1
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
2
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
3
|
The mGlu 7 receptor in schizophrenia - An update and future perspectives. Pharmacol Biochem Behav 2022; 218:173430. [PMID: 35870668 DOI: 10.1016/j.pbb.2022.173430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
The mGlu7 receptor belongs to the III group of metabotropic glutamatergic (mGlu) receptors and physiologically serves as an "emergency" receptor that is activated by high, almost pathological, glutamate concentrations. Of all mGlu receptors, this receptor is most highly expressed in the brain. Additionally, relatively intense expression of the receptor was found at the periphery, for example in the bowels or in the reproductive system of male mice, but this review will be focused predominantly on its role in the brain. In the CNS, the receptor is expressed presynaptically, in the center of the synaptic cleft, at the terminals of both excitatory glutamatergic and inhibitory GABAergic neurons. Thus, it may regulate the release of both glutamate and GABA. Schizophrenia is thought to develop as a consequence of a disturbed glutamatergic-GABAergic balance in different parts of the brain. Thus, the mGlu7 receptor may be involved in the pathophysiology of schizophrenia and consequently constitute the target for antipsychotic drug discovery. In this review, we summarize the available data about mGlu7 receptor ligands and their activity in animal models of schizophrenia. At present, only a few ligands are available, and negative allosteric modulators (NAMs) appear to exert antipsychotic-like efficacy, indicating that the inhibition of the receptor could constitute a promising target in the search for novel drugs. Additionally, the data concerning the expression of the receptor in the CNS and putative mechanisms by which its inhibition may contribute to the treatment of schizophrenia will be discussed. Finally, the polymorphisms of genes encoding the receptor in schizophrenic patients will also be provided.
Collapse
|
4
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders.
Collapse
|
5
|
Dogra S, Conn PJ. Metabotropic Glutamate Receptors As Emerging Targets for the Treatment of Schizophrenia. Mol Pharmacol 2022; 101:275-285. [PMID: 35246479 PMCID: PMC9092465 DOI: 10.1124/molpharm.121.000460] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence of glutamatergic abnormalities in the brains of schizophrenia patients has led to efforts to target various components of glutamatergic signaling as potential new approaches for schizophrenia. Exciting research suggests that metabotropic glutamate (mGlu) receptors could provide a fundamentally new approach for better symptomatic relief in patients with schizophrenia. In preclinical studies, the mGlu5 receptor positive allosteric modulators (PAMs) show efficacy in animal models relevant for all symptom domains in schizophrenia. Interestingly, biased pure mGlu5 receptor PAMs that do not potentiate coupling of mGlu5 receptors to N-methyl-D-aspartate (NMDA) receptors lack neurotoxic effects associated with mGlu5 PAMs that enhance coupling to NMDA receptors or have allosteric agonist activity. This provides a better therapeutic profile for treating schizophrenia-like symptoms. Additionally, the mGlu1 receptor PAMs modulate dopamine release in the striatum, which may contribute to their antipsychotic-like effects. Besides group I mGlu (mGlu1 and mGlu5) receptors, agonists of mGlu2/3 receptors also induce robust antipsychotic-like and procognitive effects in rodents and may be effective in treating symptoms of schizophrenia in a selective group of patients. Additionally, mGlu2/4 receptor heterodimers modulate glutamatergic neurotransmission in the prefrontal cortex at selective synapses activated in schizophrenia and therefore hold potential as novel antipsychotics. Excitingly, the mGlu3 receptor activation can enhance cognition in rodents, suggesting that mGlu3 receptor agonist/PAM could provide a novel approach for the treatment of cognitive deficits in schizophrenia. Collectively, the development of mGlu receptor-specific ligands may provide an alternative approach to meet the clinical need for safer and more efficacious therapeutics for schizophrenia. SIGNIFICANCE STATEMENT: The currently available antipsychotic medications do not show significant efficacy for treating negative symptoms and cognitive deficits in schizophrenia. Emerging preclinical and clinical literature suggests that pharmacological targeting of metabotropic glutamate receptors could potentially provide an alternative approach for designing safer and more efficacious therapeutics for treating schizophrenia.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - P Jeffrey Conn
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
6
|
Stankiewicz A, Kaczorowska K, Bugno R, Kozioł A, Paluchowska MH, Burnat G, Chruścicka B, Chorobik P, Brański P, Wierońska JM, Duszyńska B, Pilc A, Bojarski AJ. New 1,2,4-oxadiazole derivatives with positive mGlu 4 receptor modulation activity and antipsychotic-like properties. J Enzyme Inhib Med Chem 2021; 37:211-225. [PMID: 34894953 PMCID: PMC8667925 DOI: 10.1080/14756366.2021.1998022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Considering the allosteric regulation of mGlu receptors for potential therapeutic applications, we developed a group of 1,2,4-oxadiazole derivatives that displayed mGlu4 receptor positive allosteric modulatory activity (EC50 = 282–656 nM). Selectivity screening revealed that they were devoid of activity at mGlu1, mGlu2 and mGlu5 receptors, but modulated mGlu7 and mGlu8 receptors, thus were classified as group III-preferring mGlu receptor agents. None of the compounds was active towards hERG channels or in the mini-AMES test. The most potent in vitro mGlu4 PAM derivative 52 (N-(3-chloro-4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)picolinamide) was readily absorbed after i.p. administration (male Albino Swiss mice) and reached a maximum brain concentration of 949.76 ng/mL. Five modulators (34, 37, 52, 60 and 62) demonstrated significant anxiolytic- and antipsychotic-like properties in the SIH and DOI-induced head twitch test, respectively. Promising data were obtained, especially for N-(4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)-3-methylphenyl)picolinamide (62), whose effects in the DOI-induced head twitch test were comparable to those of clozapine and better than those reported for the selective mGlu4 PAM ADX88178.
Collapse
Affiliation(s)
- Anna Stankiewicz
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Aneta Kozioł
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maria H Paluchowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Chruścicka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Chorobik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Cortical influences of serotonin and glutamate on layer V pyramidal neurons. PROGRESS IN BRAIN RESEARCH 2021; 261:341-378. [PMID: 33785135 DOI: 10.1016/bs.pbr.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Layer V pyramidal neurons constitute principle output neurons of the medial prefrontal cortex (mPFC)/neocortex to subcortical regions including the intralaminar/midline thalamic nuclei, amygdala, basal ganglia, brainstem nuclei and the spinal cord. The effects of 5-hydroxytryptamine (5-HT) on layer V pyramidal cells primarily reflect a range of excitatory influences through 5-HT2A receptors and inhibitory influences through non-5-HT2A receptors, including 5-HT1A receptors. While the 5-HT2A receptor is primarily a postsynaptic receptor on throughout the apical dendritic field of 5-HT2A receptors, activation of a minority of 5-HT2A receptors also appears to increase spontaneous excitatory postsynaptic currents/potentials (EPSCs/EPSPs) via a presynaptic effect on thalamocortical terminals arising from the midline and intralaminar thalamic nuclei. Activation of 5-HT2A receptors by the phenethylamine hallucinogen also appears to increase asynchronous release of glutamate upon the layer V pyramidal dendritic field, an effect that is suppressed by 5-HT itself through non-5-HT2A receptors. Serotonergic hallucinogens acting on 5-HT2A receptors also appears to increase gene expression of immediate early genes (iEG) and other receptors appearing to induce an iEG-like response like BDNF. Psychedelic hallucinogens acting on 5-HT2A receptors also induce head twitches in rodents that appear related to induction of glutamate release. These electrophysiological, biochemical and behavioral effects of serotonergic hallucinogens appear to be related to modulating glutamatergic thalamocortical neurotransmission and/or shifting the balance toward 5-HT2A receptor activation and away from non-5-HT2A receptor activation. These 5-HT2A receptor induced responses are modulated by feedback homeostatic mechanisms through mGlu2, mGlu4, and mGlu8 presynaptic receptors on thalamocortical terminals. These 5-HT2A receptor and glutamatergic interactions also appear to play a role on higher cortical functions of the mPFC such as motoric impulsivity and antidepressant-like behavioral responses on the differential-reinforcement-of low rate 72-s (DRL 72-s schedule). These mutually opposing effects between 5-HT2A receptor and mGlu autoreceptor activation (e.g., blocking 5-HT2A receptors and enhancing activity at mGlu2 receptors) may play a clinical role with respect to currently prescribed or novel antidepressant drugs. Thus, there is an important balance between 5-HT2A receptor activation and activation of mGlu autoreceptors on prefrontal cortical layer V pyramidal cells with respect to the electrophysiological, biochemical and behavioral effects serotonergic hallucinogenic drugs.
