1
|
Lodetti G, Baldin SL, de Farias ACS, de Pieri Pickler K, Teixeira AG, Dondossola ER, Bernardo HT, Maximino C, Rico EP. Repeated exposure to ethanol alters memory acquisition and neurotransmission parameters in zebrafish brain. Pharmacol Biochem Behav 2025; 246:173915. [PMID: 39586362 DOI: 10.1016/j.pbb.2024.173915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Alcohol is widely consumed worldwide and its abuse can cause cognitive dysfunction, affecting memory and learning due to several neurophysiological changes. An imbalance in several neurotransmitters, including the cholinergic and glutamatergic systems, have been implicated in these effects. Zebrafish are sensitive to alcohol, respond to reward stimuli, and tolerate and exhibit withdrawal behaviors. Therefore, we investigated the effects of repetitive exposure to ethanol (REE) and the NMDA receptor antagonist dizocilpine (MK-801) on memory acquisition and glutamatergic and cholinergic neurotransmission. Memory was assessed using the inhibitory avoidance and object recognition tasks. Brain glutamate levels and the activity of Na+-dependent transporters were evaluated as indexes of glutamatergic activity, while acetylcholinesterase (AChE) and choline acetyltransferase (ChAT), enzyme activity were evaluated as indexes of cholinergic activity. Behavioral assessments showed that REE impaired aversive and spatial memory, an effect that MK-801 mimicked. Glutamate levels, but not transporter activity, were significantly lower in the REE group; similarly, REE increased the activity of AChE, but not ChAT, activity. These findings suggest that intermittent exposure to ethanol leads to impairments in zebrafish memory consolidation, and that these effects could be associated with alterations in parameters related to neurotransmission systems mediated by glutamate and acetylcholine. These results provide a better understanding of the neurophysiological and behavioral changes caused by repetitive alcohol use.
Collapse
Affiliation(s)
- Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ana Carolina Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Amanda Gomes Teixeira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Caio Maximino
- Laboratory of Neurosciences and Behavior, Institute of Health and Biological Studies, Federal University of South and Southeast of Pará, Marabá, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Seemiller LR, Gould TJ. Adult and adolescent C57BL/6J and DBA/2J mice are differentially susceptible to fear learning deficits after acute ethanol or MK-801 treatment. Behav Brain Res 2021; 410:113351. [PMID: 33974921 PMCID: PMC8403488 DOI: 10.1016/j.bbr.2021.113351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Ethanol and other drugs of abuse disrupt learning and memory processes, creating problems associated with drug use and addiction. Understanding individual factors that determine susceptibility to drug-induced cognitive deficits, such as genetic background, age, and sex, is important for prevention and treatment. Comparison of adolescent and adult mice of both sexes across inbred mouse strains can reveal age, sex, and genetic contributions to phenotypes. We treated adolescent and adult, male and female, C57BL/6J and DBA/2J inbred mice with ethanol (1 g/kg or 1.5 g/kg) or MK-801 (0.05 mg/kg or 0.1 mg/kg), an NMDA receptor antagonist, prior to fear conditioning training. Contextual and cued fear retention were tested one day and eight or nine days after training. After ethanol exposure, adult C57BL/6J mice experienced greater deficits in contextual learning than adult DBA/2J mice. C57BL/6 J adolescents were less susceptible to ethanol-induced contextual learning disruptions than C57BL/6J adults, and adolescent males of both strains exhibited greater ethanol-induced contextual learning deficits than adolescent females. After MK-801 exposure, adolescent C57BL/6J mice experienced more severe contextual learning deficits than adolescent DBA/2J mice. Both ethanol and MK-801 had greater effects on contextual learning than cued learning. Collectively, we demonstrate that genetic background contributes to contextual and cued learning outcomes after ethanol or MK-801 exposure. Further, we report age-dependent drug sensitivities that are strain-, sex-, and drug-specific, suggesting that age, sex, and genetic background interact to determine contextual and cued learning impairments after ethanol or MK-801 exposure.
