1
|
Sewall KB, Beck ML, Lane SJ, Davies S. Urban and rural male song sparrows (Melospiza melodia) differ in territorial aggression and activation of vasotocin neurons in response to song challenge. Horm Behav 2023; 156:105438. [PMID: 37801916 DOI: 10.1016/j.yhbeh.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
When living in urban habitats, 'urban adapter' species often show greater aggression toward conspecifics, yet we do not understand the mechanisms underlying this behavioral shift. The neuroendocrine system regulates socio-sexual behaviors including aggression and thus could mediate behavioral responses to urbanization. Indeed, urban male song sparrows (Melospiza melodia), which are more territorially aggressive, also have greater abundance of the neuropeptide arginine vasotocin (AVT) in nodes of the brain social behavior network. Higher abundance of AVT could reflect long-term synthesis that underlies baseline territoriality or short-term changes that regulate aggression in response to social challenge. To begin to resolve the timeframe over which the AVT system contributes to habitat differences in aggression we used immediate early gene co-expression as a measure of the activation of AVT neurons. We compared Fos induction in AVT-immunoreactive neurons of the bed nucleus of the stria terminalis (BSTm) and paraventricular nucleus of the hypothalamus (PVN) between urban and rural male song sparrows in response to a short (< 5 min.) or long (> 30 min.) song playback to simulate territorial intrusion by another male. We found that urban males had a higher proportion of Fos-positive AVT neurons in both brain regions compared to rural males, regardless of the duration of song playback. Our results suggest that AVT neurons remain activated in urban males, independently of the duration of social challenge. These findings that Fos induction in AVT neurons differs between rural and urban male song sparrows further implicate this system in regulating behavioral responses to urbanization.
Collapse
Affiliation(s)
- Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Michelle L Beck
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Industrial Economics Incorporated, Cambridge, MA, USA
| | - Samuel J Lane
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Scott Davies
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Quinnipiac University, Department of Biological Sciences, 275 Mt Carmel Ave, Hamden, CT 06518, USA
| |
Collapse
|
2
|
Loveland JL, Giraldo-Deck LM, Kelly AM. How inversion variants can shape neural circuitry: Insights from the three-morph mating tactics of ruffs. Front Physiol 2022; 13:1011629. [DOI: 10.3389/fphys.2022.1011629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Behavior polymorphisms underlying alternative mating tactics can evolve due to genetic inversions, especially when inversions capture sets of genes involved in hormonal regulation. In the three-morph system of the ruff (Calidris pugnax), two alternative morphs (Satellites and Faeders) with distinct behaviors and low circulating testosterone are genetically determined by an inverted region on an autosomal chromosome. Here, we discuss recent findings on the ruff and present novel insights into how an inversion that poses drastic constraints on testosterone production might lead to morph-specific differences in brain areas that regulate social behavior. A gene responsible for converting testosterone to androstenedione (HSD17B2) is located inside the inverted region and is a promising candidate. We identify a single missense mutation in the HSD17B2 gene of inverted alleles that is responsible for a 350–500% increase in testosterone to androstenedione conversion, when mutated in the human HSD17B2 protein. We discuss new evidence of morph differences in neural HSD17B2 expression in embryos and circulating androgens in sexually-immature juveniles. We suggest processes that shape morph differences in behavior likely begin early in ontogeny. We propose that the organization of behaviorally relevant neuron cell types that are canonically sexually dimorphic, such as subpopulations of aromatase and vasotocin neurons, should be particularly affected due to the life-long condition of low circulating testosterone in inversion morphs. We further emphasize how HSD17B2 catalytic activity extends beyond androgens, and includes estradiol oxidation into estrone and progesterone synthesis. Lastly, we underscore dimerization of HSD17B2 as an additional layer of complexity that merits consideration.
Collapse
|
3
|
Trigo S, Silva PA, Cardoso GC, Soares MC. A test of context and sex-dependent dopaminergic effects on the behavior of a gregarious bird, the common waxbill Estrilda astrild. J Exp Biol 2022; 225:274524. [PMID: 35202471 DOI: 10.1242/jeb.243861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The Dopaminergic (DAergic) system has well known influences on behavioral and cognitive functions. Previous work with common waxbills (Estrilda astrild) reported context-specific DAergic effects that could have been due to social environment. Manipulating the dopamine D2-like receptor family (D2R) pathways had opposed effects on behavior depending on whether waxbills were tested alone or in a small cage with a mirror as social stimulus. Since waxbills are highly gregarious, it was hypothesized that being alone or perceiving to have a companion might explain this context-dependence. To test context-dependent DAergic effects, we compared behavioral effects of D2R manipulation in waxbills in the same familiar environment, but either alone or with a familiar, same-sex companion. We found that D2R agonism decreased movement and feeding, similarly to previous results when testing waxbills alone. However, contrary to the hypothesis of dependence on social context, we found that the behavioral effects of the D2R agonist were unchanged when waxbills were tested with a companion. The context-dependence reported earlier might thus be due to other factors, such as the stress of being in a novel environment (small cage) or with an unfamiliar social stimulus (mirror image). In tests with a companion, we also found a sex-specific social effect of D2R manipulation: D2R blocking tended to decrease aggression in males but to increase in females. Together with past work, our results suggest that DAergic effects on behavior involve different types of context- or sex-dependence.