Collapse
|
8
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
9
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
10
|
Marek GJ. Interactions of Hallucinogens with the Glutamatergic System: Permissive Network Effects Mediated Through Cortical Layer V Pyramidal Neurons. Curr Top Behav Neurosci 2018; 36:107-135. [PMID: 28831734 DOI: 10.1007/7854_2017_480] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recordings made from layer V (L5) pyramidal cells of the prefrontal cortex (PFC) and neocortex in rodent slice preparations have shown that serotonin (5-hydroxytryptamine, 5-HT) and serotonergic hallucinogens induce an increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in the apical dendritic field by activating 5-HT2A receptors. Serotonergic hallucinogens induce late EPSCs and increase recurrent network activity when subcortical or mid-cortical regions are stimulated at low frequencies (e.g., 0.1 Hz). A range of agonists or positive allosteric modulators (PAMs) for mostly Gi/o-coupled receptors, including metabotropic glutamate2 (mGlu2), adenosine A1, or μ-opioid receptors, suppress these effects of 5-HT2A receptor stimulation. Furthermore, a range of mostly Gq/11-coupled receptors (including orexin2 [OX2]; α1-adrenergic, and mGlu5 receptors) similarly induce glutamate (Glu) release onto L5 pyramidal cells. Evidence implicates a number of brain regions in mediating these effects of serotonergic hallucinogens and Gq/11-coupled receptors including the midline and intralaminar thalamic nuclei, claustrum, and neurons in deep PFC. These effects on 5-HT2A receptors and related GPCRs appear to play a major role in the behavioral effects of serotonergic hallucinogens, such as head twitches in rodents and higher order behaviors such as rodent lever pressing on the differential-reinforcement-of-low rate 72-s (DRL 72-s) schedule. This implies that the effects of 5-HT2A receptor activation on the activity of L5 pyramidal cells may be responsible for mediating a range of behaviors linked to limbic circuitry with connectivity between the PFC, striatum, thalamus, claustrum, striatum, amygdala, and the hippocampal formation.
Collapse
Affiliation(s)
- Gerard J Marek
- Global Medical Science, CNS and Pain, Astellas Pharma Global Development, 1 Astellas Way, Northbrook, IL, 60062, USA.
| |
Collapse
|
11
|
Stansley BJ, Conn PJ. The therapeutic potential of metabotropic glutamate receptor modulation for schizophrenia. Curr Opin Pharmacol 2018; 38:31-36. [PMID: 29486374 PMCID: PMC5949078 DOI: 10.1016/j.coph.2018.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
Abstract
Accumulating evidence suggests that a dysregulation of the glutamatergic system exists in the brains of schizophrenia patients. The metabotropic glutamate (mGlu) receptors are being investigated as novel drug targets for this disease, and have shown promise in both preclinical and clinical studies. Activation of mGlu5 receptors may be efficacious for several symptom domains (positive, negative, and cognitive) and the potential for targeting mGlu5 receptors has been bolstered by recent research on mitigating toxicity profiles associated with mGlu5 activation. Additionally, genetic profiling of schizophrenia patients suggests that genes encoding for mGlu1 and mGlu3 receptors are altered, prompting preclinical studies that have demonstrated potential antipsychotic and cognitive enhancing effects of agents that activate mGlu1 and mGlu3 receptors, respectively. Development of subtype-specific drugs for the mGlu receptors, such as allosteric modulators, could provide a path forward for more efficacious and tolerable therapeutics for schizophrenia.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Maksymetz J, Moran SP, Conn PJ. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 2017; 10:15. [PMID: 28446243 PMCID: PMC5405554 DOI: 10.1186/s13041-017-0293-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Support for the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has led to increasing focus on restoring proper glutamatergic signaling as an approach for treatment of this devastating disease. The ability of metabotropic glutamate (mGlu) receptors to modulate glutamatergic neurotransmission has thus attracted considerable attention for the development of novel antipsychotics. Consisting of eight subtypes classified into three groups based on sequence homology, signal transduction, and pharmacology, the mGlu receptors provide a wide range of targets to modulate NMDAR function as well as glutamate release. Recently, allosteric modulators of mGlu receptors have been developed that allow unprecedented selectivity among subtypes, not just groups, facilitating the investigation of the effects of subtype-specific modulation. In preclinical animal models, positive allosteric modulators (PAMs) of the group I mGlu receptor mGlu5 have efficacy across all three symptom domains of schizophrenia (positive, negative, and cognitive). The discovery and development of mGlu5 PAMs that display unique signal bias suggests that efficacy can be retained while avoiding the neurotoxic effects of earlier compounds. Interestingly, mGlu1 negative allosteric modulators (NAMs) appear efficacious in positive symptom models of the disease but are still in early preclinical development. While selective group II mGlu receptor (mGlu2/3) agonists have reached clinical trials but were unsuccessful, specific mGlu2 or mGlu3 receptor targeting still hold great promise. Genetic studies implicated mGlu2 in the antipsychotic effects of group II agonists and mGlu2 PAMs have since entered into clinical trials. Additionally, mGlu3 appears to play an important role in cognition, may confer neuroprotective effects, and thus is a promising target to alleviate cognitive deficits in schizophrenia. Although group III mGlu receptors (mGlu4/6/7/8) have attracted less attention, mGlu4 agonists and PAMs appear to have efficacy across all three symptoms domains in preclinical models. The recent discovery of heterodimers comprising mGlu2 and mGlu4 may explain the efficacy of mGlu4 selective compounds but this remains to be determined. Taken together, compounds targeting mGlu receptors, specifically subtype-selective allosteric modulators, provide a compelling alternative approach to fill the unmet clinical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
| | - Sean P. Moran
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
13
|
Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J Neurochem 2017; 141:507-519. [DOI: 10.1111/jnc.13725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Ida Marabese
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Livio Luongo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Francesca Guida
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Vito de Novellis
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Sabatino Maione
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| |
Collapse
|
14
|
Woźniak M, Acher F, Marciniak M, Lasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A, Wierońska JM. Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022. Curr Neuropharmacol 2017; 14:413-26. [PMID: 26769224 PMCID: PMC4983756 DOI: 10.2174/1570159x13666150516000630] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 05/12/2015] [Indexed: 01/08/2023] Open
Abstract