Collapse
Affiliation(s)
- L R Seemiller
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States
| | - T J Gould
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States.
| |
Collapse
|
3
|
Mooney-Leber SM, Zeid D, Garcia-Trevizo P, Seemiller LR, Bogue MA, Grubb SC, Peltz G, Gould TJ. Genetic Differences in Dorsal Hippocampus Acetylcholinesterase Activity Predict Contextual Fear Learning Across Inbred Mouse Strains. Front Psychiatry 2021; 12:737897. [PMID: 34733190 PMCID: PMC8558262 DOI: 10.3389/fpsyt.2021.737897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Learning is a critical behavioral process that is influenced by many neurobiological systems. We and others have reported that acetylcholinergic signaling plays a vital role in learning capabilities, and it is especially important for contextual fear learning. Since cholinergic signaling is affected by genetic background, we examined the genetic relationship between activity levels of acetylcholinesterase (AChE), the primary enzyme involved in the acetylcholine metabolism, and learning using a panel of 20 inbred mouse strains. We measured conditioned fear behavior and AChE activity in the dorsal hippocampus, ventral hippocampus, and cerebellum. Acetylcholinesterase activity varied among inbred mouse strains in all three brain regions, and there were significant inter-strain differences in contextual and cued fear conditioning. There was an inverse correlation between fear conditioning outcomes and AChE levels in the dorsal hippocampus. In contrast, the ventral hippocampus and cerebellum AChE levels were not correlated with fear conditioning outcomes. These findings strengthen the link between acetylcholine activity in the dorsal hippocampus and learning, and they also support the premise that the dorsal hippocampus and ventral hippocampus are functionally discrete.
Collapse
Affiliation(s)
- Sean M Mooney-Leber
- Department of Psychology, University of Wisconsin-Stevens Point, Stevens Point, WI, United States
| | - Dana Zeid
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Prescilla Garcia-Trevizo
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Laurel R Seemiller
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Gary Peltz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
4
|
Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol 2020; 138:111245. [PMID: 32145355 PMCID: PMC7089837 DOI: 10.1016/j.fct.2020.111245] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Filipe Marques Gonçalves
- Biochemistry Graduate Program, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, United States
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Manhattan, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
5
|
Tizabi Y, Getachew B. Nicotinic Receptor Intervention in Parkinson's Disease: Future Directions. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2017; 1:14-19. [PMID: 29863173 PMCID: PMC5975393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sufficient preclinical and epidemiological data are available to justify nicotinic intervention in Parkinson's disease (PD). Although use of nicotine patch has been suggested in some neurodegenerative disorders, including PD, the key for success with nicotinic intervention, particularly in PD, appears to rely not only on the dose but also on the mode of nicotine administration. Our aim in this short review is to provide justification for such contention. Thus, following a short introduction of nicotinic receptor pharmacology, the potential of nicotine in alleviating not only the motor symptoms, but also the mood disorders (e.g. depression) and mild cognitive impairments that are commonly co-morbid with PD will be presented. Moreover, since current PD therapy is associated with dyskinesia, the effectiveness of nicotine in ameliorating levodopa (L-Dopa)-induced dyskinesia will also be discussed. It is suggested that pulsatile nicotine administration (e.g. via inhalation or nasal spray) may be the optimal route in nicotinic intervention in PD.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington DC, USA
| |
Collapse
|
6
|
Leach PT, Kenney JW, Gould TJ. c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning. Neurosci Lett 2016; 627:61-4. [PMID: 27235579 DOI: 10.1016/j.neulet.2016.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022]
Abstract
Acute nicotine enhances hippocampus-dependent learning. Identifying how acute nicotine improves learning will aid in understanding how nicotine facilitates the development of maladaptive memories that contribute to drug-seeking behaviors, help development of medications to treat disorders associated with cognitive decline, and advance understanding of the neurobiology of learning and memory. The effects of nicotine on learning may involve recruitment of signaling through the c-Jun N-terminal kinase family (JNK 1-3). Learning in the presence of acute nicotine increases the transcription of mitogen-activated protein kinase 8 (MAPK8, also known as JNK1), likely through a CREB-dependent mechanism. The functional significance of JNK1 in the effects of acute nicotine on learning, however, is unknown. The current studies undertook a backward genetic approach to determine the functional contribution JNK1 protein makes to nicotine-enhanced contextual fear conditioning. JNK1 wildtype (WT) and knockout (KO) mice were administered acute nicotine prior to contextual and cued fear conditioning. 24h later, mice were evaluated for hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear conditioning) memory. Nicotine selectively enhanced contextual conditioning in WT mice, but not in KO mice. Nicotine had no effect on hippocampus-independent learning in either genotype. JNK1 KO and WT mice given saline showed similar levels of learning. These data suggest that JNK1 may be recruited by nicotine and is functionally necessary for the acute effects of nicotine on learning and memory.