Collapse
Affiliation(s)
- Sandra Trigo
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Paulo A Silva
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Gonçalo C Cardoso
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Marta C Soares
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
4
|
Kalarani A, Vinodha V, Moses IR. Inter-relations of brain neurosteroids and monoamines towards reproduction in fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
6
|
Liu ZH, Li YW, Hu W, Chen QL, Shen YJ. Mechanisms involved in tributyltin-enhanced aggressive behaviors and fear responses in male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105408. [PMID: 31935571 DOI: 10.1016/j.aquatox.2020.105408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Tributyltin (TBT), an aromatase inhibitor, has been found to disrupt gametogenesis and reproductive behavior in several fish species. However, whether TBT is capable of affecting other behaviors such as aggressive behavior and fear response in fish and the underlying mode(s) of action remain unclear. To study aggressive behavior, adult zebrafish (Danio rerio) males were continuously exposed to two nominal concentrations of TBT (TBT-low, 100 ng/L and TBT-high, 500 ng/L) for 28 days. To study the fear response, the fish were divided into four groups (Blank and Control, 0 ng/L TBT; TBT-low, 100 ng/L; and TBT-high, 500 ng/L). The fish were then treated with DW (Blank) or with alarm substance (AS) (Control, TBT-low and TBT-high). After exposure, the aggressive behavior of the fish was tested using the mirror test (mirror-biting frequency, approaches to the mirror and duration in approach zone).and fighting test (fish-biting frequency) The mirror-biting frequency, approaches to the mirror, duration in approach zone and fish-biting frequency of the TBT-exposed fish increased significantly compared to those of the control fish, indicating enhanced aggressive behavior. The fear response parameters tested using the novel tank dive test (onset time to the higher half, total duration in the lower half and the frequency of turning) of the TBT-exposed fish were also significantly increased after AS administration, suggesting an enhanced fear response. Further investigation revealed that TBT treatment elevated the plasma level of 11-ketotestosterone (11-KT) and decreased the plasma level of estradiol (E2) in a concentration-dependent manner. Moreover, TBT up-regulated the mRNA levels of ar, c-fos and bdnf1, and suppressed the expression of btg-2 in fish. In addition, exposure to AS increased the plasma level of cortisol and down-regulated the mRNA expression levels of genes involved in 5-HT synthesis (such as tph1b and pet1) in both control and TBT-treated fish. AS significantly suppressed the mRNA level of tph1b, tph2, pet1 and npy in the TBT-high group compared to the control fish. The present study demonstrates that TBT enhances aggressive behavior and fear responses in male zebrafish probably through altering plasma levels of 11-KT, E2 and cortisol and altering the expression of genes involved in the regulation of aggressive behavior (ar, c-fos, bdnf1 and btg-2) and fear responses (tph1b, tph2, pet1 and npy). The present study greatly extends our understanding of the behavioral toxicity of TBT to fish.
Collapse
Affiliation(s)
- Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wei Hu
- Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
7
|
Silva PA, Trigo S, Marques CI, Cardoso GC, Soares MC. Experimental evidence for a role of dopamine in avian personality traits. J Exp Biol 2020; 223:jeb216499. [PMID: 31953366 DOI: 10.1242/jeb.216499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022]
Abstract
There is increasing interest in the genetic and physiological bases of behavioural differences among individuals, namely animal personality. One particular dopamine (DA) receptor gene (the dopamine receptor D4 gene) has been used as candidate gene to explain personality differences, but with mixed results. Here, we used an alternative approach, exogenously manipulating the dopaminergic system and testing for effects on personality assays in a social bird species, the common waxbill (Estrilda astrild). We treated birds with agonists and antagonists for DA receptors of both D1 and D2 receptor pathways (the latter includes the D4 receptor) and found that short-term manipulation of DA signalling had an immediate effect on personality-related behaviours. In an assay of social responses (mirror test), manipulation of D2 receptor pathways reduced time spent looking at the social stimulus (mirror image). Blocking D2 receptors reduced motor activity in this social assay, while treatment with a D2 receptor agonist augmented activity in this social assay but reduced activity in a non-social behavioural assay. Also, in the non-social assay, treatment with the D1 receptor antagonist markedly increased time spent at the feeder. These results show distinct and context-specific effects of the dopaminergic pathways on waxbill personality traits. Our results also suggest that experimental manipulation of DA signalling can disrupt a behavioural correlation (more active individuals being less attentive to mirror image) that is habitually observed as part of a behavioural syndrome in waxbills. We discuss our results in the context of animal personality, and the role of the DA system in reward and social behaviour.
Collapse
Affiliation(s)
- Paulo A Silva
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Sandra Trigo
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Cristiana I Marques
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Gonçalo C Cardoso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
- Behavioural Ecology Group, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Marta C Soares
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| |
Collapse
|
8
|
Eswine SL, Pontinen JK, Heimovics SA. Competitive ability during mate competition relates to unique patterns of dopamine-related gene expression in the social decision-making network of male zebra finches. Neurosci Lett 2019; 706:30-35. [PMID: 31051224 DOI: 10.1016/j.neulet.2019.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Aggressive interactions usually reveal individual differences in the competitive ability of contest participants. Individuals with higher competitive ability often gain priority access to resources such as food, territory, and/or mates. Individuals with lower competitive ability usually have reduced access to these resources and limited mating opportunities. Despite the importance of contest performance to the reproductive success of individuals, the neuroendocrine factors associated with individual differences in competitive ability have not been fully elucidated. Here, we investigate the relationship between dopamine (DA)-related gene expression and competitive ability during mate competition in male zebra finches. Males demonstrating high competitive ability (HCA) had higher tyrosine hydroxylase mRNA levels in the ventral tegmental area and higher D1 receptor (D1-R) mRNA levels in the preoptic area than low competitive ability (LCA) males. Additionally, HCA males had lower levels of D1-R mRNA in the anterior hypothalamus relative to LCA males. These data suggest that there are dynamic and region-specific changes in DA function that relate to variation in competitive ability during mate competition.