Considering that ligands of metabotropic glutamate and GABA receptors may exert beneficial effects on schizophrenia, we assessed the actions of the first mGlu4-selective orthosteric agonist, LSP4-2022, in several tests reflecting positive, negative, and cognitive symptoms of schizophrenia. Moreover, we investigated the possible involvement of GABAB receptors in LSP4-2022-induced actions. Hyperactivity induced by MK-801 or amphetamine and DOI-induced head twitches in mice were used as the models of positive symptoms. The social interaction test, modified forced swim test (FST), and novel object recognition (NOR) test were used as the models of negative and cognitive symptoms of schizophrenia. LSP4-2022 inhibited hyperactivity (in a dose-dependent manner, 0.5-2 mg/kg) induced by MK-801 or amphetamine and DOI-induced head twitches. In mGlu4 receptor knockout mice, LSP4-2022 was not effective. However, it reversed MK-801-induced impairment in the social interaction test and the MK-801-induced increase of immobility in the modified FST. In the NOR test, LSP4-2022 was active at a dose of 2 mg/kg. GABAB receptor antagonist, CGP55845 (10 mg/kg), reversed LSP4-2022-induced effects in hyperactivity and head twitch tests. At the same time, the simultaneous administration of subeffective doses of LSP4-2022 (0.1 mg/kg) and a positive allosteric modulator of GABAB receptor PAM, GS39783 (0.1 mg/kg), induced clear antipsychotic-like effects in those two tests. Such an interaction between mGlu4 and GABAB receptors was not observed in the social interaction and NOR tests. Therefore, we suggest that the activation of the mGlu4 receptor is a promising approach facilitating the discovery of novel antipsychotic drugs, and that the interplay between mGlu4 and GABAB receptors may become the basis for a novel therapy for schizophrenic patients with predomination of positive symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
15
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Metabotropic Glutamate Receptor 7: From Synaptic Function to Therapeutic Implications. Curr Neuropharmacol 2017; 14:504-13. [PMID: 27306064 PMCID: PMC4983754 DOI: 10.2174/1570159x13666150716165323] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGluR7) is localized presynaptically at the active zone of neurotransmitter release. Unlike mGluR4 and mGluR8, which share mGluR7's presynaptic location, mGluR7 shows low affinity for glutamate and is activated only by high glutamate concentrations. Its wide distribution in the central nervous system (CNS) and evolutionary conservation across species suggest that mGluR7 plays a primary role in controlling excitatory synapse function. High mGluR7 expression has been observed in several brain regions that are critical for CNS functioning and are involved in neurological and psychiatric disorder development. Until the recent discovery of selective ligands for mGluR7, techniques to elucidate its role in neural function were limited to the use of knockout mice and gene silencing. Studies using these two techniques have revealed that mGluR7 modulates emotionality, stress and fear responses. N,N`-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) was reported as the first selective mGluR7 allosteric agonist. Pharmacological effects of AMN082 have not completely confirmed the mGluR7-knockout mouse phenotype; this has been attributed to rapid receptor internalization after drug treatment and to the drug's apparent lack of in vivo selectivity. Therefore, the more recently developed mGluR7 negative allosteric modulators (NAMs) are crucial for understanding mGluR7 function and for exploiting its potential as a target for therapeutic interventions. This review presents the main findings regarding mGluR7's effect on modulation of synaptic function and its role in normal CNS function and in models of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
16
|
Woźniak M, Gołembiowska K, Noworyta-Sokołowska K, Acher F, Cieślik P, Kusek M, Tokarski K, Pilc A, Wierońska JM. Neurochemical and behavioral studies on the 5-HT 1A-dependent antipsychotic action of the mGlu 4 receptor agonist LSP4-2022. Neuropharmacology 2016; 115:149-165. [PMID: 27465045 DOI: 10.1016/j.neuropharm.2016.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022]
Abstract
LSP4-2022 is a novel, orthosteric agonist of mGlu4 receptor that induces antipsychotic-like activity in animal studies. In the present study, the involvement of 5-HT1A receptors in LSP4-2022-induced antipsychotic actions and the neurochemical background of that interaction were investigated. In several behavioral tests the actions of effective doses of the compound (0.5-2 mg/kg) were antagonized via the administration of the 5-HT1A antagonist WAY100635 (0.1 mg/kg). The co-administration of sub-effective dose of the 5-HT1A agonist (R)-(S)-8-OH-DPAT (0.01 mg/kg) intensified the activity of ineffective doses of LSP4-2022, having no influence on the efficacy of the active doses. The co-administration of effective doses of both compounds did not intensify each other's action. In the microdialysis in vivo tests, MK-801 (0.6 mg/kg) induced an enhancement of the release of dopamine, serotonin, glutamate and GABA in the prefrontal cortex. Administration of LSP4-2022 (2 mg/kg) abolished this MK-801-induced effect on neurotransmitter release. Co-administration with WAY100635 (0.1 mg/kg), a 5-HT1A antagonist, completely (dopamine, serotonin) or partially (glutamate, GABA) counteracted this LSP4-2022-induced effect. Subsequently, the patch-clamp recordings of spontaneous EPSCs were performed. sEPSCs were evoked in slices from the mouse prefrontal cortex by DOI (10 μM). LSP4-2022 (2.5; 5 and 10 μm) reversed DOI-induced changes in both the frequency and amplitude of the sEPSCs, but the more robust effect on the frequency was observed. The administration of WAY100635 had no effect on the LSP4-2022-induced effects on sEPSCs, indicating that the mGlu4-5-HT1A interaction does not occur via single-neuron signaling but involves neuronal circuits that regulate neurotransmitter release. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | | | - Francine Acher
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, UMR8601-CNRS, Paris Descartes University, Sorbonne Paris Cite,45, rue des Saints-Peres, 75270 Paris Cedex 06, France
| | - Paulina Cieślik
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Magdalena Kusek
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Krzysztof Tokarski
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
17
|
Domin H, Przykaza Ł, Jantas D, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuroprotective potential of the group III mGlu receptor agonist ACPT-I in animal models of ischemic stroke: In vitro and in vivo studies. Neuropharmacology 2016; 102:276-94. [DOI: 10.1016/j.neuropharm.2015.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/07/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
|
18
|
The GRM7 gene, early response to risperidone, and schizophrenia: a genome-wide association study and a confirmatory pharmacogenetic analysis. THE PHARMACOGENOMICS JOURNAL 2016; 17:146-154. [DOI: 10.1038/tpj.2015.90] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 08/26/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023]
|
19
|
Wierońska JM, Zorn SH, Doller D, Pilc A. Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacol Ther 2015; 157:10-27. [PMID: 26549541 DOI: 10.1016/j.pharmthera.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review, we aim to present, discuss and clarify our current understanding regarding the prediction of possible antipsychotic effects of metabotropic glutamate (mGlu) receptor ligands. The number of preclinical trials clearly indicates, that this group of compounds constitutes an excellent alternative to presently used antipsychotic therapy, being effective not only to positive, but also negative and cognitive symptoms of schizophrenia. Although the results of clinical trials that were performed for the group of mGlu2/3 agonists were not so enthusiastic as in animal studies, they still showed that mGlu ligands do not induced variety of side effects typical for presently used antipsychotics, and were generally well tolerated. The lack of satisfactory effectiveness towards schizophrenia symptoms of mGlu2/3 activators in humans could be a result of variety of uncontrolled factors and unidentified biomarkers different for each schizophrenia patient, that should be taken into consideration in the future set of clinical trials. The subject is still open for further research, and the novel classes of mGlu5 or mGlu2/3 agonists/PAMs were recently introduced, including the large group of compounds from the third group of mGlu receptors, especially of mGlu4 subtype. Finally, more precise treatment based on simultaneous administration of minimal doses of the ligands for two or more receptors, seems to be promising in the context of symptoms-specific schizophrenia treatment.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | | | | | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland.