Collapse
Affiliation(s)
- Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, 1701 N. 13th St, Weiss Hall, Philadelphia, PA 19122, USA.
| | - Justin W Kenney
- Temple University Department of Psychology, Neuroscience Program, Temple University, 1701 N. 13th St, Weiss Hall, Philadelphia, PA 19122, USA.
| | - Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, 1701 N. 13th St, Weiss Hall, Philadelphia, PA 19122, USA.
| |
Collapse
|
7
|
Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury. Behav Neurol 2016; 2016:8521297. [PMID: 27087745 PMCID: PMC4819097 DOI: 10.1155/2016/8521297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/06/2016] [Indexed: 12/20/2022] Open
Abstract
Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.
Collapse
|
8
|
Hall FS, Der-Avakian A, Gould TJ, Markou A, Shoaib M, Young JW. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev 2015; 58:168-85. [PMID: 26054790 DOI: 10.1016/j.neubiorev.2015.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/13/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation treatments.
Collapse
Affiliation(s)
- F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
9
|
Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, Li PP, Lu CB. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience 2015; 301:49-60. [PMID: 26049144 DOI: 10.1016/j.neuroscience.2015.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.
Collapse
Affiliation(s)
- X Zhang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - X Y Ge
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - J G Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y L Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Yu
- Department of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - P P Li
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - C B Lu
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
10
|
Leach PT, Kenney JW, Connor DA, Gould TJ. Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory. Neuropharmacology 2015; 93:155-63. [PMID: 25666034 PMCID: PMC4387063 DOI: 10.1016/j.neuropharm.2015.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 12/15/2022]
Abstract
Cigarette smoking is common despite adverse health effects. Nicotine's effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ.
