1
|
Gallagher CI, Bishop DP, Lockwood TE, Rawling T, Vandenberg RJ. Methods for negating the impact of zinc contamination to allow characterization of positive allosteric modulators of glycine receptors. Front Mol Neurosci 2024; 17:1392715. [PMID: 38979476 PMCID: PMC11228362 DOI: 10.3389/fnmol.2024.1392715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Zinc is a ubiquitous contaminant in many buffers, purified products and common labware that has previously been suggested to impact on the results of functional GlyR studies and may inadvertently cause the effectiveness of some GlyR modulators to be over-estimated. This could greatly impact the assessment of potential drug-candidates and contribute to the reduced effectiveness of compounds that reach clinical stages. This is especially true for GlyR modulators being developed for pain therapeutics due to the changes in spinal zinc concentrations that have been observed during chronic pain conditions. In this study we use two-electrode voltage clamp electrophysiology to evaluate the metal chelators tricine and Ca-EDTA, and show that tricine produces inhibitory effects at GlyRα1 that are not mediated by zinc. We also utilized the zinc insensitive W170S mutation as a tool to validate metal chelators and confirm that zinc contamination has not impacted the examination of lipid modulators previously developed by our lab. This study helps to further develop methods to negate the impact of contaminating zinc in functional studies of GlyRs which should be incorporated into future studies that seek to characterize the activity of novel modulators at GlyRs.
Collapse
Affiliation(s)
- Casey I Gallagher
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
3
|
Sheipouri D, Gallagher CI, Shimmon S, Rawling T, Vandenberg RJ. A System for Assessing Dual Action Modulators of Glycine Transporters and Glycine Receptors. Biomolecules 2020; 10:E1618. [PMID: 33266066 PMCID: PMC7760315 DOI: 10.3390/biom10121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced inhibitory glycinergic neurotransmission is implicated in a number of neurological conditions such as neuropathic pain, schizophrenia, epilepsy and hyperekplexia. Restoring glycinergic signalling may be an effective method of treating these pathologies. Glycine transporters (GlyTs) control synaptic and extra-synaptic glycine concentrations and slowing the reuptake of glycine using specific GlyT inhibitors will increase glycine extracellular concentrations and increase glycine receptor (GlyR) activation. Glycinergic neurotransmission can also be improved through positive allosteric modulation (PAM) of GlyRs. Despite efforts to manipulate this synapse, no therapeutics currently target it. We propose that dual action modulators of both GlyTs and GlyRs may show greater therapeutic potential than those targeting individual proteins. To show this, we have characterized a co-expression system in Xenopus laevis oocytes consisting of GlyT1 or GlyT2 co-expressed with GlyRα1. We use two electrode voltage clamp recording techniques to measure the impact of GlyTs on GlyRs and the effects of modulators of these proteins. We show that increases in GlyT density in close proximity to GlyRs diminish receptor currents. Reductions in GlyR mediated currents are not observed when non-transportable GlyR agonists are applied or when Na+ is not available. GlyTs reduce glycine concentrations across different concentration ranges, corresponding with their ion-coupling stoichiometry, and full receptor currents can be restored when GlyTs are blocked with selective inhibitors. We show that partial inhibition of GlyT2 and modest GlyRα1 potentiation using a dual action compound, is as useful in restoring GlyR currents as a full and potent single target GlyT2 inhibitor or single target GlyRα1 PAM. The co-expression system developed in this study will provide a robust means for assessing the likely impact of GlyR PAMs and GlyT inhibitors on glycine neurotransmission.