| |
Collapse
|
20
|
mGlu5-GABAB interplay in animal models of positive, negative and cognitive symptoms of schizophrenia. Neurochem Int 2015; 88:97-109. [DOI: 10.1016/j.neuint.2015.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
|
21
|
Therapeutic potential of group III metabotropic glutamate receptor ligands in pain. Curr Opin Pharmacol 2015; 20:64-72. [DOI: 10.1016/j.coph.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022]
|
22
|
Wierońska JM, Sławińska A, Łasoń-Tyburkiewicz M, Gruca P, Papp M, Zorn SH, Doller D, Kłeczek N, Noworyta-Sokołowska K, Gołembiowska K, Pilc A. The antipsychotic-like effects in rodents of the positive allosteric modulator Lu AF21934 involve 5-HT1A receptor signaling: mechanistic studies. Psychopharmacology (Berl) 2015; 232:259-73. [PMID: 25012236 PMCID: PMC4281359 DOI: 10.1007/s00213-014-3657-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/09/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Diverse preclinical studies suggest the potential therapeutic utility of the modulation of the glutamatergic system in brain via metabotropic glutamate (mGlu) receptors. Lu AF21934, a positive allosteric modulator of the mGlu4 receptor, was previously shown to reverse behavioral phenotypes in animal models thought to mimic positive, negative, and cognitive symptoms of schizophrenia. OBJECTIVES To begin elucidating the brain circuitry involved in mGlu4 receptor pharmacology and add mechanistic support to Lu AF21934-induced phenotypic responses, the potential involvement of 5-HT1A receptors in these antipsychotic-like effects was explored. The tests used were the following: MK-801-induced hyperactivity and 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head twitches in mice, for positive symptoms; MK-801-induced disruptions of social interactions for negative symptoms; and novel object recognition and spatial delayed alteration test for cognitive symptoms. The microdialysis studies in which the effect of Lu AF21934 on MK-801-induced dopamine and serotonin release was investigated. RESULTS The effects caused by Lu AF2193 were inhibited by administration of the selective 5-HT1A receptor antagonist WAY100635 (0.1 mg/kg). That inhibition was observed across all models used. Moreover, the concomitant administration of sub-effective doses of Lu AF21934 and a sub-effective dose of the selective 5-HT1A receptor agonist tool compound (R)-(+)-8-hydroxy-DPAT hydrobromide (0.01 mg/kg) induced a clear antipsychotic-like effect in all the procedures used. Lu AF21934 (5 mg/kg) also inhibited MK-801-induced increase in dopamine and 5-HT release. CONCLUSIONS The actions of Lu AF21934 are 5-HT1A receptor-dependent. Activation of the mGlu4 receptor may be a promising mechanism for the development of novel antipsychotic drugs, efficacious toward positive, negative, and cognitive symptoms.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna Str. 12, 31-343, Kraków, Poland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Group III metabotropic glutamate receptors and drug addiction. Front Med 2014; 7:445-51. [PMID: 24078068 DOI: 10.1007/s11684-013-0291-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023]
Abstract
Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates).
Collapse
|
24
|
Domin H, Gołembiowska K, Jantas D, Kamińska K, Zięba B, Smiałowska M. Group III mGlu receptor agonist, ACPT-I, exerts potential neuroprotective effects in vitro and in vivo. Neurotox Res 2014; 26:99-113. [PMID: 24402869 PMCID: PMC4035549 DOI: 10.1007/s12640-013-9455-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/22/2013] [Accepted: 12/24/2013] [Indexed: 01/09/2023]
Abstract
Many evidence suggest that metabotropic glutamate receptors (mGluRs) may modulate glutamatergic transmission, hence, these receptors are regarded as potential targets for neuroprotective drugs. Since group III mGlu receptor agonists are known to reduce glutamatergic transmission by inhibiting glutamate release, we decided to investigate the neuroprotective potential of the group III mGlu receptor agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-I) against kainate (KA)-induced excitotoxicity in vitro and in vivo. In primary neuronal cell cultures ACPT-I (1-200 μM), applied 30 min-3 h after starting the exposure to KA (150 μM), significantly attenuated the KA-induced LDH release, increased cell viability, and inhibited caspase-3 activity both in cortical and hippocampal cell cultures. The effects were dose-, time- and structure-dependent. The neuroprotective effects of ACPT-I were reversed by (RS)-alpha-cyclopropyl-4-phosphonophenyl glycine, a group III mGluR antagonist. In the in vivo studies, KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region and the size of degeneration was examined by stereological counting of surviving neurons in the CA pyramidal layer. It was found that ACPT-I (7.5 or 15 nmol/1 μl), injected into the dorsal hippocampus 30 min, 1 or 3 h after KA in dose-dependent manner prevented the KA-induced neuronal damage. Moreover, in vivo microdialysis studies in the rat hippocampus showed that ACPT-I (200 μM) given simultaneously with KA (50 μM) significantly diminished the KA-induced glutamate release in the hippocampus. This mechanism seems to play a role in mediating the neuroprotective effect of ACPT-I.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland,
| | | | | | | | | | | |
Collapse
|
25
|
Kalinichev M, Le Poul E, Boléa C, Girard F, Campo B, Fonsi M, Royer-Urios I, Browne SE, Uslaner JM, Davis MJ, Raber J, Duvoisin R, Bate ST, Reynolds IJ, Poli S, Celanire S. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders. J Pharmacol Exp Ther 2014; 350:495-505. [PMID: 24947466 DOI: 10.1124/jpet.114.214437] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis.