Collapse
Affiliation(s)
- Prescott T Leach
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Justin W Kenney
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
11
|
Wang Y, Wang Z, Wang J, Wang Y, Henderson Z, Wang X, Zhang X, Song J, Lu C. The modulation of nicotinic acetylcholine receptors on the neuronal network oscillations in rat hippocampal CA3 area. Sci Rep 2015; 5:9493. [PMID: 25810076 PMCID: PMC4374140 DOI: 10.1038/srep09493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 11/28/2022] Open
Abstract
γ oscillations are associated with higher brain functions such as memory, perception and consciousness. Disruption of γ oscillations occur in various neuro-psychological disorders such as schizophrenia. Nicotinic acetylcholine receptors (nAChR) are highly expressed in the hippocampus, however, little is known about the role on hippocampal persistent γ oscillation. This study examined the effects of nicotine and selective nAChR agonists and antagonists on kainate-induced persistent γ oscillation in rat hippocampal slices. Nicotine enhanced γ oscillation at concentrations of 0.1–10 μM, but reduced it at a higher concentration of 100 μM. The enhancement on γ oscillation can be best mimicked by co-application of α4β2- and α7- nAChR agonist and reduced by a combination of nAChR antagonists, DhβE and MLA. However, these nAChR antagonists failed to block the suppressing role of nicotine on γ. Furthermore, we found that the NMDA receptor antagonist D-AP5 completely blocked the effect of nicotine. These results demonstrate that nicotine modulates γ oscillations via α7 and α4β2 nAChR as well as NMDA activation, suggesting that nAChR activation may have a therapeutic role for the clinical disorder such as schizophrenia, which is known to have impaired γ oscillation and hypo-NMDA receptor function.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Zhan Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Jiangang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Zaineb Henderson
- Institute of Membrane and System Biology, University of Leeds, Leeds, England
| | - Xiaofang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Xi Zhang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Jinggui Song
- Psychiatric Hospital of Henan Province, 2nd Affiliated Hospital of Xinxiang Medical University
| | - Chengbiao Lu
- 1] Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China [2] Psychiatric Hospital of Henan Province, 2nd Affiliated Hospital of Xinxiang Medical University
| |
Collapse
|
12
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. In addition, nicotine's ability to desensitize and upregulate certain nAChRs may alter hippocampus-dependent memory processes. Numerous studies have examined the effects of nicotine on hippocampus-dependent learning, as well as the roles of low- and high-affinity nAChRs in mediating nicotine's effects on hippocampus-dependent learning and memory. These studies suggested that while acute nicotine generally acts as a cognitive enhancer for hippocampus-dependent learning, withdrawal from chronic nicotine results in deficits in hippocampus-dependent memory. Furthermore, these studies demonstrated that low- and high-affinity nAChRs functionally differ in their involvement in nicotine's effects on hippocampus-dependent learning. In the present chapter, we reviewed studies using systemic or local injections of acute or chronic nicotine, nAChR subunit agonists or antagonists; genetically modified mice; and molecular biological techniques to characterize the effects of nicotine on hippocampus-dependent learning.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Temple University, 1701 N. 13th St, Weiss Hall, Philadelphia, PA, 19122, USA
| | | |
Collapse
|
13
|
Shao S, Li M, Du W, Shao F, Wang W. Galanthamine, an acetylcholine inhibitor, prevents prepulse inhibition deficits induced by adolescent social isolation or MK-801 treatment. Brain Res 2014; 1589:105-11. [DOI: 10.1016/j.brainres.2014.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022]
|
14
|
Morrison FG, Ressler KJ. From the neurobiology of extinction to improved clinical treatments. Depress Anxiety 2014; 31:279-90. [PMID: 24254958 PMCID: PMC4293038 DOI: 10.1002/da.22214] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022] Open
Abstract
The neural circuitry underlying the fear response is extremely well conserved across mammalian species, which has allowed for the rapid translation of research findings in rodent models of fear to therapeutic interventions in human populations. Many aspects of exposure-based psychotherapy treatments in humans, which are widely used in the treatment of PTSD, panic disorder, phobias, and other anxiety disorders, are closely paralleled by extinction training in rodent fear conditioning models. Here, we discuss how the neural circuitry of fear learning and extinction in rodent animal models may be used to understand the underlying neural circuitry of fear-related disorders, such as PTSD in humans. We examine the factors that contribute to the pathology and development of PTSD. Next, we will review how fear is measured in animal models using classical Pavlovian fear conditioning paradigms, as well as brain regions such as the amygdala, which are involved in the fear response across species. Finally, we highlight the following three systems involved in the extinction of fear, all of which represent promising avenues for therapeutic interventions in the clinic: (1) the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptor, (2) the role of the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) induced signaling pathway, and (3) the role of the renin-angiotensin system. The modulation of pathways underlying fear learning and extinction, such as the ones presented in this review, in combination with extinction-based exposure therapy, represents promising avenues for therapeutic intervention in the treatment of human fear related disorders.