Collapse
Affiliation(s)
- Diba Sheipouri
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Casey I. Gallagher
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Robert J. Vandenberg
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| |
Collapse
|
4
|
Identification of N-acyl amino acids that are positive allosteric modulators of glycine receptors. Biochem Pharmacol 2020; 180:114117. [PMID: 32579961 DOI: 10.1016/j.bcp.2020.114117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/31/2023]
Abstract
Glycine receptors (GlyRs) mediate inhibitory neurotransmission within the spinal cord and play a crucial role in nociceptive signalling. This makes them primary targets for the development of novel chronic pain therapies. Endogenous lipids have previously been shown to modulate glycine receptors and produce analgesia in pain models, however little is known about what chemical features mediate these effects. In this study, we characterised lipid modulation of GlyRs by screening a library of N-acyl amino acids across all receptor subtypes and determined chemical features crucial for their activity. Acyl-glycine's with a C18 carbon tail were found to produce the greatest potentiation, and require a cis double bond within the central region of the carbon tail (ω6 - ω9) to be active. At 1 µM, C18 ω6,9 glycine potentiated glycine induced currents in α3 and α3β receptors by over 50%, and α1, α2, α1β and α2β receptors by over 100%. C18 ω9 glycine (N-oleoyl glycine) significantly enhance glycine induced peak currents and cause a dose-dependent shift in the glycine concentration response. In the presence of 3 µM C18 ω9 glycine, the EC5o of glycine at the α1 receptor was reduced from 17 µM to 10 µM. This study has identified several acyl-amino acids which are positive allosteric modulators of GlyRs and make promising lead compounds for the development of novel chronic pain therapies.
Collapse
|
5
|
Das J. SNARE Complex-Associated Proteins and Alcohol. Alcohol Clin Exp Res 2019; 44:7-18. [PMID: 31724225 DOI: 10.1111/acer.14238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
Alcohol addiction causes major health problems throughout the world, causing numerous deaths and incurring a huge economic burden to society. To develop an intervention for alcohol addiction, it is necessary to identify molecular target(s) of alcohol and associated molecular mechanisms of alcohol action. The functions of many central and peripheral synapses are impacted by low concentrations of ethanol (EtOH). While the postsynaptic targets and mechanisms are studied extensively, there are limited studies on the presynaptic targets and mechanisms. This article is an endeavor in this direction, focusing on the effect of EtOH on the presynaptic proteins associated with the neurotransmitter release machinery. Studies on the effects of EtOH at the levels of gene, protein, and behavior are highlighted in this article.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
6
|
Pflanz NC, Daszkowski AW, James KA, Mihic SJ. Ketone body modulation of ligand-gated ion channels. Neuropharmacology 2018; 148:21-30. [PMID: 30562540 DOI: 10.1016/j.neuropharm.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023]
Abstract
Ketogenesis is a metabolic process wherein ketone bodies are produced from the breakdown of fatty acids. In humans, fatty acid catabolism results in the production of acetyl-CoA which can then be used to synthesize three ketone bodies: acetoacetate, acetone, and β-hydroxybutyrate. Ketogenesis occurs at a higher rate in situations of low blood glucose, such as during fasting, heavy alcohol consumption, and in situations of low insulin, as well as in individuals who follow a 'ketogenic diet' consisting of low carbohydrate and high fat intake. This diet has various therapeutic indications, including reduction of seizure likelihood in epileptic patients and alcohol withdrawal syndrome. However, the mechanisms underlying these therapeutic benefits are still unclear, with studies suggesting various mechanisms such as a shift in energy production in the brain, effects on neurotransmitter production, or effects on various protein targets. Two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes was used to investigate the actions of ketone bodies on three ionotropic receptors: GABAA, glycine, and NMDA receptors. While physiologically-relevant concentrations of acetone have little effect on inhibitory GABA or glycine receptors, β-hydroxybutyrate inhibits the effects of agonists of these receptors at concentrations achieved in vivo. Additionally, both acetone and β-hydroxybutyrate act as inhibitors of glutamate at the excitatory NMDA receptor. Due to the role of hyperexcitability in the pathogenesis of epilepsy and alcohol withdrawal, the inhibitory actions of acetone and β-hydroxybutyrate at NMDA receptors may underlie the therapeutic benefit of a ketogenic diet for these disorders.
