1
|
Chohan MO, Lewandowski AB, Siegel RN, O'Reilly KC, Veenstra-VanderWeele J. Adolescent chemogenetic activation of dopaminergic neurons leads to reversible decreases in amphetamine-induced stereotypic behavior. Mol Brain 2024; 17:36. [PMID: 38858755 PMCID: PMC11165814 DOI: 10.1186/s13041-024-01110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Chronic perturbations of neuronal activity can evoke homeostatic and new setpoints for neurotransmission. Using chemogenetics to probe the relationship between neuronal cell types and behavior, we recently found reversible decreases in dopamine (DA) transmission, basal behavior, and amphetamine (AMPH) response following repeated stimulation of DA neurons in adult mice. It is unclear, however, whether altering DA neuronal activity via chemogenetics early in development leads to behavioral phenotypes that are reversible, as alterations of neuronal activity during developmentally sensitive periods might be expected to induce persistent effects on behavior. To examine the impact of developmental perturbation of DA neuron activity on basal and AMPH behavior, we expressed excitatory hM3D(Gq) in postnatal DA neurons in TH-Cre and WT mice. Basal and CNO- or AMPH-induced locomotion and stereotypy was evaluated in a longitudinal design, with clozapine N-oxide (CNO, 1.0 mg/kg) administered across adolescence (postnatal days 15-47). Repeated CNO administration did not impact basal behavior and only minimally reduced AMPH-induced hyperlocomotor response in adolescent TH-CrehM3Dq mice relative to WThM3Dq littermate controls. Following repeated CNO administration, however, AMPH-induced stereotypic behavior robustly decreased in adolescent TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the diminished AMPH-induced stereotypic behavior. Our findings indicate that the homeostatic compensations that take place in response to chronic hM3D(Gq) stimulation during adolescence are temporary and are dependent on ongoing chemogenetic stimulation.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Amy B Lewandowski
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Rebecca N Siegel
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
2
|
Palombo P, Maeda R, Riberti Zaniboni C, Antonagi Engi S, Yokoyama T, Bonetti Bertagna N, Anesio A, Cristina Bianchi P, Righi T, Emily Boaventura Tavares G, Souccar C, da Silva FBR, Cardoso Cruz F. Unlocking the role of dorsal hippocampal α4β2 nicotinic acetylcholine receptors in Ethanol-Induced conditioned place preference in mice. Neurosci Lett 2024; 824:137666. [PMID: 38331019 DOI: 10.1016/j.neulet.2024.137666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Alcohol Use Disorder (AUD) presents a significant and challenging public health concern, marked by a dearth of effective pharmacological treatments. Understanding the neurobiological underpinnings of AUD is of paramount importance for the development of efficacious interventions. The process of addiction entails the acquisition of associative behaviors, prominently engaging the dorsal region of the hippocampus for encoding these associative memories. Nicotinic receptor systems have been implicated in mediating the rewarding effects of ethanol, as well as memory and learning processes. In our current investigation, we delved into the role of α4β2 nicotinic acetylcholine receptors (nAChRs) within the dorsal hippocampus in the context of ethanol-induced conditioned place preference (CPP), a robust model for scrutinizing the rewarding properties and drug-associated behaviors. To establish CPP, ethanol (2 g/kg) was administered intraperitoneally during a 8-day conditioning phase. Fos immunohistochemistry was employed to assess the involvement of discrete subregions within the dorsal hippocampus in ethanol-induced CPP. Additionally, we probed the influence of α4β2 nAChRs on CPP via microinjections of a selective nAChR antagonist, dihydro-β-erythroidine (DHBE, at dosages of 6, 12, and 18 µg/0.5 µL per hemisphere) within the hippocampus. Our results unveiled that ethanol-induced CPP was associated with an increase Fos -positive cells in various subregions of the dorsal hippocampus, including CA1, CA2, CA3, and the dentate gyrus. Intrahippocampal administration of DHBE (at doses of 6 and 18 µg/0.50 µL per hemisphere) effectively blocked ethanol-induced CPP, while leaving locomotor activity unaffected. These findings underscore the critical involvement of the dorsal hippocampus and α4β2 nAChRs in the acquisition of ethanol-associated learning and reward.
Collapse
Affiliation(s)
- Paola Palombo
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Roberta Maeda
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Riberti Zaniboni
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila Antonagi Engi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thais Yokoyama
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natalia Bonetti Bertagna
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Augusto Anesio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Cristina Bianchi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thamires Righi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Caden Souccar
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Fabio Cardoso Cruz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Chohan MO, Fein H, Mirro S, O'Reilly KC, Veenstra-VanderWeele J. Repeated chemogenetic activation of dopaminergic neurons induces reversible changes in baseline and amphetamine-induced behaviors. Psychopharmacology (Berl) 2023; 240:2545-2560. [PMID: 37594501 PMCID: PMC10872888 DOI: 10.1007/s00213-023-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
RATIONALE Repeated chemogenetic stimulation is often employed to study circuit function and behavior. Chronic or repeated agonist administration can result in homeostatic changes, but this has not been extensively studied with designer receptors exclusively activated by designer drugs (DREADDs). OBJECTIVES We sought to evaluate the impact of repeated DREADD activation of dopaminergic (DA) neurons on basal behavior, amphetamine response, and spike firing. We hypothesized that repeated DREADD activation would mimic compensatory effects that we observed with genetic manipulations of DA neurons. METHODS Excitatory hM3D(Gq) DREADDs were virally expressed in adult TH-Cre and WT mice. In a longitudinal design, clozapine N-oxide (CNO, 1.0 mg/kg) was administered repeatedly. We evaluated basal and CNO- or amphetamine (AMPH)-induced locomotion and stereotypy. DA neuronal activity was assessed using in vivo single-unit recordings. RESULTS Acute CNO administration increased locomotion, but basal locomotion decreased after repeated CNO exposure in TH-CrehM3Dq mice relative to littermate controls. Further, after repeated CNO administration, AMPH-induced hyperlocomotion and stereotypy were diminished in TH-CrehM3Dq mice relative to controls. Repeated CNO administration reduced DA neuronal firing in TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the decreases in basal locomotion and AMPH response. CONCLUSIONS We found that repeated DREADD activation of DA neurons evokes homeostatic changes that should be factored into the interpretation of chronic DREADD applications and their impact on circuit function and behavior. These effects are likely to also be seen in other neuronal systems and underscore the importance of studying neuroadaptive changes with chronic or repeated DREADD activation.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Halli Fein
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Sarah Mirro
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
4
|
van Timmeren T, van Holst RJ, Goudriaan AE. Striatal ups or downs? Neural correlates of monetary reward anticipation, cue reactivity and their interaction in alcohol use disorder and gambling disorder. J Behav Addict 2023; 12:571-583. [PMID: 37133998 PMCID: PMC10316165 DOI: 10.1556/2006.2023.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/22/2023] [Accepted: 04/01/2023] [Indexed: 05/04/2023] Open
Abstract
Background and aims Dysfunction of the striatum, a brain region part of the mesolimbic reward system, is a key characteristic of addictive disorders, but neuroimaging studies have reported conflicting findings. An integrative model of addiction points to the presence or absence of addiction-related cues as an explanation for hyper- or hypoactivation, respectively, of the striatum. Methods To test this model directly, we investigated striatal activation during monetary reward anticipation in the presence versus absence of addiction-related cues using functional MRI. Across two studies, we compared 46 alcohol use disorder (AUD) patients with 30 matched healthy controls; and 24 gambling disorder (GD) patients with 22 matched healthy controls. Results During monetary reward anticipation, hypoactivation of the reward system was seen in AUD individuals compared to HCs. Additionally, a behavioral interaction was seen where gambling cues made participants, across groups, respond faster for bigger, but slower for smaller rewards. However, no striatal differences were seen in response to addiction-related cues between AUD or GD patients and their matched controls. Finally, despite substantial individual differences in neural activity to cue-reactivity and reward anticipation, these measures did not correlate, suggesting that they contribute independently to addiction aetiology. Discussion and Conclusions Our findings replicate previous findings of blunted striatal activity during monetary reward anticipation in alcohol use disorder but do not support the idea that addiction-related cues explain striatal dysfunction as suggested by the model.
Collapse
Affiliation(s)
- Tim van Timmeren
- Department of Social Health and Organizational Psychology, Utrecht University, The Netherlands
- ABC Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ruth J. van Holst
- ABC Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anna E. Goudriaan
- ABC Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Arkin Mental Health, The Netherlands
| |
Collapse
|
5
|
Servonnet A, Rompré PP, Samaha AN. Optogenetic activation of basolateral amygdala-to-nucleus accumbens core neurons promotes Pavlovian approach responses but not instrumental pursuit of reward cues. Behav Brain Res 2023; 440:114254. [PMID: 36516942 DOI: 10.1016/j.bbr.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Reward-associated conditioned stimuli (CSs) can acquire predictive value, evoking conditioned approach behaviours that prepare animals to engage with forthcoming rewards. Such CSs can also acquire conditioned reinforcing value, becoming attractive and pursued. Through their conditioned effects, CSs can promote adaptive (e.g., locating food) but also maladaptive behaviours (e.g., drug use). Basolateral amygdala neurons projecting to the nucleus accumbens core (BLA→NAc core neurons) mediate the response to appetitive CSs, but the extent to which this involves effects on the predictive and/or conditioned reinforcing properties of CSs is unclear. Thus, we examined the effects of optogenetic stimulation of BLA→NAc core neurons on i) CS-triggered approach to the site of reward delivery, a Pavlovian conditioned approach response and ii) the instrumental pursuit of a CS, a measure of conditioned reinforcement. Water-restricted, adult male rats learned that a light-tone compound cue (the CS) predicts water delivery into a receptacle. Pairing optogenetic stimulation of BLA→NAc core neurons with CS presentation potentiated CS-triggered water receptacle visits. This suggests that activity in BLA→NAc core neurons promotes Pavlovian goal-approach behaviour. Next, rats could lever press for CS presentations, without water delivery. Optogenetic stimulation of BLA→NAc core neurons either during instrumental test sessions or during prior CS-water conditioning did not influence lever responding for the CS. This suggests that activity in BLA→NAc core neurons does not influence the instrumental pursuit of a water-paired CS. We conclude that activation of BLA→NAc core neurons promotes cue-induced control over behaviour by increasing conditioned goal-approach responses, without affecting the operant pursuit of reward cues.
