a role for cannabinoid receptors in improgan-induced changes in nociceptive threshold and body temperature. Brain Res 2007; 1152:42-8. [PMID: 17433267 PMCID: PMC1949872 DOI: 10.1016/j.brainres.2007.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/22/2007] [Accepted: 03/11/2007] [Indexed: 11/23/2022]
Abstract
Improgan, a congener of the H(2) antagonist cimetidine, produces non-opioid antinociception which is blocked by the CB(1) antagonist rimonabant, implying a cannabinoid mechanism of action. Since cannabinoids produce hypothermia as well as antinociception in rodents, the present study investigated the pharmacological activity of improgan on core body temperature and nociceptive (tail flick) responses. Improgan (60, 100 and 140 microg, intraventricular [ivt]) elicited significant decreases in core temperature 3-30 min following injection with a maximal hypothermic effect of -1.3 degrees C. Pretreatment with rimonabant (50 microg, ivt) produced a statistically significant but incomplete (29-42%) antagonism of improgan hypothermia. In control experiments, the CB(1) agonist CP-55,940 (37.9 microg, ivt) induced significant decreases in core temperature (-1.8 degrees C) 3-30 min following injection. However, unlike the case with improgan, pretreatment with rimonabant completely blocked CP-55,940 hypothermia. Furthermore, CP-55,940 and improgan elicited maximal antinociception over the same time course and dose ranges, and both effects were attenuated by rimonabant. These results show that, like cannabinoid agonists in the rat, improgan produces antinociception and hypothermia which is blocked by a CB(1) antagonist. Unlike cannabinoid agonists, however, improgan does not produce locomotor inhibition at antinociceptive doses. Additional experiments were performed to determine the effect of CC12, a recently discovered improgan antagonist which lacks affinity at CB(1) receptors. Pretreatment with CC12 (183 microg, ivt) produced complete inhibition of both the antinociception and the hypothermia produced by improgan, suggesting the possible role of an unknown improgan receptor in both of these effects.
Collapse
Affiliation(s)
- Catherine L Salussolia
- Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, Albany, NY 12206, USA
| | | | | |
Collapse
|