Collapse
Affiliation(s)
- Filomene G. Morrison
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J. Ressler
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Howard Hughes Medical Institute, Chevy Chase, Maryland,Correspondence to: Kerry J. Ressler, Yerkes Research Center, 954 Gatewood Drive, Atlanta, Georgia 30329.
| |
Collapse
|
15
|
Brown JW, Rueter LE, Zhang M. Predictive validity of a MK-801-induced cognitive impairment model in mice: implications on the potential limitations and challenges of modeling cognitive impairment associated with schizophrenia preclinically. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:53-62. [PMID: 24269664 DOI: 10.1016/j.pnpbp.2013.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) is a major and disabling symptom domain of the disease that is generally unresponsive to current pharmacotherapies. Critically important to the discovery of novel therapeutics for CIAS is the utilization of preclinical models with robust predictive validity. We investigated the predictive validity of MK-801-induced memory impairments in mouse inhibitory avoidance (MK-IA) as a preclinical model for CIAS by investigating compounds that have been tested in humans, including antipsychotics, sodium channel blocker mood stabilizers, and putative cognitive enhancers. The atypical antipsychotic clozapine, as well as risperidone and olanzapine (see Brown et al., 2013), had no effect on MK-801-induced memory impairments. For sodium channel blockers, carbamazepine significantly attenuated memory impairments induced by MK-801, whereas lamotrigine had no effect. Nicotine, donepezil, modafinil, and xanomeline all significantly attenuated MK-801-induced memory impairments, but the magnitude of effects and the dose-responses observed varied across compounds. Clinically, only acute administration of nicotine has demonstrated consistent positive effects on CIAS, while inconsistent results have been reported for lamotrigine, donepezil, and modafinil; atypical antipsychotics produce only moderate improvements at best. A positive clinical signal has been observed with xanomeline, but only in a small pilot trial. The results presented here suggest that the MK-IA model lacks robust predictive validity for CIAS as the model is likely permissive and may indicate false positive signals for compounds and mechanisms that lack clear clinical efficacy for CIAS. Our findings also highlight the potential limitations and challenges of using NMDA receptor antagonists in rodents to model CIAS.
Collapse
Affiliation(s)
- Jordan W Brown
- Neuroscience Discovery, AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States.
| | - Lynne E Rueter
- Neuroscience Discovery, AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - Min Zhang
- Neuroscience Discovery, AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States
| |
Collapse
|
16
|
Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory. Neurobiol Learn Mem 2014; 109:151-9. [PMID: 24457151 DOI: 10.1016/j.nlm.2014.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/30/2022]
Abstract
Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories.
Collapse
|
17
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
18
|
Li X. Using the conditioned fear stress (CFS) animal model to understand the neurobiological mechanisms and pharmacological treatment of anxiety. SHANGHAI ARCHIVES OF PSYCHIATRY 2012; 24:241-9. [PMID: 25328347 PMCID: PMC4198872 DOI: 10.3969/j.issn.1002-0829.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SUMMARY The mechanisms underlying the etiology and pathophysiology of anxiety disorders - the most prevalent class of mental disorders - remain unclear. Over the last 30 years investigators have used the animal model of conditioned fear stress (CFS) to investigate the brain structures and neurotransmitter systems involved in aversive emotional learning and memory. Recent studies have focused on the neuronal circuitry and cellular mechanisms of fearful emotional experiences. This review describes the CFS paradigm, discusses the neural circuit and neurotransmission underlying CFS, and explains the mechanism of action of pharmacological treatments of CFS. The focus of the review is on the molecular mechanisms of fear extinction, a phenomenon directly implicated in the clinical treatment of anxiety. Based on our assessment of previous work we will conclude by considering potential molecular targets for treating symptoms of anxiety and fear.