Collapse
Affiliation(s)
| | | | - Anne-Noël Samaha
- Department of Pharmacology and Physiology (Faculty of Medicine), Canada; Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Quebec, Canada.
| |
Collapse
|
6
|
Goutaudier R, Joly F, Mallet D, Bartolomucci M, Guicherd D, Carcenac C, Vossier F, Dufourd T, Boulet S, Deransart C, Chovelon B, Carnicella S. Hypodopaminergic state of the nigrostriatal pathway drives compulsive alcohol use. Mol Psychiatry 2023; 28:463-474. [PMID: 36376463 PMCID: PMC9812783 DOI: 10.1038/s41380-022-01848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
The neurobiological mechanisms underlying compulsive alcohol use, a cardinal feature of alcohol use disorder, remain elusive. The key modulator of motivational processes, dopamine (DA), is suspected to play an important role in this pathology, but its exact role remains to be determined. Here, we found that rats expressing compulsive-like alcohol use, operationalized as punishment-resistant self-administration, showed a decrease in DA levels restricted to the dorsolateral territories of the striatum, the main output structure of the nigrostriatal DA pathway. We then causally demonstrated that chemogenetic-induced selective hypodopaminergia of this pathway resulted in compulsive-like alcohol self-administration in otherwise resilient rats, accompanied by the emergence of alcohol withdrawal-like motivational impairments (i.e., impaired motivation for a natural reinforcer). Finally, the use of the monoamine stabilizer OSU6162, previously reported to correct hypodopaminergic states, transiently decreased compulsive-like alcohol self-administration in vulnerable rats. These results suggest a potential critical role of tonic nigrostriatal hypodopaminergic states in alcohol addiction and provide new insights into our understanding of the neurobiological mechanisms underlying compulsive alcohol use.
Collapse
Affiliation(s)
- Raphaël Goutaudier
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fanny Joly
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - David Mallet
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Magali Bartolomucci
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Denis Guicherd
- grid.410529.b0000 0001 0792 4829Service de Biochimie, Biologie Moléculaire, Toxicologie Environnementale, CHU de Grenoble-Alpes Site Nord − Institut de Biologie et de Pathologie, F-38041 Grenoble, France
| | - Carole Carcenac
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frédérique Vossier
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Thibault Dufourd
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sabrina Boulet
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Colin Deransart
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Benoit Chovelon
- grid.410529.b0000 0001 0792 4829Service de Biochimie, Biologie Moléculaire, Toxicologie Environnementale, CHU de Grenoble-Alpes Site Nord − Institut de Biologie et de Pathologie, F-38041 Grenoble, France ,grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Sebastien Carnicella
- Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
7
|
Manuali L. The Coherent Dual Theory of Addictive Desire. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lorenzo Manuali
- McCoy Family Center for Ethics in Society, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
8
|
Conditioned Inhibition of Amphetamine Sensitization. Neurobiol Learn Mem 2022; 192:107636. [PMID: 35597434 DOI: 10.1016/j.nlm.2022.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022]
Abstract
Repeated intermittent exposure to psychostimulants, such as amphetamine, leads to a progressive enhancement of the drug's ability to increase both behavioral and brain neurochemical responses. The expression of these enhancements, known as sensitization, can be regulated by Pavlovian conditioned stimuli. Cues that are associated with drug experience can facilitate sensitization so that it only occurs in the presence of these stimuli (context-specific sensitization). In contrast, cues that are explicitly related to the absence of drugs (conditioned inhibitors) can prevent the expression of sensitization. We hypothesized that disrupting conditioned inhibition would enable amphetamine sensitization in new contexts. Using male Sprague Dawley rats and a two-context amphetamine conditioning procedure, we found that extinguishing amphetamine experience in one environment led to the loss of conditioned inhibition in a separate context. Thus, amphetamine-induced sensitized locomotion, as well as both enhanced dopamine and glutamate neurotransmission in the nucleus accumbens, were observed in a context where the drug was never experienced before. A similar loss of contextual control of sensitization was seen after using baclofen/muscimol microinjections to transiently inhibit the medial prefrontal cortex, basolateral amygdala, or ventral subiculum of the hippocampus. In other words, compared to control infusions, these intracranial injections of GABA-receptor agonists were able to block conditioned inhibitors from preventing the expression of sensitized locomotion. Together, these findings reveal the importance of conditioned inhibitors for regulating addiction-like behavior. The results suggest that dopaminergic and glutamatergic brain circuitry controls the context-specific expression of amphetamine sensitization.
Collapse
|
9
|
Affiliation(s)
- Marco Leyton
- From the Departments of Psychiatry and Psychology, McGill University; the Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University; the Center for Studies in Behavioral Neurobiology, Concordia University; and the Research Unit on Children's Psychosocial Maladjustment, Université de Montréal, Montreal, Que., Canada
| |
Collapse
|
10
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
11
|
Haghparast A, Rashvand M. Role of the Orexinergic System Within the Ventral Tegmental Area in the Development of Sensitization to Morphine Induced by Lateral Hypothalamus Stimulation. Basic Clin Neurosci 2022; 13:97-106. [PMID: 36589022 PMCID: PMC9790096 DOI: 10.32598/bcn.2021.2946.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction The Lateral Hypothalamus (LH) has long been known to implicate the addictive behaviors of drug abuse. The Ventral Tegmental Area (VTA) is a major area of the mesolimbic system that is strongly involved in developing morphine sensitization. The current study aimed to examine the role of intra-VTA orexin receptors in the LH stimulation-induced sensitization to the antinociceptive response of morphine. Methods A total of 114 adult male Wistar rats underwent unilateral implantation of two separate cannulae in the LH and VTA using the stereotaxic apparatus. Intra-VTA administration of the Orexin-1 (OX1) and Orexin-2 (OX2) receptor antagonists, SB334867 and TCS OX2 29 (1, 3, and 10 nM/0.3 μL DMSO), respectively, was performed 5 min before concurrent microinjection of carbachol (250 nM/0.5 μL saline) into the LH and an ineffective dose of morphine (0.5 mg/kg; SC) during a 3-day sensitization period. After a 5-day free drug period, on the ninth day, for assessing the morphine sensitization, the nociceptive response was measured before and after morphine injection (1 mg/kg; SC) using the tail-flick test. Results The results revealed that the concurrent administration of carbachol (250 nM) and an ineffective dose of morphine significantly induced morphine sensitization. Besides, the blockade of OX1 and OX2 receptors within the VTA before intra-LH carbachol injection attenuated morphine sensitization. Conclusion These findings suggest that LH stimulation potentiates the sensitization to morphine antinociceptive responses via affecting orexin receptors located in the VTA. However, OX1 receptors contribute more than OX2 receptors in the VTA to morphine sensitization in rats. Highlights LH stimulation enhances sensitization to the ineffective dose of morphineIntra-VTA OX1 receptor involves in morphine sensitization-induced by LH stimulationIntra-VTA OX2 receptor involves in morphine sensitization-induced by LH stimulation. Plain Language Summary Behavioral sensitization, such as sensitization to the antinociceptive response of drugs, which defines as an enhanced systemic reaction to the same dose of addictive drugs, occurs in response to continuous and intermittent administration of these drugs. The Lateral Hypothalamus (LH) sends the orexinergic projections to the various regions of the brain and stimulation of LH induces sensitization to the antinociceptive response of morphine. The Ventral tegmental area (VTA) is a region of the brain that is strongly involved in developing morphine sensitization and receives orexinergic projections of LH. The current study aimed to examine the role of orexin receptors within the VTA in the LH stimulation-induced sensitization to the antinociceptive response of morphine in rats. In this study orexin-1 (OX1) and orexin-2 (OX2) receptors within the VTA region were blocked using their antagonists. After five minutes chemical stimulation of LH was done using carbachol microinjection into this area and ineffective dose of morphine was injected subcutaneously. These interventions were done for three consecutive days as sensitization period. After a 5-day free drug period, on the ninth day, for assessing the morphine sensitization, the nociceptive response was measured. The results revealed that the concurrent administration of LH stimulation and an ineffective dose of morphine significantly induced morphine sensitization. Besides, the blockade of OX1 and OX2 receptors within the VTA before LH stimulation attenuated sensitization to the antinociceptive response of morphine. Therefore, the orexinergic system plays an important role in morphine sensitization and can be considered as one of the potential targets to increase the analgesic effect of morphine.