Collapse
Affiliation(s)
- Stephanie L Eswine
- Department of Biology and Interdisciplinary Neuroscience Program, University of St. Thomas, St. Paul, MN, USA
| | - Jill K Pontinen
- Department of Biology and Interdisciplinary Neuroscience Program, University of St. Thomas, St. Paul, MN, USA
| | - Sarah A Heimovics
- Department of Biology and Interdisciplinary Neuroscience Program, University of St. Thomas, St. Paul, MN, USA.
| |
Collapse
|
9
|
Day NF, Saxon D, Robbins A, Harris L, Nee E, Shroff-Mehta N, Stout K, Sun J, Lillie N, Burns M, Korn C, Coleman MJ. D2 dopamine receptor activation induces female preference for male song in the monogamous zebra finch. ACTA ACUST UNITED AC 2019; 222:222/5/jeb191510. [PMID: 30850509 DOI: 10.1242/jeb.191510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
The evolutionary conservation of neural mechanisms for forming and maintaining pair bonds is unclear. Oxytocin, vasopressin and dopamine (DA) transmitter systems have been shown to be important in pair-bond formation and maintenance in several vertebrate species. We examined the role of dopamine in formation of song preference in zebra finches, a monogamous bird. Male courtship song is an honest signal of sexual fitness; thus, we measured female song preference to evaluate the role of DA in mate selection and pair-bond formation, using an operant conditioning paradigm. We found that DA acting through the D2 receptor, but not the D1 receptor, can induce a song preference in unpaired female finches and that blocking the D2 receptor abolished song preference in paired females. These results suggest that similar neural mechanisms for pair-bond formation are evolutionarily conserved in rodents and birds.
Collapse
Affiliation(s)
- Nancy F Day
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7246, USA
| | - David Saxon
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Anastasia Robbins
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Lily Harris
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Emily Nee
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Naomi Shroff-Mehta
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Kaeley Stout
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Julia Sun
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Natalie Lillie
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Mara Burns
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Clio Korn
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Melissa J Coleman
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| |
Collapse
|
10
|
Baran NM. Sensitive Periods, Vasotocin-Family Peptides, and the Evolution and Development of Social Behavior. Front Endocrinol (Lausanne) 2017; 8:189. [PMID: 28824549 PMCID: PMC5539493 DOI: 10.3389/fendo.2017.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023] Open
Abstract
Nonapeptides, by modulating the activity of neural circuits in specific social contexts, provide an important mechanism underlying the evolution of diverse behavioral phenotypes across vertebrate taxa. Vasotocin-family nonapeptides, in particular, have been found to be involved in behavioral plasticity and diversity in social behavior, including seasonal variation, sexual dimorphism, and species differences. Although nonapeptides have been the focus of a great deal of research over the last several decades, the vast majority of this work has focused on adults. However, behavioral diversity may also be explained by the ways in which these peptides shape neural circuits and influence social processes during development. In this review, I synthesize comparative work on vasotocin-family peptides during development and classic work on early forms of social learning in developmental psychobiology. I also summarize recent work demonstrating that early life manipulations of the nonapeptide system alter attachment, affiliation, and vocal learning in zebra finches. I thus hypothesize that vasotocin-family peptides are involved in the evolution of social behaviors through their influence on learning during sensitive periods in social development.
Collapse
Affiliation(s)
- Nicole M. Baran
- Department of Psychology, Cornell University, Ithaca, NY, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
11
|
Weitekamp CA, Nguyen J, Hofmann HA. Social context affects behavior, preoptic area gene expression, and response to
D2
receptor manipulation during territorial defense in a cichlid fish. GENES BRAIN AND BEHAVIOR 2017; 16:601-611. [DOI: 10.1111/gbb.12389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 11/27/2022]
Affiliation(s)
- C. A. Weitekamp
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - J. Nguyen
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - H. A. Hofmann
- Department of Integrative Biology University of Texas at Austin Austin TX USA
- Institute for Cell and Molecular Biology University of Texas at Austin Austin TX USA
- Institute for Neuroscience University of Texas at Austin Austin TX USA
| |
Collapse
|
12
|
Sewall KB, Davies S. Two Neural Measures Differ between Urban and Rural Song Sparrows after Conspecific Song Playback. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Smith AN, Kabelik D. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles. PLoS One 2017; 12:e0172041. [PMID: 28187160 PMCID: PMC5302375 DOI: 10.1371/journal.pone.0172041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/30/2017] [Indexed: 11/29/2022] Open
Abstract
The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.