Collapse
Affiliation(s)
- Natasha C Pflanz
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anna W Daszkowski
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Keith A James
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - S John Mihic
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr 2017; 57:2313-2322. [PMID: 29177978 DOI: 10.1007/s00394-017-1584-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To review data on the role of ethanol-induced alteration of Zn homeostasis in mediation of adverse effects of alcohol abuse. METHODS The scholarly published articles on the association between Zn metabolism and alcohol-associated disorders (liver, brain, lung, gut dysfunction, and fetal alcohol syndrome) have been reviewed. RESULTS It is demonstrated that alcohol-induced modulation of zinc transporters results in decreased Zn levels in lungs, liver, gut, and brain. Zn deficiency in the gut results in increased gut permeability, ultimately leading to endotoxemia and systemic inflammation. Similarly, Zn deficiency in lung epithelia and alveolar macrophages decreases lung barrier function resulting in respiratory distress syndrome. In turn, increased endotoxemia significantly contributes to proinflammatory state in alcoholic liver disease. Finally, impaired gut and liver functions may play a significant role in alcoholic brain damage, being associated with both increased proinflammatory signaling and accumulation of neurotoxic metabolites. It is also hypothesized that ethanol-induced Zn deficiency may interfere with neurotransmission. Similar changes may take place in the fetus as a result of impaired placental zinc transfer, maternal zinc deficiency, or maternal Zn sequestration, resulting in fetal alcoholic syndrome. Therefore, alcoholic Zn deficiency not only mediates the adverse effects of ethanol exposure, but also provides an additional link between different alcohol-induced disorders. CONCLUSIONS Generally, current findings suggest that assessment of Zn status could be used as a diagnostic marker of metabolic disturbances in alcohol abuse, whereas modulation of Zn metabolism may be a potential tool in the treatment of alcohol-associated disorders.
Collapse
|
8
|
Söderpalm B, Lidö HH, Ericson M. The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol. Alcohol Clin Exp Res 2017; 41:1816-1830. [PMID: 28833225 DOI: 10.1111/acer.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022]
Abstract
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Cornelison GL, Daszkowski AW, Pflanz NC, Mihic SJ. Interactions between Zinc and Allosteric Modulators of the Glycine Receptor. J Pharmacol Exp Ther 2017; 361:1-8. [PMID: 28087784 DOI: 10.1124/jpet.116.239152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
The glycine receptor is a pentameric ligand-gated ion channel that is involved in fast inhibitory neurotransmission in the central nervous system. Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nanomolar to low-micromolar concentrations and inhibiting its effects at higher concentrations. Low-nanomolar concentrations of contaminating zinc in electrophysiological buffers are capable of synergistically enhancing receptor modulation by other compounds, such as ethanol. This suggests that, unless accounted for, previous studies of glycine receptor modulation were measuring the effects of modulator plus comodulation by zinc on receptor function. Since zinc is present in vivo at a variety of concentrations, it will influence glycine receptor modulation by other pharmacologic agents. We investigated the utility of previously described "zinc-enhancement-insensitive" α1 glycine receptor mutants D80A, D80G, and W170S to probe for interactions between zinc and other allosteric modulators at the glycine receptor. We found that only the W170S mutation conferred complete abolishment of zinc enhancement across a variety of agonist and zinc concentrations. Using α1 W170S receptors, we established that, in addition to ethanol, zinc interacts with inhalants, but not volatile anesthetics, to synergistically enhance channel function. Additionally, we determined that this interaction is abolished at higher zinc concentrations when receptor-enhancing binding sites are saturated, suggesting a mechanism by which modulators such as ethanol and inhalants are capable of increasing receptor affinity for zinc, in addition to enhancing channel function on their own.