Collapse
Affiliation(s)
- Amir Haghparast
- School of Dentistry, International Branch of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Rashvand
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Kimmey BA, McCall NM, Wooldridge LM, Satterthwaite T, Corder G. Engaging endogenous opioid circuits in pain affective processes. J Neurosci Res 2022; 100:66-98. [PMID: 33314372 PMCID: PMC8197770 DOI: 10.1002/jnr.24762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
The pervasive use of opioid compounds for pain relief is rooted in their utility as one of the most effective therapeutic strategies for providing analgesia. While the detrimental side effects of these compounds have significantly contributed to the current opioid epidemic, opioids still provide millions of patients with reprieve from the relentless and agonizing experience of pain. The human experience of pain has long recognized the perceived unpleasantness entangled with a unique sensation that is immediate and identifiable from the first-person subjective vantage point as "painful." From this phenomenological perspective, how is it that opioids interfere with pain perception? Evidence from human lesion, neuroimaging, and preclinical functional neuroanatomy approaches is sculpting the view that opioids predominately alleviate the affective or inferential appraisal of nociceptive neural information. Thus, opioids weaken pain-associated unpleasantness rather than modulate perceived sensory qualities. Here, we discuss the historical theories of pain to demonstrate how modern neuroscience is revisiting these ideas to deconstruct the brain mechanisms driving the emergence of aversive pain perceptions. We further detail how targeting opioidergic signaling within affective or emotional brain circuits remains a strong avenue for developing targeted pharmacological and gene-therapy analgesic treatments that might reduce the dependence on current clinical opioid options.
Collapse
Affiliation(s)
- Blake A. Kimmey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Nora M. McCall
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Lisa M. Wooldridge
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Cheron J, Kerchove d'Exaerde AD. Drug addiction: from bench to bedside. Transl Psychiatry 2021; 11:424. [PMID: 34385417 PMCID: PMC8361217 DOI: 10.1038/s41398-021-01542-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is responsible for millions of deaths per year around the world. Still, its management as a chronic disease is shadowed by misconceptions from the general public. Indeed, drug consumers are often labelled as "weak", "immoral" or "depraved". Consequently, drug addiction is often perceived as an individual problem and not societal. In technical terms, drug addiction is defined as a chronic, relapsing disease resulting from sustained effects of drugs on the brain. Through a better characterisation of the cerebral circuits involved, and the long-term modifications of the brain induced by addictive drugs administrations, first, we might be able to change the way the general public see the patient who is suffering from drug addiction, and second, we might be able to find new treatments to normalise the altered brain homeostasis. In this review, we synthetise the contribution of fundamental research to the understanding drug addiction and its contribution to potential novel therapeutics. Mostly based on drug-induced modifications of synaptic plasticity and epigenetic mechanisms (and their behavioural correlates) and after demonstration of their reversibility, we tried to highlight promising therapeutics. We also underline the specific temporal dynamics and psychosocial aspects of this complex psychiatric disease adding parameters to be considered in clinical trials and paving the way to test new therapeutic venues.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium.
| |
Collapse
|
14
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
15
|
Abu Y, Roy S. Prenatal opioid exposure and vulnerability to future substance use disorders in offspring. Exp Neurol 2021; 339:113621. [PMID: 33516730 PMCID: PMC8012222 DOI: 10.1016/j.expneurol.2021.113621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/06/2023]
Abstract
The heightened incidence of opioid use during pregnancy has resulted in unprecedented rates of neonates prenatally exposed to opioids. Prenatal opioid exposure (POE) results in significantly adverse medical, developmental, and behavioral outcomes in offspring. Of growing interest is whether POE contributes to future vulnerability to substance use disorders. The effects of POE on brain development is difficult to assess in humans, as the timing, dose, and route of drug exposure together with complex genetic and environmental factors affect susceptibility to addiction. Preclinical models of POE have allowed us to avoid methodological difficulties and confounding factors of POE in humans. Here, we review the effects of maternal opioid exposure on the developing brain with an emphasis on the neurobiological basis of drug addiction and on preclinical models of POE and their limitations. These studies have indicated that POE increases self-administration of drugs, reward-driven behaviors in the conditioned place paradigm, and locomotor sensitization. While addiction is multifaceted and vulnerability to drug addiction is still inconclusive in human studies of prenatally exposed infants, animal studies do provide a noteworthy corroboration of negative behavioral outcomes.
Collapse
Affiliation(s)
- Yaa Abu
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sabita Roy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
16
|
Dopamine 'ups and downs' in addiction revisited. Trends Neurosci 2021; 44:516-526. [PMID: 33892963 DOI: 10.1016/j.tins.2021.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Repeated drug use can change dopamine (DA) function in ways that promote the development and persistence of addiction, but in what direction? By one view, drug use blunts DA neurotransmission, producing a hypodopaminergic state that fosters further drug use to overcome a DA deficiency. Another view is that drug use enhances DA neurotransmission, producing a sensitized, hyperdopaminergic reaction to drugs and drug cues. According to this second view, continued drug use is motivated by sensitization of drug 'wanting'. Here we discuss recent evidence supporting the latter view, both from preclinical studies using intermittent cocaine self-administration procedures that mimic human patterns of use and from related human neuroimaging studies. These studies have implications for the modeling of addiction in the laboratory and for treatment.
Collapse
|
17
|
Crittenden JR, Gipson TA, Smith AC, Bowden HA, Yildirim F, Fischer KB, Yim M, Housman DE, Graybiel AM. Striatal transcriptome changes linked to drug-induced repetitive behaviors. Eur J Neurosci 2021; 53:2450-2468. [PMID: 33759265 DOI: 10.1111/ejn.15116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
Disruptive or excessive repetitive motor patterns (stereotypies) are cardinal symptoms in numerous neuropsychiatric disorders. Stereotypies are also evoked by psychomotor stimulants such as amphetamine. The acquisition of motor sequences is paralleled by changes in activity patterns in the striatum, and stereotypies have been linked to abnormal plasticity in these reinforcement-related circuits. Here, we designed experiments in mice to identify transcriptomic changes that underlie striatal plasticity occurring alongside the development of drug-induced stereotypic behavior. We identified three schedules of amphetamine treatment inducing different degrees of stereotypy and used bulk RNAseq to compare striatal gene expression changes among groups of mice treated with the different drug-dose schedules and vehicle-treated, cage-mate controls. Mice were identified as naïve, sensitized, or tolerant to drug-induced stereotypy. All drug-treated groups exhibited expression changes in genes that encode members of the extracellular signal-regulated kinase (ERK) cascades known to regulate psychomotor stimulant responses. In the sensitized group with the most prolonged stereotypy, we found dysregulation of 20 genes that were not changed in other groups. Gene set enrichment analysis indicated highly significant overlap with genes regulated by neuregulin 1 (Nrg1). Nrg1 is known to be a schizophrenia and autism susceptibility gene that encodes a ligand for Erb-B receptors, which are involved in neuronal migration, myelination, and cell survival, including that of dopamine-containing neurons. Stimulant abuse is a risk factor for schizophrenia onset, and these two disorders share behavioral stereotypy phenotypes. Our results raise the possibility that drug-induced sensitization of the Nrg1 signaling pathway might underlie these links.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theresa A Gipson
- Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hilary A Bowden
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle B Fischer
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Yim
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David E Housman
- Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Charmchi E, Faramarzi G, Rashvand M, Zendehdel M, Haghparast A. Restraint Stress Potentiated Morphine Sensitization: Involvement of Dopamine Receptors within the Nucleus Accumbens. Neurochem Res 2021; 46:648-659. [PMID: 33389471 DOI: 10.1007/s11064-020-03199-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Sensitization to psychostimulant drugs, as well as morphine, subjected to cross-sensitization with stress. The development of morphine sensitization is associated with enhancements in dopamine overflow in the Nucleus accumbens (NAc). This study aimed to examine the role of accumbal D1/D2-like dopamine receptors in restraint stress (RS) induced sensitization to morphine antinociceptive effects. Adult male Wistar rats weighing 220-250 g underwent stereotaxic surgery. Two stainless steel guide cannulae were bilaterally implanted, 1 mm above the NAc injection site. Different solutions of SCH-23390, as a D1-like receptor antagonist or sulpiride, as a D2-like receptor antagonist, were microinjected into the NAc five min before exposure to RS. Restraint stress lasted for 3 h, 10 min after RS termination; animals received a subcutaneous injection of morphine (1 mg/kg) for 3 consecutive days. The procedure was followed by a 5-day drug and/or stress-free period. After that, on the 9th day, the nociceptive response was evaluated by the tail-flick test. The results revealed that intra-NAc administration of D1/D2-like dopamine receptor antagonists, SCH-23390 or sulpiride, respectively, blocked morphine sensitization-induced by RS and morphine co-administration in rats for three consecutive days. This work provides new insight into the determinant role of accumbal dopamine receptors in morphine sensitization produced by RS-morphine co-administration.