Collapse
Affiliation(s)
- Mikhail Kalinichev
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Emmanuel Le Poul
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Christelle Boléa
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Françoise Girard
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Brice Campo
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Massimiliano Fonsi
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Isabelle Royer-Urios
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Susan E Browne
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Jason M Uslaner
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Matthew J Davis
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Jacob Raber
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Robert Duvoisin
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Simon T Bate
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Ian J Reynolds
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Sonia Poli
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Sylvain Celanire
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| |
Collapse
|
26
|
Sławińska A, Wierońska JM, Stachowicz K, Marciniak M, Lasoń-Tyburkiewicz M, Gruca P, Papp M, Kusek M, Tokarski K, Doller D, Pilc A. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGlu4 receptors in rodents. Br J Pharmacol 2014; 169:1824-39. [PMID: 23714045 DOI: 10.1111/bph.12254] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/24/2013] [Accepted: 05/12/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Because agonists at metabotropic glutamate receptors exert beneficial effects in schizophrenia, we have assessed the actions of Lu AF21934 and Lu AF32615, two chemically distinct, selective and brain-penetrant positive allosteric modulators (PAMs) of the mGlu4 receptor, in several tests reflecting positive, negative and cognitive symptoms of schizophrenia in rodents. EXPERIMENTAL APPROACH Hyperactivity induced by MK-801 or amphetamine and head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice were used as models for positive symptoms. Disruption of social interaction and spatial delayed alternation tests induced by MK-801 in rats were used as models for negative and cognitive symptoms of schizophrenia, respectively. KEY RESULTS Lu AF21934 (0.1-5 mg·kg(-1) ) and Lu AF32615 (2-10 mg·kg(-1) ) dose-dependently inhibited hyperactivity induced by MK-801 or amphetamine. They also antagonized head twitches and increased frequency of spontaneous excitatory postsynaptic currents (EPSCs) in brain slices, induced by DOI. In mice lacking the mGlu4 receptor (mGlu4 (-/-) ) mice, Lu AF21934 did not antagonize DOI-induced head twitches. MK-801-induced disruption in the social interaction test was decreased by Lu AF21934 at 0.5 mg·kg(-1) and by Lu AF32615 at 10 mg·kg(-1) . In the delayed spatial alternation test, Lu AF21934 was active at 1 and 2 mg·kg(-1) , while Lu AF32615 was active at 10 mg·kg(-1) . CONCLUSIONS AND IMPLICATIONS We propose that activation by PAMs of the mGlu4 receptor is a promising approach to the discovery of novel antipsychotic drugs.
Collapse
Affiliation(s)
- Anna Sławińska
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Williams CJ, Dexter DT. Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem 2013; 129:4-20. [PMID: 24224472 DOI: 10.1111/jnc.12608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders possess common pathological mechanisms, such as protein aggregation, inflammation, oxidative stress (OS) and excitotoxicity, raising the possibility of shared therapeutic targets. As a result of the selective cellular and regional expression of group III metabotropic glutamate (mGlu) receptors, drugs targeting such receptors have demonstrated both neuroprotective properties and symptomatic improvements in several models of neurodegeneration. In recent years, the discovery and development of subtype-selective ligands for the group III mGlu receptors has gained pace, allowing further research into the functions of these receptors and revealing their roles in health and disease. Activation of this class of receptors results in neuroprotection, with a variety of underlying mechanisms implicated. Group III mGlu receptor stimulation prevents excitotoxicity by inhibiting glutamate release from neurons and microglia and increasing glutamate uptake by astrocytes. It also attenuates the neuroinflammatory response by reducing glial reactivity and encourages neurotrophic phenotypes. This article will review the current literature with regard to the neuroprotective and symptomatic effects of group III mGlu receptor activation and discuss their promise as therapeutic targets in neurodegenerative disease. We review the neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease: Excess extracellular glutamate causes overactivation of NMDA receptors resulting in excitotoxicity. Externalization of phosphatidylserine stimulates phagocytosis of neurons by activated microglia, which contribute to damage through glutamate and pro-inflammatory factor release. Reactive astrocytes produce cytotoxic factors enhancing neuronal cell death. Activation of group III mGlu receptors by glutamate and/or mGlu receptor ligands results in inhibition of glutamate release from presynaptic terminals and microglia, reducing excitotoxicity. Astrocytic glutamate uptake is increased and microglia produce neurotrophic factors.
Collapse
Affiliation(s)
- Claire J Williams
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
28
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
29
|
Wierońska JM, Sławińska A, Stachowicz K, Łasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A. The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu₂/₃ receptor agonist, LY379268, is 5-HT₁A dependent. Behav Brain Res 2013; 256:298-304. [PMID: 23948211 DOI: 10.1016/j.bbr.2013.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 11/24/2022]
Abstract
mGlu(2/3) receptor agonists were shown to possess an antipsychotic-like potential in animal studies. Recent clinical investigations revealed that their antipsychotic potential might also manifest in humans. LY379268, the group II mGlu receptor orthosteric agonist, was previously shown to exhibit antipsychotic-like action in animal models of schizophrenia. However, the mechanism of its action is not fully recognized. Here, we decided to investigate the involvement of 5-HT1A receptors in the LY379268-induced antipsychotic effects. We used models of positive, negative and cognitive symptoms of schizophrenia, such as MK-801- and amphetamine-induced hyperactivity tests, DOI-induced head twitches, social interaction and novel object recognition. LY379268 was active in a wide range of doses (0.5-5 mg/kg), depending on the paradigm. The effects of the drug were not antagonized by 5-HT(1A) antagonist, WAY100635 (0.1 mg/kg) in the models of positive and negative symptoms. Conversely, in the novel object recognition test, which exerts cognitive disturbances, the action of LY379268 was antagonized by WAY100635. Concomitantly, the action of a sub-effective dose of the drug was enhanced by the administration of a sub-effective dose of 5-HT(1A) agonist, (R)-(+)-8-Hydroxy-DPAT. Altogether, we propose that the antipsychotic-like action of group II mGlu receptors' agonist is 5-HT(1A) independent in context of positive and negative symptoms, while the action toward cognitive disturbances seems to be 5-HT(1A) dependent.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Yamasaki T, Kumata K, Yui J, Fujinaga M, Furutsuka K, Hatori A, Xie L, Ogawa M, Nengaki N, Kawamura K, Zhang MR. Synthesis and evaluation of [11C]MMPIP as a potential radioligand for imaging of metabotropic glutamate 7 receptor in the brain. EJNMMI Res 2013; 3:54. [PMID: 23870677 PMCID: PMC3751550 DOI: 10.1186/2191-219x-3-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/11/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Metabotropic glutamate 7 (mGlu7) receptor is a crucial target protein for the development of pharmaceuticals against central nervous system disorders. In the present study, we synthesized [11C]MMPIP, a putative radioligand for mGlu7 (binding constant KB = 30 nM), and evaluated its potential for imaging of mGlu7 via in vitro and in vivo techniques. METHODS [11C]MMPIP was synthesized by the reaction of phenol precursor 3 with [11C]CH3I. In vitro autoradiography using [11C]MMPIP was performed on rat brain sections. To determine in vitro specific binding of [11C]MMPIP with mGlu7, a blocking study was conducted by co-incubation with excess AMN082, a selective antagonist for mGlu7, or unlabeled MMPIP. Positron emission tomography (PET) studies and ex vivo metabolite analysis were carried out on rat brains. RESULTS [11C]MMPIP was obtained with two specific activity (SA) levels of average 58 (conventional) and 3,800 (high SA) GBq/μmol, respectively. High radioactive signals derived from conventional [11C]MMPIP in the in vitro autoradiography were seen in the thalamus, medulla oblongata, and striatum, corresponding with comprehensive brain distributions of mGlu7. Co-incubation with ANM082 or unlabeled MMPIP reduced the radioactive signals in the brain sections, respectively. In the PET studies with [11C]MMPIP, no specific uptake relative to mGlu7 was found in the examined brain regions. CONCLUSION Despite in vitro specific binding of [11C]MMPIP with mGlu7, visualization of mGlu7 in the living brain using PET was not successful. Development of new ligand candidates with higher affinity for mGlu7 is necessary.