Collapse
|
19
|
Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus. PLoS One 2012; 7:e39939. [PMID: 22761932 PMCID: PMC3386232 DOI: 10.1371/journal.pone.0039939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022] Open
Abstract
Nicotine is known to enhance long-term hippocampus dependent learning and memory in both rodents and humans via its activity at nicotinic acetylcholinergic receptors (nAChRs). However, the molecular basis for the nicotinic modulation of learning is incompletely understood. Both the mitogen activated protein kinases (MAPKs) and cAMP response element binding protein (CREB) are known to be integral to the consolidation of long-term memory and the disruption of MAPKs and CREB are known to abrogate some of the cognitive effects of nicotine. In addition, the acquisition of contextual fear conditioning in the presence of nicotine is associated with a β2-subunit containing nAChR-dependent increase in jnk1 (mapk8) transcription in the hippocampus. In the present study, chromatin immunoprecipitation (ChIP) was used to examine whether learning and nicotine interact to alter transcription factor binding or histone acetylation at the jnk1 promoter region. The acquisition of contextual fear conditioning in the presence of nicotine resulted in an increase in phosphorylated CREB (pCREB) binding to the jnk1 promoter in the hippocampus in a β2-subunit containing nAChR dependent manner, but had no effect on CREB binding; neither fear conditioning alone nor nicotine administration alone altered transcription factor binding to the jnk1 promoter. In addition, there were no changes in histone H3 or H4 acetylation at the jnk1 promoter following fear conditioning in the presence of nicotine. These results suggest that contextual fear learning and nicotine administration act synergistically to produce a unique pattern of protein activation and gene transcription in the hippocampus that is not individually generated by fear conditioning or nicotine administration alone.
Collapse
|
20
|
Deficits in emotional learning and memory in an animal model of schizophrenia. Behav Brain Res 2012; 233:35-44. [PMID: 22569573 DOI: 10.1016/j.bbr.2012.04.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 04/05/2012] [Accepted: 04/28/2012] [Indexed: 11/23/2022]
Abstract
Alterations in N-methyl-D-aspartate (NMDA) receptor function have been linked to numerous behavioral deficits and neurochemical alterations. Recent investigations have begun to explore the role of NMDA receptor function on principally inhibitory neurons and their role in network function. One of the prevailing models of schizophrenia proposes a reduction in NMDA receptor function on inhibitory interneurons and the resulting disinhibition may give rise to aspects of the disorder. Studies using NMDA receptor antagonists such as PCP and ketamine have induced schizophrenia-like behavioral deficits in animal model systems as well as changes in inhibitory circuits. The current study investigated whether the administration of a subanesthetic dose of ketamine (8 mg/kg subcutaneously), that disrupts sensorimotor gating, also produces impairments in a Pavlovian emotional learning and memory task. We utilized both standard delay and trace cued and contextual fear conditioning (CCF) paradigms to examine if ketamine produces differential effects when the task is more difficult and relies on connectivity between specific brain regions. Rats administered ketamine displayed no significant deficits in cued or contextual fear following the delay conditioning protocol. However, ketamine did produce a significant impairment in the more difficult trace conditioning protocol. Analyses of tissue from the hippocampus and amygdala indicated that the administration of ketamine produced an alteration in GABA receptor protein levels differentially depending on the task. These data indicate that 8 mg/kg of ketamine impairs learning in the more difficult emotional classical conditioning task and may be related to altered signaling in GABAergic systems.