Collapse
Affiliation(s)
- Alexandra N. Smith
- Department of Biology, Rhodes College, Memphis, Tennessee, United States of America
- Program in Neuroscience, Rhodes College, Memphis, Tennessee, United States of America
| | - David Kabelik
- Department of Biology, Rhodes College, Memphis, Tennessee, United States of America
- Program in Neuroscience, Rhodes College, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
14
|
Malki K, Du Rietz E, Crusio WE, Pain O, Paya-Cano J, Karadaghi RL, Sluyter F, de Boer SF, Sandnabba K, Schalkwyk LC, Asherson P, Tosto MG. Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish. Am J Med Genet B Neuropsychiatr Genet 2016; 171:827-38. [PMID: 27090961 DOI: 10.1002/ajmg.b.32451] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP < 0.05) in aggressive compared to non-aggressive mice. Seventy genes were differentially expressed in zebrafish exposed to a fight encounter compared to isolated zebrafish. Seven genes (Fos, Dusp1, Hdac4, Ier2, Bdnf, Btg2, and Nr4a1) were differentially expressed across both species 5 of which belonging to a gene-network centred on the c-Fos gene hub. Network analysis revealed an association with the MAPK signaling cascade. In human studies HDAC4 haploinsufficiency is a key genetic mechanism associated with brachydactyly mental retardation syndrome (BDMR), which is associated with aggressive behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karim Malki
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Ebba Du Rietz
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Wim E Crusio
- University of Bordeaux, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France.,CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France
| | - Oliver Pain
- Centre of Brain and Cognitive Development, Birkbeck, University of London, United Kingdom.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jose Paya-Cano
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Rezhaw L Karadaghi
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Frans Sluyter
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Sietse F de Boer
- Groningen Institute for Evolutionary LifeSciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kenneth Sandnabba
- Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Leonard C Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Philip Asherson
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Maria Grazia Tosto
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom.,Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
15
|
Matheson LE, Sakata JT. Catecholaminergic contributions to vocal communication signals. Eur J Neurosci 2015; 41:1180-94. [DOI: 10.1111/ejn.12885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Laura E. Matheson
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| | - Jon T. Sakata
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| |
Collapse
|
16
|
Hu Z, Zhu L, Tan M, Cai M, Deng L, Yu G, Liu D, Liu J, Lin B. The expression and correlation between the transcription factor FOXP1 and estrogen receptors in epithelial ovarian cancer. Biochimie 2014; 109:42-8. [PMID: 25500588 DOI: 10.1016/j.biochi.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Estrogen plays an important role in the progression of ovarian cancer in humans. FOXP1 belongs to the forkhead/winged-helix transcription factor family, and previous research indicated that FOXP1 functioned as a tumor suppressor gene. FOXP1 may be similar to FOXA1 and is closely related to steroid hormone receptors, but the relationship between FOXP1 and ER currently remains unclear. METHODS Ovarian tumors (60 malignant cases, 26 borderline cases, and 13 benign cases) and 14 normal ovarian tissues were collected retrospectively. Immunohistochemistry, western blotting and real-time PCR were used to characterize the expression patterns of FOXP1, ERα, and ERβ both at the mRNA and protein levels. We also used co-immunoprecipitation and immunofluorescent colocalization to investigate whether a correlation exists between FOXP1 and ERα/ERβ in ovarian cancer tissues. RESULTS The mRNA level for FOXP1 and ERβ in ovarian carcinoma tissues decreased, while the expression level of ERα mRNA increased compared with normal ovarian tissues. With an increase in the degree of ovarian carcinoma malignancy, the ERα expression level also increased. The expression pattern of ERβ in ovarian neoplasms was similar to that of the FOXP1 protein; presenting nuclear staining decreased, while cytoplasmic expression increased. Colocalization of FOXP1, ERα, and ERβ was present in the cytoplasm, with ERβ specific co-localization with FOXP1 in the perinuclear area. While immunoprecipitates created with FOXP1 mouse anti-human monoclonal antibody showed a positive reaction to an anti-ER antibody, immunoprecipitates containing anti-ER antibody and react to anti-FOXP1 antibody. CONCLUSION Interactions between FOXP1 and ER may play a pivotal role in the progression of ovarian cancer, and the activation or induction of FOXP1 and ERβ expression in cancer cells may inhibit tumor proliferation.
Collapse
Affiliation(s)
- Zhenhua Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Mingbo Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Lu Deng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Guannan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, PR China.