Collapse
Affiliation(s)
- Elham Charmchi
- Faculty of Veterinary Medicine, Department of Physiology, University of Tehran, Tehran, Iran
| | - Golnaz Faramarzi
- Faculty of Veterinary Medicine, Department of Physiology, University of Tehran, Tehran, Iran
| | - Mina Rashvand
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Zendehdel
- Faculty of Veterinary Medicine, Department of Physiology, University of Tehran, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Murray CH, Christian DT, Milovanovic M, Loweth JA, Hwang EK, Caccamise AJ, Funke JR, Wolf ME. mGlu5 function in the nucleus accumbens core during the incubation of methamphetamine craving. Neuropharmacology 2021; 186:108452. [PMID: 33444640 DOI: 10.1016/j.neuropharm.2021.108452] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Many studies have demonstrated that negative allosteric modulators (NAM) of metabotropic glutamate receptor 5 (mGlu5) reduce cocaine and methamphetamine seeking in extinction-reinstatement animal models of addiction. Less is known about effects of mGlu5 NAMs in abstinence models, particularly for methamphetamine. We used the incubation of drug craving model, in which cue-induced craving progressively intensifies after withdrawal from drug self-administration, to conduct the first studies of the following aspects of mGlu5 function in the rat nucleus accumbens (NAc) core during abstinence from methamphetamine self-administration: 1) functionality of the major form of synaptic depression in NAc medium spiny neurons, which is induced postsynaptically via mGlu5 and expressed presynaptically via cannabinoid type 1 receptors (CB1Rs), 2) mGlu5 surface expression and physical associations between mGlu5, Homer proteins, and diacylglycerol lipase-α, and 3) the effect of systemic and intra-NAc core administration of the mGlu5 NAM 3-((2-methyl-4-)ethynyl)pyridine (MTEP) on expression of incubated methamphetamine craving. We found that mGlu5/CB1R-dependent synaptic depression was lost during the rising phase of methamphetamine incubation but then recovered, in contrast to its persistent impairment during the plateau phase of incubation of cocaine craving. Furthermore, whereas the cocaine-induced impairment was accompanied by reduced mGlu5 levels and mGlu5-Homer associations, this was not the case for methamphetamine. Systemic MTEP reduced incubated methamphetamine seeking, but also reduced inactive hole nose-pokes and locomotion, while intra-NAc core MTEP had no significant effects. These findings provide the first insight into the role of mGlu5 in the incubation of methamphetamine craving and reveal differences from incubation of cocaine craving.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Daniel T Christian
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Mike Milovanovic
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Aaron J Caccamise
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
20
|
The cognitive and behavioral effects of D-amphetamine and nicotine sensitization in adult zebrafish. Psychopharmacology (Berl) 2021; 238:2191-2200. [PMID: 33963883 PMCID: PMC8292302 DOI: 10.1007/s00213-021-05844-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Zebrafish are growing in use as a model for understanding drug dependence and addiction. Sensitization paradigms have been a useful tool in identifying mechanisms involved in drug-induced behavioral and neurological changes, but in zebrafish have tended to focus on locomotor, rather than cognitive, endpoints. METHODS Here, we used a novel method, the FMP Y-maze, which measures continuous performance through a series of repeated binary choices (L vs R), to establish a model for assessing parameters associated with psychostimulant-induced behavioral and cognitive sensitization in adult zebrafish. RESULTS Repeat, intermittent exposure to d-amphetamine (AMPH) for 14 days increased alternations (LRLR) in the maze, suggesting improved working memory, which was enhanced further following drug challenge after a short withdrawal period, suggesting behavioral sensitization. However, this cognitive enhancement coincided with a reduction in the use of other exploration strategies, hypolocomotion, and inhibition of cognitive flexibility. Like AMPH, exposure to nicotine (NIC) increased alternations following drug challenge after chronic treatment. Repeat NIC exposure appeared to induce both cognitive and psychomotor sensitization, as evidenced by increased working memory performance (alternations) and locomotor activity, without negatively impacting other search strategies or cognitive flexibility. CONCLUSION Chronic treatment with AMPH or NIC boosts cognitive performance in adult zebrafish. Cognitive sensitization occurred with both drugs, resulting in enhanced working memory; however, repeat AMPH exposure, following a withdrawal period, resulted in inhibited cognitive flexibility, an effect not evident with repeat NIC exposure. Cognitive and behavioral sensitization paradigms in zebrafish could serve as a useful tool for assessing cognitive states which result in cognitive enhancing or impairing effects of drugs.
Collapse
|
21
|
Stafford AM, Reed C, Phillips TJ. Non-genetic factors that influence methamphetamine intake in a genetic model of differential methamphetamine consumption. Psychopharmacology (Berl) 2020; 237:3315-3336. [PMID: 32833064 PMCID: PMC7572688 DOI: 10.1007/s00213-020-05614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Genetic and non-genetic factors influence substance use disorders. Our previous work in genetic mouse models focused on genetic factors that influence methamphetamine (MA) intake. The current research examined several non-genetic factors for their potential influence on this trait. OBJECTIVES We examined the impact on MA intake of several non-genetic factors, including MA access schedule, prior forced MA exposure, concomitant ethanol (EtOH) access, and gamma-aminobutyric acid type B (GABAB) receptor activation. Selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mice participated in this research. RESULTS MAHDR, but not MALDR, mice increased MA intake when given intermittent access, compared with continuous access, with a water choice under both schedules. MA intake was not altered by previous exposure to forced MA consumption. Male MAHDR mice given simultaneous access to MA, EtOH, and an EtOH+MA mixture exhibited a strong preference for MA over EtOH and EtOH+MA; MA intake was not affected by EtOH in female MAHDR mice. When independent MAHDR groups were given access to MA, EtOH, or EtOH+MA vs. water in each case, MA intake was reduced in the water vs. EtOH+MA group, compared with the water vs. MA group. The GABAB receptor agonist R(+)-baclofen (BAC) not only reduced MA intake but also reduced water intake and locomotor activity in MAHDR mice. There was a residual effect of BAC, such that MA intake was increased after termination of BAC treatment. CONCLUSIONS These findings demonstrate that voluntary MA intake in MAHDR mice is influenced by non-genetic factors related to MA access schedule and co-morbid EtOH exposure.
Collapse
Affiliation(s)
- A M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - T J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
- Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
22
|
González‐Marín MDC, Coune F, Naassila M. Vulnerability to ethanol sensitization predicts higher intake and motivation to self-administer ethanol: Proof of the incentive salience sensitization theory? Addict Biol 2020; 25:e12833. [PMID: 31762127 DOI: 10.1111/adb.12833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
Ethanol-induced behavioral sensitization (EIBS) is thought to play a key role in addiction. However, whether EIBS is linked to an increase in the motivation to self-administerethanol in an operant paradigm has never been demonstrated, and thus, the motivational sensitization theory (increase in drug wanting) has not been yet confirmed. We investigated using the operant ethanol self-administrationparadigm if the motivation to self-administerethanol (breakpoint) is increased in female mice prone to develop EIBS. Outbred female Swiss mice were treated once a day with 2.5-g ethanol per kilogram during 10 days and challenged with the same dose of ethanol 7 days later. EIBS-pronegroup was characterized by a significant increase in locomotion between the challenge day and day 1. When the difference was not significant, mice were considered as the "EIBS-resistant"group. Mice were then trained to nose poke for a 20% ethanol solution reinforcer under a FR1 and then a FR-2schedule of reinforcement. Motivation was assessed more directly with a progressive ratio schedule. Our results show that there is a positive correlation between EIBS and both the level of intake and motivation. Interestingly, acquisition of ethanol self-administrationwas faster in sensitized mice that also display a quick and long-lastingincrease in ethanol intake together with a lack of effect of alcohol challenge on c-Fosexpression restricted to the dorsolateral striatum. These results further support that EIBS vulnerability is crucial in the development of addictive behaviors and suggest a potential link with habit learning processes.
Collapse
Affiliation(s)
| | - Fabien Coune
- INSERM UMR 1247—Research Group on Alcohol and Pharmacodependences (GRAP) Université de Picardie Jules Verne Amiens France
| | - Mickaël Naassila
- INSERM UMR 1247—Research Group on Alcohol and Pharmacodependences (GRAP) Université de Picardie Jules Verne Amiens France
| |
Collapse
|
23
|
Felipe JM, Palombo P, Bianchi PC, Zaniboni CR, Anésio A, Yokoyama TS, Engi SA, Carneiro-de-Oliveira PE, Planeta CDS, Leão RM, Cruz FC. Dorsal hippocampus plays a causal role in context-induced reinstatement of alcohol-seeking in rats. Behav Brain Res 2020; 398:112978. [PMID: 33169700 DOI: 10.1016/j.bbr.2020.112978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
Drug addiction is a chronic mental disorder characterized by frequent relapses. Contextual cues associated with drug use to play a critical causal role in drug-seeking behavior. The hippocampus has been implicated in encoding drug associative memories. Here we examine whether the dorsal hippocampus mediates context-induced reinstatement of alcohol-seeking. Male Long-Evans rats were trained to self-administer alcohol in Context A. Alcohol self-administration was extinguished in a distinct context (Context B). On the test day, animals were re-exposed to the alcohol Context A or the extinction Context B. Next, to assess a causal role for the dorsal hippocampus in context-induced alcohol-seeking, on the test day, we injected cobalt chloride (CoCl2; a nonselective synapse inhibitor) or vehicle into the dorsal hippocampus, and 15 min later, rats were tested by re-exposing them to the drug-associated context. The re-exposure to the alcohol-associated Context A reinstated alcohol seeking and increased Fos-positive cells in the dorsal hippocampus neurons (CA1, CA3, and Dentate Gyrus). Pharmacological inactivation with cobalt chloride of the dorsal hippocampus attenuated the reinstatement of alcohol-seeking. Our data suggest that the dorsal hippocampus may be involved in context-induced alcohol-seeking behavior.