Collapse
|
21
|
Hall FS, Markou A, Levin ED, Uhl GR. Mouse models for studying genetic influences on factors determining smoking cessation success in humans. Ann N Y Acad Sci 2012; 1248:39-70. [PMID: 22304675 DOI: 10.1111/j.1749-6632.2011.06415.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans differ in their ability to quit using addictive substances, including nicotine, the major psychoactive ingredient in tobacco. For tobacco smoking, a substantial body of evidence, largely derived from twin studies, indicates that approximately half of these individual differences in ability to quit are heritable genetic influences that likely overlap with those for other addictive substances. Both twin and molecular genetic studies support overlapping influences on nicotine addiction vulnerability and smoking cessation success, although there is little formal analysis of the twin data that support this important point. None of the current datasets provides clarity concerning which heritable factors might provide robust dimensions around which individuals differ in ability to quit smoking. One approach to this problem is to test mice with genetic variations in genes that contain human variants that alter quit success. This review considers which features of quit success should be included in a comprehensive approach to elucidate the genetics of quit success, and how those features may be modeled in mice.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
22
|
Current world literature. Curr Opin Psychiatry 2012; 25:155-62. [PMID: 22297717 DOI: 10.1097/yco.0b013e3283514a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Kanju PM, Parameshwaran K, Sims-Robinson C, Uthayathas S, Josephson EM, Rajakumar N, Dhanasekaran M, Suppiramaniam V. Selective cholinergic depletion in medial septum leads to impaired long term potentiation and glutamatergic synaptic currents in the hippocampus. PLoS One 2012; 7:e31073. [PMID: 22355337 PMCID: PMC3280283 DOI: 10.1371/journal.pone.0031073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 01/02/2012] [Indexed: 12/02/2022] Open
Abstract
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.
Collapse
Affiliation(s)
- Patrick M. Kanju
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kodeeswaran Parameshwaran
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, Auburn University, Auburn, Alabama, United States of America
| | - Catrina Sims-Robinson
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Subramaniam Uthayathas
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eleanor M. Josephson
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama, United States of America
| | - Nagalingam Rajakumar
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | | | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
24
|
Gould TJ, Portugal GS, André JM, Tadman MP, Marks MJ, Kenney JW, Yildirim E, Adoff M. The duration of nicotine withdrawal-associated deficits in contextual fear conditioning parallels changes in hippocampal high affinity nicotinic acetylcholine receptor upregulation. Neuropharmacology 2012; 62:2118-25. [PMID: 22285742 DOI: 10.1016/j.neuropharm.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdrawal-induced cognitive deficits. If a relationship between altered learning and nAChR levels exists, changes in nAChR levels after cessation of nicotine treatment should match the duration of learning deficits. To test this hypothesis, mice were chronically administered 6.3mg/kg/day (freebase) nicotine for 12 days and trained in contextual fear conditioning on day 11 or between 1 to 16 days after withdrawal of treatment. Changes in [(125)I]-epibatidine binding at cytisine-sensitive and cytisine-resistant nAChRs and chronic nicotine-related changes in α4, α7, and β2 nAChR subunit mRNA expression were assessed. Chronic nicotine had no behavioral effect but withdrawal produced deficits in contextual fear conditioning that lasted 4 days. Nicotine withdrawal did not disrupt cued fear conditioning. Chronic nicotine upregulated hippocampal cytisine-sensitive nAChR binding; upregulation continued after cessation of nicotine administration and the duration of upregulation during withdrawal paralleled the duration of behavioral changes. Changes in binding in cortex and cerebellum did not match behavioral changes. No changes in α4, α7, and β2 subunit mRNA expression were seen with chronic nicotine. Thus, nicotine withdrawal-related deficits in contextual learning are time-limited changes that are associated with temporal changes in upregulation of high-affinity nAChR binding.