| |
Collapse
|
17
|
Kelly AM, Goodson JL. Functional interactions of dopamine cell groups reflect personality, sex, and social context in highly social finches. Behav Brain Res 2014; 280:101-12. [PMID: 25496780 DOI: 10.1016/j.bbr.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is well known for its involvement in novelty-seeking, learning, and goal-oriented behaviors such as social behavior. However, little is known about how DA modulates social processes differentially in relation to sex and behavioral phenotype (e.g., personality). Importantly, the major DA cell groups (A8-A15) are conserved across all amniote vertebrates, and thus broadly relevant insights may be obtained through investigations of avian species such as zebra finches (Taeniopygia guttata), which express a human-like social organization based on biparental nuclear families that are embedded within larger social groups. We here build upon a previous study that quantified multidimensional personality structures in male and female zebra finches using principal components analysis (PCA) of extensive behavioral measures in social and nonsocial contexts. These complex dimensions of behavioral phenotype can be characterized as Social competence/dominance, Gregariousness, and Anxiety. Here we analyze Fos protein expression in DA neuronal populations in response to social novelty and demonstrate that the Fos content of multiple dopamine cell groups is significantly predicted by sex, personality, social context, and their interactions. In order to further investigate coordinated neuromodulation of behavior across multiple DA cell groups, we also conducted a PCA of neural variables (DA cell numbers and their phasic Fos responses) and show that behavioral PCs are associated with unique suites of neural PCs. These findings demonstrate that personality and sex are reflected in DA neuron activity and coordinated patterns of neuromodulation arising from multiple DA cell groups.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Rosvall KA, Peterson MP. Behavioral effects of social challenges and genomic mechanisms of social priming: What's testosterone got to do with it? Curr Zool 2014; 60:791-803. [PMID: 27721823 DOI: 10.1093/czoolo/60.6.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of continued social instability (i.e. social priming). Recently, it has become clear that testosterone, long thought to be the primary mediator of these effects, may not always change in response to social challenges, an observation that highlights gaps in our understanding of the proximate mechanisms by which animals respond to their social environment. Here, our goal is to address the degree to which testosterone mediates organismal responses to social cues. To this end, we review the behavioral and physiological consequences of social challenges, as well as their underlying hormonal and gene regulatory mechanisms. We also present a new case study from a wild songbird, the dark-eyed junco (Junco hyemalis), in which we find largely divergent genome-wide transcriptional changes induced by social challenges and testosterone, respectively, in muscle and liver tissue. Our review underscores the diversity of mechanisms that link the dynamic social environment with an organisms' genomic, hormonal, and behavioral state. This diversity among species, and even among tissues within an organism, reveals new insights into the pattern and process by which evolution may alter proximate mechanisms of social priming.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Department of Biology and Center for the Integrative Study of Animal Behavior
| | | |
Collapse
|
19
|
Creighton AE, Wilczynski W. Influence of dopamine D2-type receptors on motor behaviors in the green tree frog, Hyla cinerea. Physiol Behav 2014; 127:71-80. [PMID: 24480075 DOI: 10.1016/j.physbeh.2014.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/28/2013] [Accepted: 01/14/2014] [Indexed: 12/21/2022]
Abstract
Dopamine modulates a range of behaviors that include motor processes, learning, and incentive motivation. Research supports anatomical conservation of dopaminergic populations in the midbrain across vertebrate species, however, less evidence is available for dopamine receptor distributions. In order to test the behavioral role of dopamine in an anatomically conserved dopaminergic system, the effects of D2-type receptor manipulation on motor behaviors were examined in the anuran amphibian green tree frog, Hyla cinerea. In two different within-subject experiments, frogs were treated with a control treatment, and a high and low dose of either a D2 receptor-specific agonist, quinpirole, or antagonist, haloperidol, then exposed to a testing session to measure changes in swimming and climbing motor behaviors. No treatments resulted in complete immobility or catalepsy, however treatment-specific effects on certain motor behaviors were present. The high quinpirole dose (1mg/kg bw) generally inhibited motor behaviors associated with exiting water and jumping, while both haloperidol treatments (0.12mg/kg bw and 1.2mg/kg bw) generally stimulated motor behaviors associated with exiting water, as predicted based on receptor mechanisms. Performance improvement also appeared in frogs in each experiment, suggesting that the D2 receptor is not involved in the motor learning mechanism in this species. Overall, the results support general conservation of D2 receptors in motor processes in vertebrate species.
Collapse
Affiliation(s)
- Anna E Creighton
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, United States.
| | - Walter Wilczynski
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, United States.
| |
Collapse
|
20
|
Kabelik D, Alix VC, Singh LJ, Johnson AL, Choudhury SC, Elbaum CC, Scott MR. Neural activity in catecholaminergic populations following sexual and aggressive interactions in the brown anole, Anolis sagrei. Brain Res 2014; 1553:41-58. [PMID: 24472578 DOI: 10.1016/j.brainres.2014.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 01/01/2023]
Abstract
Social behaviors in vertebrates are modulated by catecholamine (CA; dopamine, norepinephrine, epinephrine) release within the social behavior neural network. Few studies have examined activity across CA populations in relation to social behaviors. The involvement of CAs in social behavior regulation is especially underexplored in reptiles, relative to other amniotes. In this study, we mapped CA populations throughout the brain (excluding retina and olfactory bulb) of the male brown anole lizard, Anolis sagrei, via immunofluorescent visualization of the rate-limiting enzyme for CA synthesis, tyrosine hydroxylase (TH). Colocalization of TH with the immediate early gene product Fos, an indirect marker of neural activity, also enabled us to relate activity in TH-immunoreactive (TH-ir) neurons to appetitive and consummatory sexual and aggressive behaviors. We detected most major TH-ir cell populations that are present in other amniotes (within the hypothalamus, midbrain, and hindbrain), although the A15 population was entirely absent. We also detected a few novel or rare cell clusters within the amygdala, medial septum, and inferior raphe. Many CA populations, especially dopaminergic groups, showed increased TH-Fos colocalization in association with appetitive and consummatory sexual behavior expression, while a small number of regions showed increased colocalization in relation to solely consummatory aggression (biting of an opponent). In conclusion, we here map CA populations throughout the brown anole brain and demonstrate evidence for catecholaminergic involvement in appetitive and consummatory sexual behaviors and consummatory aggressive behaviors in this species.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA.