Collapse
Affiliation(s)
- Jaqueline Moreira Felipe
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| | - Paula Cristina Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| | - Caroline Riberti Zaniboni
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| | - Augusto Anésio
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| | - Thais Suemi Yokoyama
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| | - Sheila Antonagi Engi
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| | | | - Cleopatra da Silva Planeta
- Laboratory of Pharmacology, São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| | - Rodrigo Molini Leão
- Biomedical Sciences Institute, Universidade Federal de Uberlândia - UFU Uberlândia, MG 38400-902, Brazil.
| | - Fábio Cardoso Cruz
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
24
|
Custodio RJP, Sayson LV, Botanas CJ, Abiero A, Kim M, Lee HJ, Ryu HW, Lee YS, Kim HJ, Cheong JH. Two newly-emerging substituted phenethylamines MAL and BOD induce differential psychopharmacological effects in rodents. J Psychopharmacol 2020; 34:1056-1067. [PMID: 32648801 DOI: 10.1177/0269881120936458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the recreational use of substituted phenethylamines has grown rapidly. Among these are 2-(3,5-dimethoxy-4-((2-methylallyl)oxy)phenyl)ethanamine (MAL) and 2-(2,5-dimethoxy-4-methylphenyl)-2-methoxyethan-1-amine (BOD). However, studies characterizing their abuse potential are still lacking. AIM The purpose of this study was to investigate the abuse potential of MAL and BOD. METHODS The psychostimulant, reinforcing, and rewarding properties of MAL and BOD were analyzed using locomotor sensitization, self-administration, and conditioned place preference tests. Dopamine antagonists (i.e. SCH23390, haloperidol) were administered during conditioned place preference to evaluate the involvement of the mesolimbic dopamine system. Furthermore, dopamine-related protein expression in the nucleus accumbens and the ventral tegmental area was measured along with dopamine concentrations in the nucleus accumbens. Electroencephalography was conducted to determine effects of MAL and BOD on brain wave activity. RESULTS MAL induced psychostimulant effects and sensitization, while BOD induced locomotor depression in mice. Only MAL was self-administered by rats. Both drugs induced conditioned place preference in mice at different doses; dopamine receptor antagonists blocked MAL- and BOD-induced conditioned place preference. Both the compounds altered the expression of dopamine receptor D1 and D2 proteins in the nucleus accumbens and tyrosine hydroxylase (TH) and dopamine transporter in the ventral tegmental area, enhanced dopamine levels in the nucleus accumbens, and increased delta and gamma wave activities in the brain. CONCLUSIONS MAL may induce abuse potential via the mesolimbic dopaminergic system and possibly accompanied by alterations in brain wave activity. Moreover, the lack of rewarding and reinforcing effects in BOD suggest that this drug may have little to no capability to engender compulsive behavior, though having found to induce alterations in dopaminergic system and brain wave activities.
Collapse
Affiliation(s)
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea.,Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hye Won Ryu
- Medicinal Chemistry Laboratory, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea.,School of Pharmacy, Jeonbuk National University, Jeollabuk-do, Republic of Korea
| |
Collapse
|
25
|
Windisch KA, Kreek MJ. Review of addiction risk potential associated with adolescent opioid use. Pharmacol Biochem Behav 2020; 198:173022. [PMID: 32871141 DOI: 10.1016/j.pbb.2020.173022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/31/2023]
Abstract
Adolescence is a critical period of development with robust behavioral, morphological, hormonal, and neurochemical changes including changes in brain regions implicated in the reinforcing effects of drugs such as opioids. Here we examine the preclinical and, where appropriate complementary clinical literature, for the behavioral and neurological changes induced by adolescent opioid exposure/use and their long-term consequences during adulthood. Adolescent opioid exposure results in a widened biphasic shift in reinforcement with increased impact of positive rewarding aspects during initial use and profound negative reinforcement during adulthood. Females may have enhanced vulnerability due to fast onset of antinociceptive tolerance and reduced severity of somatic withdrawal symptoms during adolescence. Overall, adolescent opioid exposure, be it legally prescribed protracted intake or illicit consumption, results in significant and prolonged consequences of increased opioid reward concomitant with reduced analgesic efficacy and exacerbated somatic withdrawal severity during opioid use/exposure in adulthood. These findings are highly relevant to physicians, parents, law makers, and the general public as adolescent opioid exposure/misuse results in heightened risk for substance use disorders.
Collapse
Affiliation(s)
- Kyle A Windisch
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
26
|
Drisaldi B, Colnaghi L, Levine A, Huang Y, Snyder AM, Metzger DJ, Theis M, Kandel DB, Kandel ER, Fioriti L. Cytoplasmic Polyadenylation Element Binding Proteins CPEB1 and CPEB3 Regulate the Translation of FosB and Are Required for Maintaining Addiction-Like Behaviors Induced by Cocaine. Front Cell Neurosci 2020; 14:207. [PMID: 32742260 PMCID: PMC7365288 DOI: 10.3389/fncel.2020.00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
A recurrent and devastating feature of addiction to a drug of abuse is its persistence, which is mediated by maladaptive long-term memories of the highly pleasurable experience initially associated with the consumption of the drug. We have recently found that members of the CPEB family of proteins (Cytoplasmic Polyadenylation Element-Binding Proteins) are involved in the maintenance of spatial memory. However, their possible role in the maintenance of memories that sustain addictive behavior has yet to be explored. Little is known about any of the mechanisms for maintaining memories for addictive behavior. To address the mechanisms whereby addictive behavior is maintained over time, we utilized a conditional transgenic mouse model expressing a dominant-negative version of CPEB1 that abolishes the activity in the forebrain of two of the four CPEB isoforms (CPEB1 and CPEB3). We found that, following cocaine administration, these dominant-negative (DN) CPEB mice showed a significant decrease, when compared to wild type (WT) mice, in both locomotor sensitizations and conditioned place preference (CPP), two indices of addictive behavior. Supporting these behavioral results, we also found a difference between WT and DN-CPEB1-3 mice in the cocaine-induced synaptic depression in the core of the Nucleus Accumbens (NAc). Finally, we found that (1) CPEB is reduced in transgenic mice following cocaine injections and that (2) FosB, known for its contribution to establishing the addictive phenotype, when its expression in the striatum is increased by drug administration, is a novel target of CPEBs molecules. Thus, our study highlights how CPEB1 and CPEB3 act on target mRNAs to build the neuroadaptative implicit memory responses that lead to the development of the cocaine addictive phenotypes in mammals.
Collapse
Affiliation(s)
- Bettina Drisaldi
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Luca Colnaghi
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Amir Levine
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - YanYou Huang
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Anna M Snyder
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Daniel J Metzger
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Martin Theis
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Denise B Kandel
- Mailman School of Public Health, Columbia University, New York, NY, United States.,Department of Epidemiology of Substance Abuse, New York State Psychiatric Institute, New York, NY, United States
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, NY, United States.,Kavli Institute for Brain Science, Columbia University, New York, NY, United States.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Luana Fioriti
- Department of Neuroscience, Columbia University, New York, NY, United States.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Dulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
27
|
Ettenberg A, Ayala K, Krug JT, Collins L, Mayes MS, Fisher MPA. Differential effects of lithium isotopes in a ketamine-induced hyperactivity model of mania. Pharmacol Biochem Behav 2020; 190:172875. [PMID: 32084493 DOI: 10.1016/j.pbb.2020.172875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/19/2022]
Abstract
Sub-anesthetic doses of ketamine produce an increase in rodent ambulation that is attenuated by co-administration of naturally-occurring lithium (LiN), the drug most commonly employed in the treatment of bipolar illness. As a consequence, ketamine-induced hyperactivity has been proposed as an animal model of manic behavior. The current study employed a modified version of this model to compare the potency of LiN to that of each of its two stable isotopes - lithium-6 (Li-6) and lithium-7 (Li-7). Since Li-7 constitutes 92.4% of the parent compound it was hypothesized to produce comparable behavioral effects to that of LiN. The current study was devised to determine whether Li-6 might be more, less, or equally effective at tempering hyperactivity relative to Li-7 or to LiN in an animal model of manic behavior. Male rats were maintained on a restricted but high-incentive diet containing a daily dose of 2.0 mEq/kg of lithium (LiN), Li-6 or Li-7 for 30 days. A control group consumed a diet infused with sodium chloride (NaCl) in place of lithium to control for the salty taste of the food. On day 30, baseline testing revealed no differences in the locomotor behavior among the four treatment groups. Animals then continued their Li/NaCl diets for an additional 11 days during which every subject received a single IP injection of either ketamine (25 mg/kg) or 0.9% physiological saline. On the final four days of this regimen, locomotor activity was assessed during 60 min sessions each beginning immediately after ketamine injection. While all three lithium groups produced comparable decreases in ketamine-induced hyperactivity on the first trial, by the fourth trial Li-6 animals exhibited significantly greater and more prolonged reductions in hyperactivity compared to either Li-7 and Li. These results suggest that Li-6 may be more effective at treating mania than its parent compound.
Collapse
Affiliation(s)
- Aaron Ettenberg
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA.
| | - Kathy Ayala
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Jacob T Krug
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Lisette Collins
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Matthew S Mayes
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Matthew P A Fisher
- Department of Physics, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
28
|
Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. Neurosci Biobehav Rev 2019; 107:897-926. [PMID: 31672617 PMCID: PMC6878895 DOI: 10.1016/j.neubiorev.2019.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the literature and how these might be addressed. We also highlight how individuals with different alcohol subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions attempting to attenuate alcohol craving and cue reactivity.
Collapse
Affiliation(s)
- Roberto U Cofresí
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States.
| | - Bruce D Bartholow
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| | - Thomas M Piasecki
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| |
Collapse
|
29
|
Ethanol-induced changes in synaptic amino acid neurotransmitter levels in the nucleus accumbens of differentially sensitized mice. Psychopharmacology (Berl) 2019; 236:3541-3556. [PMID: 31302721 DOI: 10.1007/s00213-019-05324-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/02/2019] [Indexed: 01/21/2023]
Abstract
RATIONALE Ethanol-induced behavioural sensitization (EBS) does not occur uniformly in mice exposed to the sensitization paradigm. This suggests innate differential responses to ethanol (EtOH) in the reward circuitry of individual animals. OBJECTIVES To better characterize the adaptive differences between low-sensitized (LS) and high-sensitized (HS) mice, we examined excitatory amino acid (EAA) and inhibitory amino acid (IAA) neurotransmitter levels in the nucleus accumbens (NAc) during EBS expression. METHODS Male DBA/2J mice received five ethanol (EtOH) (2.2 g/kg) or saline injections, and locomotor activity (LMA) was assessed during EBS induction. EtOH mice were classified as LS or HS on the basis of final LMA scores. Following an EtOH challenge (1.8 g/kg) 2 weeks later, LMA was re-evaluated and in vivo microdialysis samples were collected from the NAc. RESULTS Most differences in amino acid levels were observed within the first 20 min after EtOH challenge. LS mice exhibited similar glutamate levels compared with acutely treated (previously EtOH naïve) mice, and generally increased levels of the IAAs GABA, glycine, and taurine. By contrast, HS mice exhibited increased glutamate and attenuated levels of GABA, glycine, and taurine. CONCLUSION These data suggest that the profile of amino acid neurotransmitters in the NAc of LS and HS mice significantly differs. Elucidating these adaptive differences contributes to our understanding of factors that confer susceptibility/resilience to alcohol use disorder.