Collapse
Affiliation(s)
- Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Weiss Hall, 6th Floor, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Paolini M, De Biasi M. Mechanistic insights into nicotine withdrawal. Biochem Pharmacol 2011; 82:996-1007. [PMID: 21782803 PMCID: PMC3312005 DOI: 10.1016/j.bcp.2011.07.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/03/2011] [Accepted: 07/05/2011] [Indexed: 12/20/2022]
Abstract
Smoking is responsible for over 400,000 premature deaths in the United States every year, making it the leading cause of preventable death. In addition, smoking-related illness leads to billions of dollars in healthcare expenditures and lost productivity annually. The public is increasingly aware that successfully abstaining from smoking at any age can add years to one's life and reduce many of the harmful effects of smoking. Although the majority of smokers desire to quit, only a small fraction of attempts to quit are actually successful. The symptoms associated with nicotine withdrawal are a primary deterrent to cessation and they need to be quelled to avoid early relapse. This review will focus on the neuroadaptations caused by chronic nicotine exposure and discuss how those changes lead to a withdrawal syndrome upon smoking cessation. Besides examining how nicotine usurps the endogenous reward system, we will discuss how the habenula is part of a circuit that plays a critical role in the aversive effects of high nicotine doses and nicotine withdrawal. We will also provide an updated summary of the role of various nicotinic receptor subtypes in the mechanisms of withdrawal. This growing knowledge provides mechanistic insights into current and future smoking cessation therapies.
Collapse
Affiliation(s)
- Michael Paolini
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mariella De Biasi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, 77030, USA
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Gold PE, Countryman RA, Dukala D, Chang Q. Acetylcholine release in the hippocampus and prelimbic cortex during acquisition of a socially transmitted food preference. Neurobiol Learn Mem 2011; 96:498-503. [PMID: 21907814 DOI: 10.1016/j.nlm.2011.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/08/2011] [Accepted: 08/17/2011] [Indexed: 01/13/2023]
Abstract
Interference with cholinergic functions in hippocampus and prefrontal cortex impairs learning and memory for social transmission of food preference, suggesting that acetylcholine (ACh) release in the two brain regions may be important for acquiring the food preference. This experiment examined release of ACh in the hippocampus and prefrontal cortex of rats during training for social transmission of food preference. After demonstrator rats ate a food with novel flavor and odor, a social transmission of food preference group of rats was allowed to interact with the demonstrators for 30 min, while in vivo microdialysis collected samples for later measurement of ACh release with HPLC methods. A social control group observed a demonstrator that had eaten food without novel flavor and odor. An odor control group was allowed to smell but not ingest food with novel odor. Rats in the social transmission but not control groups preferred the novel food on a trial 48 h later. ACh release in prefrontal cortex, with probes that primarily sampled prelimbic cortex, did not increase during acquisition of the social transmission of food preference, suggesting that training-initiated release of ACh in prelimbic cortex is not necessary for acquisition of the food preference. In contrast, ACh release in the hippocampus increased substantially (200%) upon exposure to a rat that had eaten the novel food. Release in the hippocampus increased significantly less (25%) upon exposure to a rat that had eaten normal food and did not increase significantly in the rats exposed to the novel odor; ACh release in the social transmission group was significantly greater than that of the either of the control groups. Thus, ACh release in the hippocampus but not prelimbic cortex distinguished well the social transmission vs. control conditions, suggesting that cholinergic mechanisms in the hippocampus but not prelimbic cortex are important for acquiring a socially transmitted food preference.
Collapse
Affiliation(s)
- P E Gold
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | | | | | | |
Collapse
|
27
|
Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 2011; 35:24-35. [PMID: 21798604 DOI: 10.1016/j.tins.2011.06.007] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder that can develop after a traumatic experience such as domestic violence, natural disasters or combat-related trauma. The cost of such disorders on society and the individual can be tremendous. In this article, we review how the neural circuitry implicated in PTSD in humans is related to the neural circuitry of fear. We then discuss how fear conditioning is a suitable model for studying the molecular mechanisms of the fear components that underlie PTSD, and the biology of fear conditioning with a particular focus on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB), GABAergic and glutamatergic ligand-receptor systems. We then summarize how such approaches might help to inform our understanding of PTSD and other stress-related disorders and provide insight to new pharmacological avenues of treatment of PTSD.
Collapse
Affiliation(s)
- Amy L Mahan
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Drive, Atlanta, GA 30329, USA
| | | |
Collapse
|