Collapse
Affiliation(s)
- Garrett L Cornelison
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| | - Anna W Daszkowski
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| | - Natasha C Pflanz
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| | - S John Mihic
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
10
|
Lynch JW, Zhang Y, Talwar S, Estrada-Mondragon A. Glycine Receptor Drug Discovery. ADVANCES IN PHARMACOLOGY 2017; 79:225-253. [DOI: 10.1016/bs.apha.2017.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Burgos CF, Yévenes GE, Aguayo LG. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol Pharmacol 2016; 90:318-25. [PMID: 27401877 DOI: 10.1124/mol.116.105726] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023] Open
Abstract
Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
12
|
Cornelison GL, Pflanz NC, Tipps ME, Mihic SJ. Identification and characterization of heptapeptide modulators of the glycine receptor. Eur J Pharmacol 2016; 780:252-9. [PMID: 27038522 DOI: 10.1016/j.ejphar.2016.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
The glycine receptor is a member of the Cys-loop receptor superfamily of ligand-gated ion channels and is implicated as a possible therapeutic target for the treatment of diseases such as alcoholism and inflammatory pain. In humans, four glycine receptor subtypes (α1, α2, α3, and β) co-assemble to form pentameric channel proteins as either α homomers or αβ heteromers. To date, few agents have been identified that can selectively modulate the glycine receptor, especially those possessing subtype specificity. We used a cell-based method of phage display panning, coupled with two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, to identify novel heptapeptide modulators of the α1β glycine receptor. This involved a panning procedure in which the phage library initially underwent subtractive panning against Human Embryonic Kidney (HEK) 293 cells expressing alternative glycine receptor subtypes before panning the remaining library over HEK 293 cells expressing the target, the α1β glycine receptor. Peptides were identified that act with selectivity on α1β and α3β, compared to α2β, glycine receptors. In addition, peptide activity at the glycine receptor decreased when zinc was chelated by tricine, similar to previous observations of a decrease in ethanol's enhancing actions at the receptor in the absence of zinc. Comparisons of the amino acid sequences of heptapeptides capable of potentiating glycine receptor function revealed several consensus sequences that may be predictive of a peptide's enhancing ability.
Collapse
Affiliation(s)
- Garrett L Cornelison
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Natasha C Pflanz
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Megan E Tipps
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - S John Mihic
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacol Res 2015; 101:18-29. [PMID: 26158502 DOI: 10.1016/j.phrs.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Leonardo Guzman
- Laboratory of Molecular Neurobiology, Department of Physiology, University of Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile.
| |
Collapse
|
14
|
Horani S, Stater EP, Corringer PJ, Trudell JR, Harris RA, Howard RJ. Ethanol Modulation is Quantitatively Determined by the Transmembrane Domain of Human α1 Glycine Receptors. Alcohol Clin Exp Res 2015; 39:962-8. [PMID: 25973519 DOI: 10.1111/acer.12735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutagenesis and labeling studies have identified amino acids from the human α1 glycine receptor (GlyR) extracellular, transmembrane (TM), and intracellular domains in mediating ethanol (EtOH) potentiation. However, limited high-resolution structural data for physiologically relevant receptors in this Cys-loop receptor superfamily have made pinpointing the critical amino acids difficult. Homologous ion channels from lower organisms provide conserved models for structural and functional properties of Cys-loop receptors. We previously demonstrated that a single amino acid variant of the Gloeobacter violaceus ligand-gated ion channel (GLIC) produced EtOH and anesthetic sensitivity similar to that of GlyRs and provided crystallographic evidence for EtOH binding to GLIC. METHODS We directly compared EtOH modulation of the α1 GlyR and GLIC to a chimera containing the TM domain from human α1 GlyRs and the ligand-binding domain of GLIC using 2-electrode voltage-clamp electrophysiology of receptors expressed in Xenopus laevis oocytes. RESULTS EtOH potentiated α1 GlyRs in a concentration-dependent manner in the presence of zinc-chelating agents, but did not potentiate GLIC at pharmacologically relevant concentrations. The GLIC/GlyR chimera recapitulated the EtOH potentiation of GlyRs, without apparent sensitivity to zinc chelation. For chimera expression in oocytes, it was essential to suppress leakage current by adding 50 μM picrotoxin to the media, a technique that may have applications in expression of other ion channels. CONCLUSIONS Our results are consistent with a TM mechanism of EtOH modulation in Cys-loop receptors. This work highlights the relevance of bacterial homologs as valuable model systems for studying ion channel function of human receptors and demonstrates the modularity of these channels across species.