Collapse
|
30
|
Trujillo KA, Heller CY. Ketamine sensitization: Influence of dose, environment, social isolation and treatment interval. Behav Brain Res 2019; 378:112271. [PMID: 31593791 DOI: 10.1016/j.bbr.2019.112271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Ketamine is a dissociative anesthetic first developed in the 1960s but is increasingly used at subanesthetic doses for both clinical and non-clinical purposes. There is evidence from human recreational users of compulsive use and addiction. Sensitization is an increase in an effect of a drug with repeated use that is thought to be important in the development of addiction. Research on psychomotor stimulants has shown the development of sensitization in laboratory animals to be modified by factors that influence addiction. In the current paper we describe four experiments on the development of sensitization in laboratory rats aimed at determining if ketamine sensitization is also influenced by factors thought to be important in addiction. Adult, male Sprague-Dawley rats received ketamine (5, 10, 20 or 50 mg/kg i.p.) for five or more days and the development of locomotor sensitization was followed. Experiment 1 examined the ability of low doses of ketamine to produce sensitization and found sensitization at 5, 10 and 20 mg/kg. Experiment 2 examined the influence of environmental context and found that ketamine sensitization (20 mg/kg) was greater when administration occurred in a novel environment (the experimental apparatus) than in home cages. Experiment 3 found that ketamine sensitization (20 mg/kg) did not occur when animals were housed in social isolation but occurred readily in pair-housed animals. Finally, Experiment 4 found that ketamine sensitization (20 or 50 mg/kg) was similar whether drug was administered daily or at 3-day intervals. Together, the results demonstrate that ketamine sensitization is robust and reliable, occurring under a variety of circumstances. Moreover, ketamine sensitization is influenced by factors that influence the development of addiction in humans. The current results may lead to a better understanding of ketamine abuse and addiction and may help inform clinical use of the drug.
Collapse
Affiliation(s)
- Keith A Trujillo
- Department of Psychology and Office for Training, Research, and Education in the Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096-0001, USA.
| | - Colleen Y Heller
- Department of Psychology and Office for Training, Research, and Education in the Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096-0001, USA
| |
Collapse
|
31
|
Cedillo LN, Ruíz-García RI, Jiménez JC, Miranda F. Effect of coadministration of the GABAB agonist baclofen and the 5-HT2C agonist Ro60-0175 on the expression of amphetamine-induced locomotor sensitization. Exp Brain Res 2019; 237:1691-1697. [DOI: 10.1007/s00221-019-05540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/06/2019] [Indexed: 11/29/2022]
|
32
|
Taksande BG, Khade SD, Aglawe MM, Gujar S, Chopde CT, Kotagale NR. Agmatine Inhibits Behavioral Sensitization to Ethanol Through Imidazoline Receptors. Alcohol Clin Exp Res 2019; 43:747-757. [DOI: 10.1111/acer.13972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Brijesh G. Taksande
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Supriya D. Khade
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Manish M. Aglawe
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Shreyans Gujar
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Chandrabhan T. Chopde
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Nandkishor R. Kotagale
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
- Government Colleges of Pharmacy Amravati India
| |
Collapse
|
33
|
Torres-Berrio A, Cuesta S, Lopez-Guzman S, Nava-Mesa MO. Interaction Between Stress and Addiction: Contributions From Latin-American Neuroscience. Front Psychol 2018; 9:2639. [PMID: 30622500 PMCID: PMC6308142 DOI: 10.3389/fpsyg.2018.02639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Drug addiction is a chronic neuropsychiatric disorder that escalates from an initial exposure to drugs of abuse, such as cocaine, cannabis, or heroin, to compulsive drug-seeking and intake, reduced ability to inhibit craving-induced behaviors, and repeated cycles of abstinence and relapse. It is well-known that chronic changes in the brain’s reward system play an important role in the neurobiology of addiction. Notably, environmental factors such as acute or chronic stress affect this system, and increase the risk for drug consumption and relapse. Indeed, the HPA axis, the autonomic nervous system, and the extended amygdala, among other brain stress systems, interact with the brain’s reward circuit involved in addictive behaviors. There has been a growing interest in studying the molecular, cellular, and behavioral mechanisms of stress and addiction in Latin-America over the last decade. Nonetheless, these contributions may not be as strongly acknowledged by the broad scientific audience as studies coming from developed countries. In this review, we compile for the first time a series of studies conducted by Latin American-based neuroscientists, who have devoted their careers to studying the interaction between stress and addiction, from a neurobiological and clinical perspective. Specific contributions about this interaction include the study of CRF receptors in the lateral septum, investigations on the neural mechanisms of cross-sensitization for psychostimulants and ethanol, the identification of the Wnt/β-catenin pathway as a critical neural substrate for stress and addiction, and the emergence of the cannabinoid system as a promising therapeutic target. We highlight animal and human studies, including for instance, reports coming from Latin American laboratories on single nucleotide polymorphisms in stress-related genes and potential biomarkers of vulnerability to addiction, that aim to bridge the knowledge from basic science to clinical research.
Collapse
Affiliation(s)
- Angélica Torres-Berrio
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Santiago Cuesta
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Silvia Lopez-Guzman
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
34
|
Luján MA, Colomar L, Tarragón E, López-Cruz L, Pastor R, Font L. Drug-free and context-dependent locomotor hyperactivity in DBA/2 J mice previously treated with repeated cocaine: Relationship with behavioral sensitization and role of noradrenergic receptors. Pharmacol Biochem Behav 2018; 176:101-110. [PMID: 30571988 DOI: 10.1016/j.pbb.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
Drug-associated contexts and discrete cues can trigger motivational states responsible for drug-seeking behavior and relapse. In preclinical research, drug-free conditioned hyperactivity has been used to investigate the expression of memories associated with psychostimulant drug effects. Addictive drugs can produce long-lasting sensitization to their psychomotor actions, a phenomenon known as behavioral sensitization. The neuroplasticity underlying behavioral sensitization appears to be involved in pathological drug pursuit and abuse. In the present study we evaluated drug-free, context-dependent hyperactivity in DBA/2 J mice previously treated with cocaine and we explored whether this conditioned effect was related to behavioral sensitization. Given the role of noradrenergic (NA) neurotransmission in memory retrieval, consolidation and reconsolidation processes, we also investigated whether conditioned hyperactivity in a drug-free state was mediated by NA receptors. Animals underwent a sensitization protocol with six cocaine injections (0, 5, 10 or 20 mg/kg) paired to a particular floor cue. Three days after this sensitization phase, all animals were exposed to the same familiar floor environment without drug treatment. A second test with an unfamiliar floor was conducted 24 h later. Conditioned hyperactivity was also explored after one or three cocaine pairings and was evaluated for its duration (with repeated familiar vs. unfamiliar floor tests). In a series of pharmacological experiments, we evaluated the effects propranolol (a non-selective antagonist of β1- and β2-receptors) and prazosin (α1-receptor antagonist) on conditioned hyperactivity. Cocaine treatment produced both robust sensitization and drug-free conditioned hyperactivity, an effect that lasted up to 17 days (with cocaine 20 mg/kg). A significant correlation between the magnitude of cocaine sensitization and the level of conditioned hyperactivity was found. Propranolol, but not prazosin, blocked context-dependent hyperlocomotion in a drug-free state. Our data, together with a vast body of literature, indicate that the NA system plays a key role in the retrieval and behavioral expression of drug-associated memories.
Collapse
Affiliation(s)
- Miguel A Luján
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain; Neurobiology of Behaviour Research Group (GReNeCNeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura Colomar
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Ernesto Tarragón
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Laura López-Cruz
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain; Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Raúl Pastor
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Laura Font
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain.
| |
Collapse
|
35
|
The role of calcium-calmodulin-dependent protein kinase II in modulation of spatial memory in morphine sensitized rats. Behav Brain Res 2018; 359:298-303. [PMID: 30428335 DOI: 10.1016/j.bbr.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
Abstract
It has been shown that drug addiction and memory system are related but the signaling cascades underlying this interaction is not completely revealed yet. It has been demonstrated that binding of Calcium-calmodulin-dependent protein kinase II (CaMKII) to NMDA receptor is important in the memory process. The main objective of the study was to evaluate the role of CaMKII on the spatial memory of rats which previously were sensitized by morphine. The effect of CaMKII inhibitor (KN-93) on memory changes was investigated by hippocampal microinjection of KN-93 on the morphine-sensitized rats. Also, the role of the NMDA receptor in memory retention by KN-93 on the morphine sensitized rat was investigated with NMDA agonist and antagonist. Sensitization was induced by morphine injection (once daily for 3 days) followed by 5 days free of the drug before the trial phase. For the evaluation of spatial memory, the Morris Water Maze test (MWM) was used. Results showed that pre-trial administration of morphine, induced amnesia in MWM (p < 0.05). Also, three days pretreatment with morphine (20 mg/kg) followed by five days washout period, caused to enhance memory retrieval in confront with a pre-trial challenging dose of morphine (5 mg/kg). In addition, KN-93 administration during induction phase in morphine sensitization phenomena facilitated morphine-induced memory retention. In addition, inhibition of the NMDA receptor and KN-93 during the induction phase did not improve memory. However; intra-CA1 co-administration of KN-93 and NMDA during the induction phase of morphine sensitization resulted in improving spatial memory. It can be concluded that the effect of CaMKII on memory retention in morphine-sensitized rats depends on NMDA receptor.