| | - Veronica C Alix
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Leah J Singh
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Alyssa L Johnson
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Shelley C Choudhury
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Caroline C Elbaum
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Madeline R Scott
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| |
Collapse
|
21
|
Creighton A, Satterfield D, Chu J. Effects of dopamine agonists on calling behavior in the green tree frog, Hyla cinerea. Physiol Behav 2013; 116-117:54-9. [DOI: 10.1016/j.physbeh.2013.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 12/25/2022]
|
22
|
Kabelik D, Alix VC, Burford ER, Singh LJ. Aggression- and sex-induced neural activity across vasotocin populations in the brown anole. Horm Behav 2013. [PMID: 23201179 DOI: 10.1016/j.yhbeh.2012.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Activity within the social behavior neural network is modulated by the neuropeptide arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin (AVP). However, central AVT/AVP release causes different behavioral effects across species and social environments. These differences may be due to the activation of different neuronal AVT/AVP populations or to similar activity patterns causing different behavioral outputs. We examined neural activity (assessed as Fos induction) within AVT neurons in male brown anole lizards (Anolis sagrei) participating in aggressive or sexual encounters. Lizards possess simple amniote nervous systems, and their examination provides a comparative framework to complement avian and mammalian studies. In accordance with findings in other species, AVT neurons in the anole paraventricular nucleus (PVN) were activated during aggressive encounters; but unlike in other species, a positive correlation was found between aggression levels and activation. Activation of AVT neurons within the supraoptic nucleus (SON) occurred nonspecifically with participation in either aggressive or sexual encounters. Activation of AVT neurons in the preoptic area (POA) and bed nucleus of the stria terminalis (BNST) was associated with engagement in sexual behaviors. The above findings are congruent with neural activation patterns observed in other species, even when the behavioral outputs (i.e., aggression level) differed. However, aggressive encounters also increased activation of AVT neurons in the BNST, which is incongruous with findings in other species. Thus, some species differences involve the encoding of social stimuli as different neural activation patterns within the AVT/AVP network, whereas other behavioral differences arise downstream of this system.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Rhodes College, 2000N Parkway, Memphis, TN, 38112, USA.
| | | | | | | |
Collapse
|
23
|
Goodson JL, Wilson LC, Schrock SE. To flock or fight: neurochemical signatures of divergent life histories in sparrows. Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10685-92. [PMID: 22723363 PMCID: PMC3386873 DOI: 10.1073/pnas.1203394109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many bird species exhibit dramatic seasonal switches between territoriality and flocking, but whereas neuroendocrine mechanisms of territorial aggression have been extensively studied, those of seasonal flocking are unknown. We collected brains in spring and winter from male field sparrows (Spizella pusilla), which seasonally flock, and male song sparrows (Melospiza melodia), which are territorial year-round in much of their range. Spring collections were preceded by field-based assessments of aggression. Tissue series were immunofluorescently multilabeled for vasotocin, mesotocin (MT), corticotropin-releasing hormone (CRH), vasoactive intestinal polypeptide, tyrosine hydroxylase, and aromatase, and labeling densities were measured in many socially relevant brain areas. Extensive seasonal differences are shared by both species. Many measures correlate significantly with both individual and species differences in aggression, likely reflecting evolved mechanisms that differentiate the less aggressive field sparrow from the more aggressive song sparrow. Winter-specific species differences include a substantial increase of MT and CRH immunoreactivity in the dorsal lateral septum (LS) and medial amygdala of field sparrows but not song sparrows. These species differences likely relate to flocking rather than the suppression of winter aggression in field sparrows, because similar winter differences were found for two other emberizids that are not territorial in winter--dark-eyed juncos (Junco hyemalis), which seasonally flock, and eastern towhees (Pipilo erythropthalmus), which do not flock. MT signaling in the dorsal LS is also associated with year-round species differences in grouping in estrildid finches, suggesting that common mechanisms are targeted during the evolution of different life histories.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
24
|
Goodson JL, Kelly AM, Kingsbury MA. Evolving nonapeptide mechanisms of gregariousness and social diversity in birds. Horm Behav 2012; 61:239-50. [PMID: 22269661 PMCID: PMC3312996 DOI: 10.1016/j.yhbeh.2012.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 12/22/2022]
Abstract
Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
25
|
A new three-dimensional model for emotions and monoamine neurotransmitters. Med Hypotheses 2012; 78:341-8. [DOI: 10.1016/j.mehy.2011.11.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/02/2011] [Accepted: 11/13/2011] [Indexed: 12/31/2022]
|
26
|
Rosvall KA. Intrasexual competition in females: evidence for sexual selection? Behav Ecol 2011; 22:1131-1140. [PMID: 22479137 PMCID: PMC3199163 DOI: 10.1093/beheco/arr106] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 11/29/2010] [Accepted: 05/24/2011] [Indexed: 11/14/2022] Open
Abstract
In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female-female competition are sexually selected. This review uses female-female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Department of Biology, Indiana University, Jordan Hall, Rm 142, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
27
|
Kabelik D, Schrock SE, Ayres LC, Goodson JL. Estrogenic regulation of dopaminergic neurons in the opportunistically breeding zebra finch. Gen Comp Endocrinol 2011; 173:96-104. [PMID: 21600208 PMCID: PMC3130106 DOI: 10.1016/j.ygcen.2011.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 11/19/2022]
Abstract
Steroid-induced changes in dopaminergic activity underlie many correlations between gonadal hormones and social behaviors. However, the effects of steroid hormones on the various behaviorally relevant dopamine cell groups remain unclear, and ecologically relevant species differences remain virtually unexplored. We examined the effects of estradiol (E2) manipulations on dopamine (DA) neurons of male and female zebra finches (Taeniopygia guttata), focusing on numbers of tyrosine hydroxylase-immunoreactive (TH-ir) cells in the A8-A15 cell groups, and on TH colocalization with Fos, conducted in the early A.M., in order to quantify basal transcriptional activity. TH is the rate-limiting enzyme for catecholamine synthesis, and specifically DA in the A8-A15 cell groups. In contrast to other examined birds and mammals, reducing E2 levels with the aromatase-inhibitor Letrozole failed to alter TH-ir neuron numbers within the ventral tegmental area (VTA; A10), while increasing neuron numbers in the central gray (CG; A11) and caudal midbrain A8 populations. Consistent with findings in other birds, but not mammals, we also found no effects of E2 manipulations (Letrozole or Letrozole plus E2 replacement) on TH-Fos colocalization in any location. In accordance with previous observations in both mammals and birds, E2 treatment decreased the number of TH-ir neurons in the A12 population of the tuberal hypothalamus, a cell group that inhibits the release of prolactin. In general, males and females exhibited similar TH-ir neuron numbers, although males exhibited significantly more TH-ir neurons in the A11 CG population than did females. These results suggest partial variability in E2 regulation of DA across species.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, 1001 East Third St., Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
28
|
Tokarev K, Tiunova A, Scharff C, Anokhin K. Food for song: expression of c-Fos and ZENK in the zebra finch song nuclei during food aversion learning. PLoS One 2011; 6:e21157. [PMID: 21695176 PMCID: PMC3112232 DOI: 10.1371/journal.pone.0021157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/20/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their 'evolutionary history'. METHODOLOGY/PRINCIPAL FINDINGS To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. CONCLUSIONS/SIGNIFICANCE Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.