Collapse
Affiliation(s)
- Suzzane Horani
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Evan P Stater
- Chemistry Department , Skidmore College, Saratoga Springs, New York
| | - Pierre-Jean Corringer
- Channel-Receptor Research Group , Pasteur Institute, Bâtiment Fernbach, Paris, France
| | - James R Trudell
- Department of Anesthesia , Stanford University School of Medicine, Stanford, California
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Rebecca J Howard
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas.,Chemistry Department , Skidmore College, Saratoga Springs, New York
| |
Collapse
|
15
|
Allosteric modulation of the glycine receptor activated by agonists differing in efficacy. Brain Res 2015; 1606:95-101. [PMID: 25721789 DOI: 10.1016/j.brainres.2015.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/29/2023]
Abstract
The glycine receptor (GlyR) is the predominant inhibitory neurotransmitter receptor in the brainstem and spinal cord but is also found in higher brain regions. GlyR function is affected by a variety of allosteric modulators including drugs of abuse, such as ethanol and inhalants and the ubiquitous divalent cation zinc. Two-electrode voltage-clamp experiments were conducted on Xenopus laevis oocytes expressing wild-type α1 homomeric glycine receptors to compare the degree of enhancement produced by zinc on GlyR activated by two agonists (glycine vs. taurine) that vary markedly in their efficacies. Zinc potentiation of both glycine- and taurine-evoked currents was the same at the concentrations of agonists that produced the same currents, corresponding to 6% of the maximal effect of glycine compared to 23% of the maximal effect of taurine. Similar results were seen with 50 and 200 mM ethanol. A direct comparison of agonist concentration-response curves showed that zinc enhancement was greater, overall, for taurine-activated than glycine-activated receptors. In addition, zinc only enhanced taurine- but not glycine-activated GlyR when agonists were applied at saturating concentrations. These data suggest that zinc affects taurine affinity, as well as the probability of channel opening at sub-maximal taurine concentrations, and that the magnitude of allosteric modulation at the GlyR depends on the efficacy of the agonist tested. This has implications for mutagenesis studies in which changes in the degree of allosteric modulation observed may result from mutation-induced changes in agonist efficacy.
Collapse
|
16
|
Morud J, Adermark L, Ericson M, Söderpalm B. Alterations in ethanol-induced accumbal transmission after acute and long-term zinc depletion. Addict Biol 2015; 20:170-81. [PMID: 24102995 DOI: 10.1111/adb.12096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alcoholism is subject to extensive research, but the role of changes in metabolism caused by alcohol consumption has been poorly investigated. Zinc (Zn(2+) ) deficiency is a common metabolic aberration among alcoholics and Zn(2+) influences the function of ligand-gated ion channels, known pharmacological targets of ethanol (EtOH). Here, we investigate whether manipulation of extracellular levels of Zn(2+) modulates EtOH-induced increases of dopamine (DA) output, as measured by in vivo microdialysis in the rat, and whether voluntary EtOH consumption is altered by Zn(2+) deficiency. Our findings show that the Zn(2+) -chelating agent tricine slowly raises DA levels when perfused in the nucleus accumbens (nAc), whereas the more potent Zn(2+) chelator TPEN reduces DA levels. We also show that pre-treatment with either tricine or TPEN blocks the EtOH-induced DA elevation. Chronic Zn(2+) deficiency induced by a Zn(2+) -free diet did not affect EtOH consumption, but excitatory transmission, assessed by striatal field-potential recordings in the nAc shell, was significantly modulated both by Zn(2+) -free diet and by EtOH consumption, as compared with the EtOH naïve controls. The present study indicates that Zn(2+) influences EtOH's interaction with the brain reward system, possibly by interfering with glycine receptor and GABAA receptor function. This also implies that Zn(2+) deficiency among alcoholics may be important to correct in order to normalize important aspects of brain function.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Louise Adermark
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Mia Ericson
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Bo Söderpalm
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
- Beroendekliniken; Sahlgrenska University Hospital; Sweden
| |
Collapse
|
17
|
Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev 2014; 66:396-412. [PMID: 24515646 PMCID: PMC3973611 DOI: 10.1124/pr.113.007468] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Collapse
Affiliation(s)
- Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866.