Collapse
Affiliation(s)
- Tomoteru Yamasaki
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wierońska JM, Acher FC, Sławińska A, Gruca P, Łasoń-Tyburkiewicz M, Papp M, Pilc A. The antipsychotic-like effects of the mGlu group III orthosteric agonist, LSP1-2111, involves 5-HT₁A signalling. Psychopharmacology (Berl) 2013; 227:711-25. [PMID: 23474845 PMCID: PMC3663209 DOI: 10.1007/s00213-013-3005-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/20/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Several studies have suggested that modulation of the glutamatergic system via metabotropic glutamate receptors (mGlu) could be a new way to achieve antipsychotic-like activity. LSP1-2111, the group III mGlu receptor orthosteric agonist, with a high affinity towards mGlu4 receptors, was previously shown to exhibit antipsychotic-like action in animal models displaying positive symptoms of schizophrenia. OBJECTIVES Here, we decided to investigate the possible role of LSP1-2111 in models of negative (social interaction) and cognitive (NOR) symptoms of psychosis. We also investigated the involvement of 5-HT1A receptors in the LSP1-2111-induced antipsychotic effects. Apart from the above-mentioned models of negative and cognitive symptoms, MK-801 and amphetamine-induced hyperactivity tests, plus the DOI-induced head twitches in mice as models for positive symptoms of psychosis, were used in this part of the investigations. RESULTS LSP1-2111 (0.5, 2, and 5 mg/ kg) dose-dependently inhibited MK-801-induced deficits in social interaction and NOR tests. The effects of the drug were antagonized by 5-HT1A antagonist, WAY100635 (0.1 mg/kg). A similar inhibition of LSP1-2111-induced effects was observed in models of positive symptoms of schizophrenia. Moreover, the concomitant administration of subeffective doses of LSP1-2111 (0.3-0.5 mg/kg) with a subeffective dose of 5-HT1A agonist, (R)-(+)-8-Hydroxy-DPAT (0.01 mg/kg), induced a clear antipsychotic-like effect in all of the procedures used. CONCLUSIONS Altogether, we propose that the activation of group III mGlu receptors may be a promising target for the development of novel antipsychotic drugs, towards not only positive but also negative and cognitive symptoms. The action of the compound is 5-HT1A-dependent.
Collapse
Affiliation(s)
- Joanna M. Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Francine C. Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Paris, France
| | - Anna Sławińska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland ,Medical College Faculty of Health Sciences, Jagiellonian University, 31-531 Kraków, Poland
| |
Collapse
|
32
|
Amalric M, Lopez S, Goudet C, Fisone G, Battaglia G, Nicoletti F, Pin JP, Acher FC. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson's disease. Neuropharmacology 2012; 66:53-64. [PMID: 22664304 DOI: 10.1016/j.neuropharm.2012.05.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/28/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
Restoring the balance between excitatory and inhibitory circuits in the basal ganglia, following the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta, represents a major challenge to treat patients affected by Parkinson's disease (PD). The imbalanced situation in favor of excitation in the disease state may also accelerate excitotoxic processes, thereby representing a potential target for neuroprotective therapies. Reducing the excitatory action of glutamate, the major excitatory neurotransmitter in the basal ganglia, should lead to symptomatic improvement for PD patients and may promote the survival of DA neurons. Recent studies have focused on the modulatory action of metabotropic glutamate (mGlu) receptors on neurodegenerative diseases including PD. Group III mGlu receptors, including subtypes 4, 7 and 8, are largely expressed in the basal ganglia. Recent studies highlight the use of selective mGlu4 receptor positive allosteric modulators (PAMs) for the treatment of PD. Here we review the effects of newly-designed group-III orthosteric agonists on neuroprotection, neurorestoration and reduction of l-DOPA induced dyskinesia in animal models of PD. The combination of orthosteric mGlu4 receptor selective agonists with PAMs may open new avenues for the symptomatic treatment of PD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- M Amalric
- Aix-Marseille University, CNRS UMR 7291, Laboratoire de Neurosciences Fonctionnelles, Case C, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Flor PJ, Acher FC. Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs. Biochem Pharmacol 2012; 84:414-24. [PMID: 22554564 DOI: 10.1016/j.bcp.2012.04.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Group-III metabotropic glutamate receptors (mGluRs) comprise four structurally related brain and retinal G protein-coupled receptors (GPCRs), mGluR4, mGluR6, mGluR7 and mGluR8, which receive much attention as promising targets for nervous system drugs. In particular, activation of mGluR4 is a major focus for the development of new therapeutics in Parkinson's disease, while mGluR7 activation is considered a potential approach for future treatments of specific psychiatric conditions. The first generation group-III mGluR agonists, e.g.l-AP4 and l-SOP, are characterized by an essential phosphonate functional group, which became a major limitation for the development of systemically active, potent and receptor subtype-selective drugs. Recently however, two approaches emerged in parallel providing resolution to this constraint: in silico high-throughput screening of chemical libraries against a 3D-model of the mGluR4 extracellular domain identified a hit that was optimized into a series of potent and subtype-selective orthosteric agonists with drug-like properties and novel chemotype structures; secondly, high-throughput random screening of chemical libraries against recombinantly expressed group-III receptors identified diverse chemical sets of allosteric agonists and positive modulators, which are drug-like, display selectivity for mGluR4, mGluR7, or mGluR8 and act via novel pharmacological sites. Here, we illustrate new scientific insights obtained via the use of those strategies. Also, we compare advantages and disadvantages of both approaches to identify the desired group-III mGluR activators and we conclude with suggestions how to employ those discovery strategies with success for the identification, optimization, and development of clinical drug candidates; this may have important implications for the entire field of GPCR research.
Collapse
Affiliation(s)
- Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
34
|
Célanire S, Campo B. Recent advances in the drug discovery of metabotropic glutamate receptor 4 (mGluR4) activators for the treatment of CNS and non-CNS disorders. Expert Opin Drug Discov 2012; 7:261-80. [PMID: 22468956 DOI: 10.1517/17460441.2012.660914] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The metabotropic glutamate receptor type 4 (mGluR4) plays a pivotal role in a plethora of therapeutic areas, as recently demonstrated in preclinical validation studies with several chemical classes of compounds in rodent models of central nervous system (CNS) and peripheral disorders. Activation of mGluR4 with orthosteric agonists, allosteric agonists or pure positive allosteric modulators (PAM) has been postulated to be of broad therapeutic use. AREAS COVERED The authors address past and current drug discovery efforts, insights and achievements in the field toward the identification of therapeutically promising and emerging class of mGluR4 activators, over the 2005 - 2011 period. Chemical structures, properties and in vivo pharmacological results discussed in the present review were retrieved from public literature including PubMed searches, Thomson Pharma and SciFinder databases searches, conferences, proceedings and posters. EXPERT OPINION Developing a subtype-selective, orally bioavailable brain penetrant mGluR4 orthosteric agonist remains challenging. Lack of subtype selectivity and low brain penetration has been a common limitation of the first generation of mGluR4 agonist and potentiators. However, significant progress has recently been made with the identification of several double- to single-digit nanomolar mGluR4 PAM having reasonable pharmacokinetic properties, oral bioavailability and brain penetration. The use of such compounds in research has led to advancement in understanding the central role of mGluR4 in multiple neurodegenerative and neuroinflammatory disorders, such as Parkinson's disease and multiple sclerosis. Our understanding of the potential application of mGluR4 as therapeutic target is expected to grow as these compounds advance into preclinical and clinical development.