Collapse
Affiliation(s)
- Kirill Tokarev
- Department of the Neurobiology of Memory, PK Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
29
|
Kelly AM, Kingsbury MA, Hoffbuhr K, Schrock SE, Waxman B, Kabelik D, Thompson RR, Goodson JL. Vasotocin neurons and septal V1a-like receptors potently modulate songbird flocking and responses to novelty. Horm Behav 2011; 60:12-21. [PMID: 21295577 PMCID: PMC3106146 DOI: 10.1016/j.yhbeh.2011.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
Previous comparisons of territorial and gregarious finches (family Estrildidae) suggest the hypothesis that arginine vasotocin (VT) neurons in the medial bed nucleus of the stria terminalis (BSTm) and V(1a)-like receptors in the lateral septum (LS) promote flocking behavior. Consistent with this hypothesis, we now show that intraseptal infusions of a V(1a) antagonist in male zebra finches (Taeniopygia guttata) reduce gregariousness (preference for a group of 10 versus 2 conspecific males), but have no effect on the amount of time that subjects spend in close proximity to other birds ("contact time"). The antagonist also produces a profound increase in anxiety-like behavior, as exhibited by an increased latency to feed in a novelty-suppressed feeding test. Bilateral knockdown of VT production in the BSTm using LNA-modified antisense oligonucleotides likewise produces increases in anxiety-like behavior and a potent reduction in gregariousness, relative to subjects receiving scrambled oligonucleotides. The antisense oligonucleotides also produced a modest increase in contact time, irrespective of group size. Together, these combined experiments provide clear evidence that endogenous VT promotes preferences for larger flock sizes, and does so in a manner that is coupled to general anxiolysis. Given that homologous peptide circuitry of the BSTm-LS is found across all tetrapod vertebrate classes, these findings may be predictive for other highly gregarious species.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University,1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xie J, Kuenzel WJ, Sharp PJ, Jurkevich A. Appetitive and consummatory sexual and agonistic behaviour elicits FOS expression in aromatase and vasotocin neurones within the preoptic area and bed nucleus of the stria terminalis of male domestic chickens. J Neuroendocrinol 2011; 23:232-43. [PMID: 21219483 DOI: 10.1111/j.1365-2826.2011.02108.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Some components of male sexual and agonistic behaviours are considered to be regulated by the same neurocircuitry in the medial preoptic nucleus (POM) and the medial portion of bed nucleus of the stria terminalis (BSTM). To better understand this neurocircuitry, numbers of aromatase- (ARO) or arginine vasotocin- (AVT) immunoreactive (ir) neurones expressing immediate early gene protein FOS were compared in the POM and BSTM of male chickens following sexual or agonistic behaviours. Observations were made on males showing: (i) appetitive (courtship) and consummatory (copulation) sexual behaviours; (ii) only appetitive sexual behaviour, or (iii) displaying agonistic behaviour toward other males. Control males were placed on their own in the observation pen, or only handled. In the POM, appetitive sexual behaviour increased ARO+FOS colocalisation, whereas agonistic behaviour decreased the number of visible ARO-ir cells. In the dorsolateral subdivision of BSTM (BSTM1), appetitive sexual behaviour also increased ARO+FOS colocalisation, although the numbers of visible ARO-ir and AVT-ir cells were not altered by sexual or agonistic behaviours. In the ventromedial BSTM (BSTM2), appetitive sexual behaviour increased ARO+FOS and AVT+FOS colocalisation, and all behaviours decreased the number of visible ARO-ir cells, particularly in males expressing consummatory sexual behaviour. Positive correlations were found between numbers of cells with ARO+FOS and AVT+FOS colocalisation in both subdivisions of the BSTM. Waltzing frequency was positively correlated with ARO+FOS colocalisation in the lateral POM, and in both subdivisions of the BSTM in males expressing sexual behaviour. Waltzing frequency in males expressing agonistic behaviour was negatively correlated with the total number of visible ARO-ir cells in the lateral POM and BSTM2. These observations suggest a key role for ARO and AVT neurones in BSTM2 in the expression of appetitive sexual behaviour, and differential roles for ARO cells in the POM and BSTM in the regulation of components of sexual and agonistic behaviours.