| | | | | |
Collapse
|
18
|
Cornelison GL, Mihic SJ. Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents. Brain Res Bull 2013; 100:1-5. [PMID: 24177173 DOI: 10.1016/j.brainresbull.2013.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022]
Abstract
Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nM to low μM concentrations, and inhibiting its effects at higher concentrations. Because of zinc's high potency at the glycine receptor, there exists a possibility that effects attributed solely to exogenously-applied glycine in fact contain an undetected contribution of zinc acting as an allosteric modulator. We found that glycine solutions made up in standard buffers and using deionized distilled water produced effects that could be decreased by the zinc chelator tricine. This phenomenon was observed in three different vials tested and persisted even if vials were extensively washed, suggesting the zinc was probably present in the buffer constituents. In addition, polystyrene, but not glass, pipets bore a contaminant that enhanced glycine receptor function and that could also be antagonized by tricine. Our findings suggest that without checking for this effect using a chelator such as tricine, one cannot assume that responses elicited by glycine applied alone are not necessarily also partially due to some level of allosteric modulation by zinc.
Collapse
Affiliation(s)
- Garrett L Cornelison
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - S John Mihic
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse. Neuropharmacology 2013; 75:286-94. [PMID: 23973295 DOI: 10.1016/j.neuropharm.2013.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1β and α2β glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation.
Collapse
|
20
|
McCracken LM, Trudell JR, McCracken ML, Harris RA. Zinc-dependent modulation of α2- and α3-glycine receptor subunits by ethanol. Alcohol Clin Exp Res 2013; 37:2002-10. [PMID: 23895467 DOI: 10.1111/acer.12192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Strychnine-sensitive glycine receptors (GlyRs) are expressed throughout the brain and spinal cord and are among the strongly supported protein targets of alcohol. This is based largely on studies of the α1-subunit; however, α2- and α3-GlyR subunits are as or more abundantly expressed than α1-GlyRs in multiple forebrain brain areas considered to be important for alcohol-related behaviors, and uniquely some α3-GlyRs undergo RNA editing. Nanomolar and low micromolar concentrations of zinc ions potentiate GlyR function, and in addition to zinc's effects on glycine-activated currents, we have recently shown that physiological concentrations of zinc also enhance the magnitude of ethanol (EtOH)'s effects on α1-GlyRs. METHODS Using 2-electrode voltage-clamp electrophysiology in oocytes expressing either α2- or α3-GlyRs, we first tested the hypothesis that the effects of EtOH on α2- and α3-GlyRs would be zinc dependent, as we have previously reported for α1-GlyRs. Next, we constructed an α3P185L-mutant GlyR to test whether RNA-edited and unedited GlyRs contain differences in EtOH sensitivity. Last, we built a homology model of the α3-GlyR subunit. RESULTS The effects of EtOH (20 to 200 mM) on both subunits were greater in the presence than in the absence of 500 nM added zinc. The α3P185L-mutation that corresponds to RNA editing increased sensitivity to glycine and decreased sensitivity to EtOH. CONCLUSIONS Our findings provide further evidence that zinc is important for determining the magnitude of EtOH's effects at GlyRs and suggest that by better understanding zinc/EtOH interactions at GlyRs, we may better understand the sites and mechanisms of EtOH action.
Collapse
Affiliation(s)
- Lindsay M McCracken
- The Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas
| | | | | | | |
Collapse
|
21
|
McCracken LM, Blednov YA, Trudell JR, Benavidez JM, Betz H, Harris RA. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo. J Pharmacol Exp Ther 2012; 344:489-500. [PMID: 23230213 DOI: 10.1124/jpet.112.197707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.