Collapse
Affiliation(s)
- Sylvain Célanire
- Medicinal Chemistry Department, Addex Pharmaceuticals, Geneva, Switzerland.
| | | |
Collapse
|
35
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
36
|
Wierońska JM, Stachowicz K, Acher F, Lech T, Pilc A. Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology (Berl) 2012; 220:481-94. [PMID: 21952670 PMCID: PMC3299972 DOI: 10.1007/s00213-011-2502-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 09/05/2011] [Indexed: 12/19/2022]
Abstract
RATIONALE Several studies have suggested that modulation of the glutamatergic system via metabotropic glutamate receptors (mGlu) could be a new and efficient way to achieve antipsychotic-like activity. OBJECTIVES Here, we decided to investigate the possible role of the group III mGlu receptor ligands, LSP1-2111, the group III mGlu receptor orthosteric agonist, preferentially stimulating mGlu4 receptors especially in low doses, and AMN082, the mGlu7 receptor positive modulator. We used MK-801- and amphetamine-induced hyperactivity tests, as well as DOI-induced head twitches in mice as models for positive symptoms of psychosis. The C57Bl/6J mGlu7 receptor knockout mice were used to confirm that AMN082-induced effect was receptor specific. A non-selective antagonist of the group II/III mGlu receptors, LY341495, was used to block LSP1-2111-induced effects. RESULTS LSP1-2111 (1, 2, and 5 mg kg(-1)) dose dependently inhibited both MK-801- and amphetamine-induced hyperactivities. Moreover, the drug antagonized DOI-induced head twitches. The effects of the drug were antagonized by LY341495 administration (1.5 mg kg(-1), i.p.). In contrast, AMN082 (3 and 6 mg kg(-1)) had no effect on amphetamine-induced hyperactivity but induced an enhancement of MK-801-induced hyperactivity and DOI-induced head twitches in mice. In C57Bl/6J mGlu7 receptor knockout animals (KO), those effects of AMN082 were not observed. Moreover, mGlu7 KO animals were less sensitive for DOI-induced effect than their wild type littermates. CONCLUSIONS Altogether, we propose that among group III mGlu receptors, mGlu4 receptor may be a promising target for the development of novel antipsychotic drugs.
Collapse
Affiliation(s)
- Joanna M. Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | - Francine Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris Descartes, Paris, France
| | - Tomasz Lech
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland ,Medical College, Faculty of Health Sciences, Jagiellonian University, 31-531 Kraków, Poland
| |
Collapse
|
37
|
Wierońska JM, Kusek M, Tokarski K, Wabno J, Froestl W, Pilc A. The GABA B receptor agonist CGP44532 and the positive modulator GS39783 reverse some behavioural changes related to positive syndromes of psychosis in mice. Br J Pharmacol 2011; 163:1034-47. [PMID: 21371011 DOI: 10.1111/j.1476-5381.2011.01301.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE An important role of GABAergic neurotransmission in schizophrenia was proposed a long time ago, but there is limited data to support this hypothesis. In the present study we decided to investigate GABA(B) receptor ligands in animal models predictive for the antipsychotic activity of drugs. The GABA(B) receptor antagonists CGP51176 and CGP36742, agonist CGP44532 and positive allosteric modulator GS39783 were studied. EXPERIMENTAL APPROACH The effects of all ligands were investigated in MK-801- and amphetamine-induced hyperactivity tests. The anti-hallucinogenic-like effect of the compounds was screened in the model of head twitches induced by (±)1-(2.5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Furthermore, the effect of GS39783 and CGP44532 on DOI-induced frequency of spontaneous excitatory postsynaptic currents (EPSCs) in slices from mouse brain frontal cortices was investigated. The anti-cataleptic properties of the compounds were also assessed. KEY RESULTS The GABA(B) receptor activators CGP44532 and GS39783 exhibited antipsychotic-like effects both in the MK-801- and amphetamine-induced hyperactivity tests, as well as in the head-twitch model in mice. Such effects were not observed for the GABA(B) receptor antagonists. DOI-induced increased frequency of spontaneous EPSCs was also decreased by the compounds. Moreover, CGP44532 and GS39783 inhibited haloperidol-induced catalepsy and EPSCs. CONCLUSION AND IMPLICATIONS These data suggest that selective GABA(B) receptor activators may be useful in the treatment of psychosis.
Collapse
Affiliation(s)
- J M Wierońska
- Department of Neurobiology, Institute of Pharmacology PAS, 31-343 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Hashimoto K. The role of glutamate on the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1558-68. [PMID: 20600468 DOI: 10.1016/j.pnpbp.2010.06.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/15/2010] [Accepted: 06/15/2010] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is a common, chronic, recurrent mental illness that affects millions of individuals worldwide. Currently available antidepressants are known to affect the monoaminergic (e.g., serotonin, norepinephrine, and dopamine) systems in the brain. Accumulating evidence suggests that the glutamatergic neurotransmission via the excitatory amino acid glutamate also plays an important role in the neurobiology and treatment of this disease. Clinical studies have demonstrated that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has rapid antidepressant effects in treatment-resistant patients with MDD, suggesting the role of glutamate in the pathophysiology of treatment-resistant MDD. Furthermore, a number of preclinical studies demonstrated that the agents which act at glutamate receptors such as NMDA receptors, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors and metabotropic glutamate receptors (mGluRs) might have antidepressant-like activities in animal models of depression. In this article, the author reviews the role of glutamate in the neuron-glia communication induced by potential antidepressants.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
39
|
Maiese K, Chong ZZ, Shang YC, Hou J. Therapeutic promise and principles: metabotropic glutamate receptors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:1-14. [PMID: 19750024 PMCID: PMC2740993 DOI: 10.4161/oxim.1.1.6842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
40
|
Duty S. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson's disease. Br J Pharmacol 2011; 161:271-87. [PMID: 20735415 PMCID: PMC2989582 DOI: 10.1111/j.1476-5381.2010.00882.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current drugs used in the treatment of Parkinson's disease (PD), for example, L-DOPA and dopamine agonists, are very effective at reversing the motor symptoms of the disease. However, they do little to combat the underlying degeneration of dopaminergic neurones in the substantia nigra pars compacta (SNc) and their long-term use is associated with the appearance of adverse effects such as L-DOPA-induced dyskinesia. Much emphasis has therefore been placed on finding alternative non-dopaminergic drugs that may circumvent some or all of these problems. Group III metabotropic glutamate (mGlu) receptors were first identified in the basal ganglia a decade ago. One or more of these receptors (mGlu4, mGlu7 or mGlu8) is found on pre-synaptic terminals of basal ganglia pathways whose overactivity is implicated not only in the generation of motor symptoms in PD, but also in driving the progressive SNc degeneration. The finding that drugs which activate group III mGlu receptors can inhibit transmission across these overactive synapses has lead to the proposal that group III mGlu receptors are promising targets for drug discovery in PD. This paper provides a comprehensive review of the role and target potential of group III mGlu receptors in the basal ganglia. Overwhelming evidence obtained from in vitro studies and animal models of PD supports group III mGlu receptors as potentially important drug targets for providing both symptom relief and neuroprotection in PD.