Collapse
Affiliation(s)
- J Xie
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | |
Collapse
|
31
|
Abe H, Ito S, Inoue-Murayama M. Polymorphisms in the extracellular region of dopamine receptor D4 within and among avian orders. J Mol Evol 2011; 72:253-64. [PMID: 21286696 DOI: 10.1007/s00239-011-9432-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 01/10/2011] [Indexed: 01/19/2023]
Abstract
Polymorphisms in the dopamine receptor D4 gene (DRD4) have been widely investigated to assess their correlation with variations in animal behavior. We precisely examined polymorphisms in the extracellular region of DRD4 in 75 avian species belonging to 16 orders and detected high degrees of polymorphism at inter- and intraordinal levels. The existence of a variable number of proline repeats (2 to 12 times) in the extracellular region was a common feature in all Neognathae, and a strong codon bias at synonymous sites was found among Passeriformes, Galliformes, and other non-passerine Neoaves. Furthermore, significantly higher values of the pairwise disparity index were detected in Passeriformes, suggesting either a substantial difference in the evolutionary processes or a higher level of mutation rate in the passerine clade. The differences in both codon bias and other genetic parameters among avian taxa would be explained by different levels of selective pressure on the extracellular region of DRD4. Our study suggested that different conformations determined in a sequence-dependent manner at the extracellular region could be one of the key factors affecting the efficiency and accuracy of DRD4 expression. Our findings further imply a possibility that behavioral diversity, which would be important during the processes of adaptive radiation, may be enhanced by the selection acting on indels or single-nucleotide substitutions in the extracellular region of DRD4.
Collapse
Affiliation(s)
- Hideaki Abe
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo-ku, Kyoto 606-8203, Japan
| | | | | |
Collapse
|
32
|
Maney DL, Goodson JL. Neurogenomic mechanisms of aggression in songbirds. ADVANCES IN GENETICS 2011; 75:83-119. [PMID: 22078478 DOI: 10.1016/b978-0-12-380858-5.00002-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our understanding of the biological basis of aggression in all vertebrates, including humans, has been built largely upon discoveries first made in birds. A voluminous literature now indicates that hormonal mechanisms are shared between humans and a number of avian species. Research on genetics mechanisms in birds has lagged behind the more typical laboratory species because the necessary tools have been lacking until recently. Over the past 30 years, three major technical advances have propelled forward our understanding of the hormonal, neural, and genetic bases of aggression in birds: (1) the development of assays to measure plasma levels of hormones in free-living individuals, or "field endocrinology"; (2) the immunohistochemical labeling of immediate early gene products to map neural responses to social stimuli; and (3) the sequencing of the zebra finch genome, which makes available a tremendous set of genomic tools for studying gene sequences, expression, and chromosomal structure in species for which we already have large datasets on aggressive behavior. This combination of hormonal, neuroendocrine, and genetic tools has established songbirds as powerful models for understanding the neural basis and evolution of aggression in vertebrates. In this chapter, we discuss the contributions of field endocrinology toward a theoretical framework linking aggression with sex steroids, explore evidence that the neural substrates of aggression are conserved across vertebrate species, and describe a promising new songbird model for studying the molecular genetic mechanisms underlying aggression.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
33
|
Kabelik D, Morrison JA, Goodson JL. Cryptic regulation of vasotocin neuronal activity but not anatomy by sex steroids and social stimuli in opportunistic desert finches. BRAIN, BEHAVIOR AND EVOLUTION 2010; 75:71-84. [PMID: 20332615 DOI: 10.1159/000297522] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/19/2009] [Indexed: 01/12/2023]
Abstract
In most vertebrate species, the production of vasotocin (VT; non-mammals) and vasopressin (VP; mammals) in the medial bed nucleus of the stria terminalis (BSTm) waxes and wanes with seasonal reproductive state; however, opportunistically breeding species might need to maintain high levels of this behaviorally relevant neuropeptide year-round in anticipation of unpredictable breeding opportunities. We here provide support for this hypothesis and demonstrate that these neurons are instead regulated 'cryptically' via hormonal regulation of their activity levels, which may be rapidly modified to adjust VT signaling. First, we show that combined treatment of male and female zebra finches (Estrildidae: Taeniopygia guttata) with the androgen receptor antagonist flutamide and the aromatase inhibitor 1,4,6-androstatriene-3,17-dione does not alter the expression of VT immunoreactivity within the BSTm; however, both hormonal treatment and social housing environment (same-sex versus mixed-sex) alter VT colocalization with the immediate early gene product Fos (a proxy marker of neural activation) in the BSTm. In a second experiment, manipulations of estradiol (E2) levels with the aromatase inhibitor letrozole (LET) or subcutaneous E2 implants failed to alter colocalization, suggesting that the colocalization effects in experiment 1 were solely androgenic. LET treatment also did not affect VT immunoreactivity in a manner reversible by E2 treatment. Finally, comparisons of VT immunoreactivity in breeding and nonbreeding individuals of several estrildid species demonstrate that year-round stability of VT immunoreactivity is found only in highly opportunistic species, and is therefore not essential to the maintenance of long-term pair bonds, which are ubiquitous in the Estrildidae.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Indiana University, Bloomington, USA.
| | | | | |
Collapse
|