Collapse
|
36
|
Nona CN, Hendershot CS, Lê AD. Behavioural sensitization to alcohol: Bridging the gap between preclinical research and human models. Pharmacol Biochem Behav 2018; 173:15-26. [DOI: 10.1016/j.pbb.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
|
37
|
McDevitt DS, Graziane NM. Neuronal mechanisms mediating pathological reward-related behaviors: A focus on silent synapses in the nucleus accumbens. Pharmacol Res 2018; 136:90-96. [PMID: 30171902 DOI: 10.1016/j.phrs.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The compulsive drive to seek drugs despite negative consequences relies heavily on drug-induced alterations that occur within the reward neurocircuit. These alterations include changes in neuromodulator and neurotransmitter systems that ultimately lock behaviors into an inflexible and permanent state. To provide clinicians with improved treatment options, researchers are trying to identify, as potential targets of therapeutic intervention, the neural mechanisms mediating an "addictive-like state". Here, we discuss how drug-induced generation of silent synapses in the nucleus accumbens may be a potential therapeutic target capable of reversing drug-related behaviors.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA; Neuroscience graduate program, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA.
| |
Collapse
|
38
|
Sukhanov I, Dorofeikova M, Dolgorukova A, Dorotenko A, Gainetdinov RR. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine. Front Pharmacol 2018; 9:329. [PMID: 29681856 PMCID: PMC5898227 DOI: 10.3389/fphar.2018.00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted.
Collapse
Affiliation(s)
- Ilya Sukhanov
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,Laboratory of Neurochemical Pharmacology, Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Technologia, Genoa, Italy.,Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Mariia Dorofeikova
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Antonina Dolgorukova
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Artem Dorotenko
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| |
Collapse
|
39
|
Coyle JT, Balu DT. The Role of Serine Racemase in the Pathophysiology of Brain Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:35-56. [PMID: 29413527 PMCID: PMC5821497 DOI: 10.1016/bs.apha.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is unique in requiring two agonists to bind simultaneously to open its cation channel: the neurotransmitter, glutamate, and the coagonists, glycine, or d-serine. The Snyder laboratory was the first to clone serine racemase (SR), the enzyme that synthesizes d-serine, and to localize it immunocytochemically. Our laboratory has focused on the role of d-serine in brain disorders. Silencing the expression of SR, a risk gene for schizophrenia (SCZ), in mice (SR-/-), results in a phenotype that closely resembles SCZ including: cortical atrophy, reduced dendritic spine density and complexity, downregulation of parvalbumin-positive cortical GABAergic neurons, and cognitive impairments. This pathology can be reversed by treatment of SR-/- mice with d-serine in adulthood. SR-/- mice also exhibit abnormal response toward abusable substances, such as stimulants. They show reduced behavioral sensitization to d-amphetamine, but fail to extinguish it. Place preference to cocaine is altered, and the hedonic response to it is profoundly impaired as assessed by intracranial self-stimulation. d-cycloserine, a partial agonist at the NMDAR glycine modulatory site, shows therapeutic benefit for treating pathologic anxiety in combination with behavioral therapies. Studies in vitro with cortical culture and in vivo with middle cerebral artery occlusion show that silencing SR provides substantial protection against ischemic neuronal death. Finally, the switch of SR expression from neurons to reactive astrocytes after closed head trauma accounts for the reduced in vivo neuroplasticity, electroencephalogram abnormalities, and cognitive impairments.
Collapse
Affiliation(s)
- Joseph T Coyle
- Harvard Medical School, Boston, MA, United States; McLean Hospital, Belmont, MA, United States.
| | - Darrick T Balu
- Harvard Medical School, Boston, MA, United States; McLean Hospital, Belmont, MA, United States
| |
Collapse
|
40
|
Toth K, Slosky LM, Pack TF, Urs NM, Boone P, Mao L, Abraham D, Caron MG, Barak LS. Ghrelin receptor antagonism of hyperlocomotion in cocaine-sensitized mice requires βarrestin-2. Synapse 2017; 72. [PMID: 28941296 DOI: 10.1002/syn.22012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The "brain-gut" peptide ghrelin, which mediates food-seeking behaviors, is recognized as a very strong endogenous modulator of dopamine (DA) signaling. Ghrelin binds the G protein-coupled receptor GHSR1a, and administration of ghrelin increases the rewarding properties of psychostimulants while ghrelin receptor antagonists decrease them. In addition, the GHSR1a signals through βarrestin-2 to regulate actin/stress fiber rearrangement, suggesting βarrestin-2 participation in the regulation of actin-mediated synaptic plasticity for addictive substances like cocaine. The effects of ghrelin receptor ligands on reward strongly suggest that modulation of ghrelin signaling could provide an effective strategy to ameliorate undesirable behaviors arising from addiction. To investigate this possibility, we tested the effects of ghrelin receptor antagonism in a cocaine behavioral sensitization paradigm using DA neuron-specific βarrestin-2 KO mice. Our results show that these mice sensitize to cocaine as well as wild-type littermates. The βarrestin-2 KO mice, however, no longer respond to the locomotor attenuating effects of the GHSR1a antagonist YIL781. The data presented here suggest that the separate stages of addictive behavior differ in their requirements for βarrestin-2 and show that pharmacological inhibition of βarrestin-2 function through GHSR1a antagonism is not equivalent to the loss of βarrestin-2 function achieved by genetic ablation. These data support targeting GHSR1a signaling in addiction therapy but indicate that using signaling biased compounds that modulate βarrestin-2 activity differentially from G protein activity may be required.
Collapse
Affiliation(s)
- Krisztian Toth
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lauren M Slosky
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Thomas F Pack
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Nikhil M Urs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Peter Boone
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lawrence S Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
41
|
Nona CN, Nobrega JN. A role for nucleus accumbens glutamate in the expression but not the induction of behavioural sensitization to ethanol. Behav Brain Res 2017; 336:269-281. [PMID: 28919158 DOI: 10.1016/j.bbr.2017.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022]
Abstract
Mechanisms underlying differential sensitivity to behavioural sensitization to ethanol (EtOH) remain poorly understood, although accumulating evidence suggests a role for glutamatergic processes in the ventral striatum. Efforts to address this issue can benefit from the well-documented fact that in any given cohort, some of the mice (High sensitized; HS) show robust sensitization, while others (Low sensitized; LS) show little, if any, sensitization. Here, we examined whether this variability might be differentially associated with nucleus accumbens (NAc) glutamate processes. Male DBA mice received 5 EtOH (2.2g/kg) or saline injections twice a week and were challenged with EtOH (1.8g/kg) 2 weeks after injection 5. When an EtOH challenge was administered 2 weeks following the induction of sensitization, HS, but not LS, mice showed a robust increase in glutamate levels (67%, P<0.01) as measured by in vivo microdialysis. In a separate cohort, the mGlu2/3 agonist LY354740 (10mg/kg), given prior to the EtOH challenge, abolished the expression of sensitization. To ascertain whether enhanced release could also be observed during the induction of sensitization, glutamate levels were measured after the 1st and 5th EtOH injection and were found to be unchanged in HS mice, although briefly elevated in LS mice at injection 5. To further assess possible glutamate involvement during the induction of sensitization, sensitizing EtOH injections were co-administered with NMDAR antagonists. At the doses used, MK-801 (0.25mg/kg) and CGS 19755 (10mg/kg) blocked the expression of sensitization, but did not significantly interfere with the development of EtOH sensitization. Within the limitations of the present design, the results suggest an important role for EtOH-induced glutamate release in the NAc when sensitization is well established, but not necessarily during the development of sensitization.