Collapse
Affiliation(s)
- Susan Duty
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, UK.
| |
Collapse
|
41
|
Castagné V, Moser PC, Porsolt RD. Preclinical behavioral models for predicting antipsychotic activity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:381-418. [PMID: 20230767 DOI: 10.1016/s1054-3589(08)57010-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Schizophrenia is a major psychiatric disease that is characterized by three distinct symptom domains: positive symptoms, negative symptoms, and cognitive impairment. Additionally, treatment with classical antipsychotic medication can be accompanied by important side effects that involve extrapyramidal symptoms (EPS). The discovery of clozapine in the 1970s, which is efficacious in all three symptom domains and has a reduced propensity to induce EPS, has driven research for new antipsychotic agents with a wider spectrum of activity and a lower propensity to induce EPS. The following chapter reviews existing behavioral procedures in animals for their ability to predict compound efficacy against schizophrenia symptoms and liability to induce EPS. Rodent models of positive symptoms include procedures related to hyperfunction in central dopamine and serotonin (5-hydroxytryptamine) systems and hypofunction of central glutamatergic (N-methyl-d-aspartate) neurotransmission. Procedures for evaluating negative symptoms include rodent models of anhedonia, affective flattening, and diminished social interaction. Cognitive deficits can be assessed in rodent models of attention (prepulse inhibition (PPI), latent inhibition) and of learning and memory (passive avoidance, object and social recognition, Morris water maze, and operant-delayed alternation). The relevance of the conditioned avoidance response (CAR) is also discussed. A final section reviews animal procedures for assessing EPS liability, in particular parkinsonism (catalepsy), acute dystonia (purposeless chewing in rodents, dystonia in monkeys), akathisia (defecation in rodents), and tardive dyskinesia (long-term antipsychotic treatment in rodents and monkeys).
Collapse
Affiliation(s)
- Vincent Castagné
- Porsolt & Partners Pharmacology, 9 Bis Rue Henri Martin, 92100 Boulogne-Billancourt, France
| | | | | |
Collapse
|
42
|
Group III mGlu receptor agonist, ACPT-I, attenuates morphine-withdrawal symptoms after peripheral administration in mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1454-7. [PMID: 19660510 DOI: 10.1016/j.pnpbp.2009.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/13/2009] [Accepted: 07/24/2009] [Indexed: 11/20/2022]
Abstract
Several lines of evidence implicate dysfunction of glutamatergic neurotransmission in opiate dependence and withdrawal. Functional antagonists of glutamatergic system, including compounds acting on both ionotropic and metabotropic glutamate receptors (group I mGlu receptor antagonists and group II mGlu receptor agonists), have been shown to decrease behavioural signs of opiate withdrawal in rodents. In the present study we analyzed an influence of group III mGlu receptor agonist, ACPT-I, on opioid withdrawal syndrome, induced by repeated morphine administration and final naloxone injection. We show, that ACPT-I significantly attenuated typical symptoms of naloxone-induced morphine withdrawal, after peripheral administration in C57BL/6J mice. These data indicate an important role of group III mGlu receptors in morphine withdrawal states and suggest that activation of group III mGlu receptors may reduce opiate withdrawal symptoms.
Collapse
|
43
|
Gaspar PA, Bustamante ML, Silva H, Aboitiz F. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 2009; 111:891-900. [PMID: 19686383 DOI: 10.1111/j.1471-4159.2009.06325.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Early models for the etiology of schizophrenia focused on dopamine neurotransmission because of the powerful anti-psychotic action of dopamine antagonists. Nevertheless, recent evidence increasingly supports a primarily glutamatergic dysfunction in this condition, where dopaminergic disbalance is a secondary effect. A current model for the pathophysiology of schizophrenia involves a dysfunctional mechanism by which the NMDA receptor (NMDAR) hypofunction leads to a dysregulation of GABA fast- spiking interneurons, consequently disinhibiting pyramidal glutamatergic output and disturbing the signal-to-noise ratio. This mechanism might explain better than other models some cognitive deficits observed in this disease, as well as the dopaminergic alterations and therapeutic effect of anti-psychotics. Although the modulation of glutamate activity has, in principle, great therapeutic potential, a side effect of NMDAR overactivation is neurotoxicity, which accelerates neuropathological alterations in this illness. We propose that metabotropic glutamate receptors can have a modulatory effect over the NMDAR and regulate excitotoxity mechanisms. Therefore, in our view metabotropic glutamate receptors constitute a highly promising target for future drug treatment in this disease.
Collapse
Affiliation(s)
- Pablo A Gaspar
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Casilla, Santiago, Chile.
| | | | | | | |
Collapse
|
44
|
Stachowicz K, Kłodzińska A, Palucha-Poniewiera A, Schann S, Neuville P, Pilc A. The group III mGlu receptor agonist ACPT-I exerts anxiolytic-like but not antidepressant-like effects, mediated by the serotonergic and GABA-ergic systems. Neuropharmacology 2009; 57:227-34. [PMID: 19539634 DOI: 10.1016/j.neuropharm.2009.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Our earlier studies have demonstrated that (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid ACPT-I, a group III mGlu receptor agonist, produced anxiolytic-like and antidepressant-like actions after central administration. Here we describe the anxiolytic-like effects of ACPT-I after intraperitoneal administration in the stress-induced hyperthermia (SIH), elevated plus-maze (PMT) tests in mice and in the Vogel test in rats. However, the compound did not produce antidepressant-like effects in the tail suspension test (TST) or in the forced swim test (FST) in mice. The potential anxiolytic effect of ACPT-I (20 mg/kg) in the SIH test was inhibited by the benzodiazepine receptor antagonist flumazenil (given i.p., 10 mg/kg), and by a 5-HT(1A) receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635) (0.1 mg/kg s.c.). At the same time, ritanserin (0.5 mg/kg i.p.), the 5-HT2A/C receptor antagonist, did not change the anxiolytic-like effects of ACPT-I. The results of these studies indicate that the GABA-ergic and serotonergic systems are involved in the potential anxiolytic action of ACPT-I.
Collapse
Affiliation(s)
- K Stachowicz
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
45
|
Wierońska JM, Pilc A. Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int 2009; 55:85-97. [PMID: 19428811 DOI: 10.1016/j.neuint.2009.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Accepted: 02/27/2009] [Indexed: 01/13/2023]
Abstract
Mental disorders, such as depression, anxiety and schizophrenia, has become a large medical and social problem recently. Studies performed in animal tests and early clinical investigations brought a new insight in the pharmacotherapy of these disorders. Latest investigations are focused mainly on the glutamatergic system, a main excitatory amino acid neurotransmitter in the brain. Evidence indicates that metabotropic glutamate receptors ligands have excellent antidepressant, anxiolytic and antipsychotic effects. Metabotopic glutamate receptors (mGlu) divaded into three groups (group I, II and III) are localized on nerve terminals, postsynaptic sites and glial cells and thus they can influence and modulate the action of glutamate on different levels in the synapse. Recent advances in the identification of selective and specific compounds (both ortho- and allosteric ligands), and the generation of transgenic animals enabled to have new insight into the pathophysiology and therapy of mood disorders. At present, the most potent seem to be negative allosteric modulators of the first group (mGlu1 and mGlu5), and positive allosteric modulators of the second (mGlu2 and mGlu3) and third (mGlu4/7/8) group of mGlu receptors.
Collapse
|