Collapse
Affiliation(s)
- Lindsay M McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | |
Collapse
|
22
|
Schaefer N, Vogel N, Villmann C. Glycine receptor mutants of the mouse: what are possible routes of inhibitory compensation? Front Mol Neurosci 2012; 5:98. [PMID: 23118727 PMCID: PMC3484359 DOI: 10.3389/fnmol.2012.00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/11/2012] [Indexed: 12/02/2022] Open
Abstract
Defects in glycinergic inhibition result in a complex neuromotor disorder in humans known as hyperekplexia (OMIM 149400) with similar phenotypes in rodents characterized by an exaggerated startle reflex and hypertonia. Analogous to genetic defects in humans single point mutations, microdeletions, or insertions in the Glra1 gene but also in the Glrb gene underlie the pathology in mice. The mutations either localized in the α (spasmodic, oscillator, cincinnati, Nmf11) or the β (spastic) subunit of the glycine receptor (GlyR) are much less tolerated in mice than in humans, leaving the question for the existence of different regulatory elements of the pathomechanisms in humans and rodents. In addition to the spontaneous mutations, new insights into understanding of the regulatory pathways in hyperekplexia or glycine encephalopathy arose from the constantly increasing number of knock-out as well as knock-in mutants of GlyRs. Over the last five years, various efforts using in vivo whole cell recordings provided a detailed analysis of the kinetic parameters underlying glycinergic dysfunction. Presynaptic compensation as well as postsynaptic compensatory mechanisms in these mice by other GlyR subunits or GABAA receptors, and the role of extra-synaptic GlyRs is still a matter of debate. A recent study on the mouse mutant oscillator displayed a novel aspect for compensation of functionality by complementation of receptor domains that fold independently. This review focuses on defects in glycinergic neurotransmission in mice discussed with the background of human hyperekplexia en route to strategies of compensation.
Collapse
Affiliation(s)
- Natascha Schaefer
- Emil Fischer Center, Institute of Biochemistry, University Erlangen-Nuernberg Erlangen, Germany ; Institute for Clinical Neurobiology, University of Wuerzburg Wuerzburg, Germany
| | | | | |
Collapse
|
23
|
Borghese CM, Blednov YA, Quan Y, Iyer SV, Xiong W, Mihic SJ, Zhang L, Lovinger DM, Trudell JR, Homanics GE, Harris RA. Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols. J Pharmacol Exp Ther 2011; 340:304-16. [PMID: 22037201 DOI: 10.1124/jpet.111.185116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317-329, 2012).
Collapse
Affiliation(s)
- Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-0159, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Welsh BT, Kirson D, Allen HM, Mihic SJ. Ethanol enhances taurine-activated glycine receptor function. Alcohol Clin Exp Res 2010; 34:1634-9. [PMID: 20586750 DOI: 10.1111/j.1530-0277.2010.01249.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Emerging evidence suggests that taurine acts as a partial agonist on glycine receptors (GlyR) in vitro and in vivo. Ethanol acts as an allosteric modulator on the GlyR producing a leftward shift of the glycine concentration-response curve, with no enhancing effects observed at saturating glycine concentrations. However, to date, no electrophysiological studies have been performed on ethanol modulation of taurine-activated GlyR. METHODS Wild-type alpha1 GlyR, or those bearing a serine-267 to isoleucine replacement (S267I), were homomerically expressed in Xenopus oocytes and voltage clamped at -70 mV. Ethanol was co-applied with varying concentrations of glycine or taurine and the enhancing effects of ethanol compared. RESULTS Ethanol potentiated glycine- and taurine-activated GlyR responses in a concentration-dependent manner. It shifted taurine and glycine concentration-response curves to the left, having no effects at saturating agonist concentrations. Chelation of zinc by tricine decreased ethanol enhancement of taurine-gated GlyR function. The S267I mutation prevented ethanol enhancement of taurine-mediated responses as previously also reported for glycine. CONCLUSION Ethanol modulates taurine activation of GlyR function by a mechanism similar to that of the full agonist glycine. The lack of effect of ethanol at saturating taurine concentrations provides mechanistic information on alcohol actions at the GlyR.
Collapse
Affiliation(s)
- Brian T Welsh
- Institutes for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
25
|
Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol Ther 2010; 127:53-65. [PMID: 20399807 DOI: 10.1016/j.pharmthera.2010.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/23/2022]
Abstract
Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed.
Collapse
|