Collapse
Affiliation(s)
- Christina N Nona
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - José N Nobrega
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2017; 68:816-71. [PMID: 27363441 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
43
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of the CART peptide expression in morphine sensitization in male rats. Eur J Pharmacol 2017; 802:52-59. [PMID: 28238767 DOI: 10.1016/j.ejphar.2017.02.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/24/2022]
Abstract
The importance of Cocaine- and amphetamine-regulated transcript (CART) peptide in reinforcing effects of addictive drugs specially alcohol and psychostimulants has been stablished. Involvement of CART peptide in rewarding effects of opioids in brain has recently been reported. Here we have studied the expression of CART mRNA and peptide in the reward pathway in morphine-induced sensitization phenomenon and also evaluated the peptide level fluctuations in CSF and plasma. Male Wistar rats received 7-day morphine injection (20mg/kg) and then after a 7-day washout period, a challenge dose of 10mg/kg morphine was administered and locomotor activity and oral stereotypical behaviors were recorded. Besides, the expression level of CART mRNA and peptide in four important areas of the mesocorticolimbic reward pathway including nucleus accumbens, striatum, prefrontal cortex, and hippocampus were measured by real-time PCR and western blotting, respectively. The level of the peptide in CSF and plasma was measured by Elisa method. The expression level of CART mRNA and protein in brain regions and also the peptide level in CSF and plasma were significantly down-regulated after 7-day morphine administration. These reduced levels returned to nearly normal rates after 7-day wash-out period. Administration of morphine challenge dose led to significant upregulation of CART gene expression (both mRNA and peptide) in the brain, and elevation of peptide level in CSF and plasma in morphine-sensitized rats. It can be concluded that CART is released in the framework of reward pathway and may serve as an important neurotransmitter in the process of morphine dependence and sensitization.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
44
|
Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. ACTA ACUST UNITED AC 2017; 71:670-679. [PMID: 27977239 DOI: 10.1037/amp0000059] [Citation(s) in RCA: 631] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rewards are both "liked" and "wanted," and those 2 words seem almost interchangeable. However, the brain circuitry that mediates the psychological process of "wanting" a particular reward is dissociable from circuitry that mediates the degree to which it is "liked." Incentive salience or "wanting," a form of motivation, is generated by large and robust neural systems that include mesolimbic dopamine. By comparison, "liking," or the actual pleasurable impact of reward consumption, is mediated by smaller and fragile neural systems, and is not dependent on dopamine. The incentive-sensitization theory posits the essence of drug addiction to be excessive amplification specifically of psychological "wanting," especially triggered by cues, without necessarily an amplification of "liking." This is because of long-lasting changes in dopamine-related motivation systems of susceptible individuals, called "neural sensitization." A quarter-century after its proposal, evidence has continued to grow in support the incentive-sensitization theory. Further, its scope is now expanding to include diverse behavioral addictions and other psychopathologies. (PsycINFO Database Record
Collapse
|
45
|
|
46
|
Abstract
Repeated drug injections lead to sensitization of their stimulant effects in mice, a phenomenon sometimes referred to as drug psychomotor sensitization. Previous studies showed that sensitization to cocaine is context dependent as its expression is reduced in an environment that was not paired with cocaine administration. In contrast, the effects of the test context on ethanol sensitization remain unclear. In the present study, female OF1 mice were repeatedly injected with 1.5 g/kg ethanol to test for both the effects of context novelty/familiarity and association on ethanol sensitization. A first group of mice was extensively pre-exposed to the test context before ethanol sensitization and ethanol injections were paired with the test context (familiar and paired group). A second group was not pre-exposed to the test context, but ethanol injections were paired with the test context (nonfamiliar and paired group). Finally, a third group of mice was not pre-exposed to the test context and ethanol was repeatedly injected in the home cage (unpaired group). Control groups were similarly exposed to the test context, but were injected with saline. In a second experiment, cocaine was used as a positive control. The same behavioral procedure was used, except that mice were injected with 10 mg/kg cocaine instead of ethanol. The results show a differential involvement of the test context in the sensitization to ethanol and cocaine. Cocaine sensitization is strongly context dependent and is not expressed in the unpaired group. In contrast, the expression of ethanol sensitization is independent of the context in which it was administered, but is strongly affected by the relative novelty/familiarity of the environment. Extensive pre-exposure to the test context prevented the expression of ethanol sensitization. One possible explanation is that expression of ethanol sensitization requires an arousing environment.
Collapse
|
47
|
Singer BF, Bubula N, Przybycien-Szymanska MM, Li D, Vezina P. Stimuli associated with the presence or absence of amphetamine regulate cytoskeletal signaling and behavior. Eur Neuropsychopharmacol 2016; 26:1836-1842. [PMID: 27720500 PMCID: PMC5159205 DOI: 10.1016/j.euroneuro.2016.09.639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Drug-paired stimuli rapidly enlarge dendritic spines in the nucleus accumbens (NAcc). While increases in spine size and shape are supported by rearrangement of the actin cytoskeleton and facilitate the synaptic expression of AMPA-type glutamate receptors, it remains unclear whether drug-related stimuli can influence signaling pathways known to regulate these changes in spine morphology. These pathways were studied in rats trained on a discrimination learning paradigm using subcellular fractionation and protein immunoblotting to isolate proteins within dendritic spine compartments in the NAcc shell. An open field chamber was repeatedly associated with amphetamine in one group (Paired) and explicitly unpaired with amphetamine in another (Unpaired). Rats in a third group were exposed to the open field but never administered amphetamine (Control). When administered saline and returned to the open field one week later, Paired rats as expected displayed a conditioned locomotor response relative to rats in the other two groups. NAcc shell tissues were harvested immediately after this 30-minute test. Re-exposing Paired rats to the drug-paired excitatory context significantly decreased p-GluA2(S880), an effect consistent with reduced internalization of this subunit and increased spine proliferation in these rats. In contrast, re-exposing Unpaired rats to the drug-unpaired context, capable of inhibiting conditioned responding in these animals, significantly decreased levels of both actin binding protein Arp2/3 and p-cofilin, consistent with spine volatility, shrinkage, and inhibition of spine proliferation in these rats. These findings show that contextual stimuli previously associated with either the presence or absence of amphetamine differentially regulate cytoskeletal signaling pathways in the NAcc.
Collapse
Affiliation(s)
- Bryan F Singer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Committee on Neurobiology, University of Chicago, Chicago, IL, USA.
| | - Nancy Bubula
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | | | - Dongdong Li
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Paul Vezina
- Committee on Neurobiology, University of Chicago, Chicago, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
Abstract
A decade ago, we hypothesized that drug addiction can be viewed as a transition from voluntary, recreational drug use to compulsive drug-seeking habits, neurally underpinned by a transition from prefrontal cortical to striatal control over drug seeking and taking as well as a progression from the ventral to the dorsal striatum. Here, in the light of burgeoning, supportive evidence, we reconsider and elaborate this hypothesis, in particular the refinements in our understanding of ventral and dorsal striatal mechanisms underlying goal-directed and habitual drug seeking, the influence of drug-associated Pavlovian-conditioned stimuli on drug seeking and relapse, and evidence for impairments in top-down prefrontal cortical inhibitory control over this behavior. We further review animal and human studies that have begun to define etiological factors and individual differences in the propensity to become addicted to drugs, leading to the description of addiction endophenotypes, especially for cocaine addiction. We consider the prospect of novel treatments for addiction that promote abstinence from and relapse to drug use.
Collapse
Affiliation(s)
- Barry J Everitt
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom; ,
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom; ,
| |
Collapse
|
49
|
Response contingency directs long-term cocaine-induced neuroplasticity in prefrontal and striatal dopamine terminals. Eur Neuropsychopharmacol 2016; 26:1667-72. [PMID: 27593624 DOI: 10.1016/j.euroneuro.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/18/2016] [Accepted: 08/22/2016] [Indexed: 11/22/2022]
Abstract
Exposure to addictive substances such as cocaine is well-known to alter brain organisation. Cocaine-induced neuroadaptations depend on several factors, including drug administration paradigm. To date, studies addressing the consequences of cocaine exposure on dopamine transmission have either not been designed to investigate the role of response contingency or focused only on short-term neuroplasticity. We demonstrate a key role of response contingency in directing long-term cocaine-induced neuroplasticity throughout projection areas of the mesocorticolimbic dopamine system. We found enhanced electrically-evoked [(3)H]dopamine release from superfused brain slices of nucleus accumbens shell and core, dorsal striatum and medial prefrontal cortex three weeks after cessation of cocaine self-administration. In yoked cocaine rats receiving the same amount of cocaine passively, sensitised dopamine terminal reactivity was only observed in the nucleus accumbens core. Control sucrose self-administration experiments demonstrated that the observed neuroadaptations were not the result of instrumental learning per se. Thus, long-term withdrawal from cocaine self-administration is associated with widespread sensitisation of dopamine terminals throughout frontostriatal circuitries.
Collapse
|
50
|
Park BY, Wilson G, Berger J, Christman M, Reina B, Bishop F, Klam WP, Doan AP. Is Internet Pornography Causing Sexual Dysfunctions? A Review with Clinical Reports. Behav Sci (Basel) 2016; 6:E17. [PMID: 27527226 PMCID: PMC5039517 DOI: 10.3390/bs6030017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/07/2023] Open
Abstract
Traditional factors that once explained men's sexual difficulties appear insufficient to account for the sharp rise in erectile dysfunction, delayed ejaculation, decreased sexual satisfaction, and diminished libido during partnered sex in men under 40. This review (1) considers data from multiple domains, e.g., clinical, biological (addiction/urology), psychological (sexual conditioning), sociological; and (2) presents a series of clinical reports, all with the aim of proposing a possible direction for future research of this phenomenon. Alterations to the brain's motivational system are explored as a possible etiology underlying pornography-related sexual dysfunctions. This review also considers evidence that Internet pornography's unique properties (limitless novelty, potential for easy escalation to more extreme material, video format, etc.) may be potent enough to condition sexual arousal to aspects of Internet pornography use that do not readily transition to real-life partners, such that sex with desired partners may not register as meeting expectations and arousal declines. Clinical reports suggest that terminating Internet pornography use is sometimes sufficient to reverse negative effects, underscoring the need for extensive investigation using methodologies that have subjects remove the variable of Internet pornography use. In the interim, a simple diagnostic protocol for assessing patients with porn-induced sexual dysfunction is put forth.
Collapse
Affiliation(s)
- Brian Y Park
- Flight Surgeon, Fleet Logistics Support Squadron 40, Norfolk, VA 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Gary Wilson
- The Reward Foundation, 5 Rose Street, Edinburgh EH2 2PR, Scotland, UK.
| | - Jonathan Berger
- Department of Urology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Matthew Christman
- Department of Urology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Bryn Reina
- Department of Mental Health, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Frank Bishop
- Department of Ophthalmology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Warren P Klam
- Department of Mental Health, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Andrew P Doan
- Department of Mental Health, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
- Department of Ophthalmology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| |
Collapse
|