1
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
2
|
Olivero G, Roggeri A, Pittaluga A. Anti-NMDA and Anti-AMPA Receptor Antibodies in Central Disorders: Preclinical Approaches to Assess Their Pathological Role and Translatability to Clinic. Int J Mol Sci 2023; 24:14905. [PMID: 37834353 PMCID: PMC10573896 DOI: 10.3390/ijms241914905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing the deleterious central consequences. In this review, we describe some of the available preclinical literature concerning the impact of antibodies recognizing NMDA and AMPA receptors in neurons. This review discusses the cellular events that would support the detrimental roles of the autoantibodies, also illustrating some contrasting findings that in our opinion deserve attention and further investigations before translating the preclinical observations to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Alessandra Roggeri
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Anna Pittaluga
- Center of Excellence for Biomedical Research, 3Rs Center, Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16145 Genoa, Italy
| |
Collapse
|
3
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
4
|
Synaptosomes and Metamodulation of Receptors. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2417:99-111. [PMID: 35099794 DOI: 10.1007/978-1-0716-1916-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Synaptosomes are re-sealed pinched off nerve terminals that maintain all the main structural and functional features of the original structures and that are appropriate to study presynaptic events. Because of the discovery of new structural and molecular events that dictate the efficiency of transmitter release and of its receptor-mediated control in the central nervous system, the interest in this tissue preparation is continuously renewing. Most of these events have been already discussed in previous reviews, but few of them were not and deserve some comments since they could suggest new functional and possibly therapeutic considerations. Among them, the "metamodulation" of receptors represents an emerging aspect that dramatically increased the complexity of the presynaptic compartment, adding new insights to the role of presynaptic receptors as modulators of chemical synapses. Deciphering the mechanism of presynaptic metamodulation would permit indirect approaches to control the activity of presynaptic release-regulating receptors that are currently orphans of direct ligands/modulators, paving the road for the proposal of new therapeutic approaches for central neurological diseases.
Collapse
|
5
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
6
|
Olivero G, Vergassola M, Cisani F, Roggeri A, Pittaluga A. Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update. Curr Neuropharmacol 2021; 18:655-672. [PMID: 31775600 PMCID: PMC7457419 DOI: 10.2174/1570159x17666191127112339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
7
|
Cisani F, Olivero G, Usai C, Van Camp G, Maccari S, Morley-Fletcher S, Pittaluga AM. Antibodies Against the NH 2-Terminus of the GluA Subunits Affect the AMPA-Evoked Releasing Activity: The Role of Complement. Front Immunol 2021; 12:586521. [PMID: 33717067 PMCID: PMC7952438 DOI: 10.3389/fimmu.2021.586521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.
Collapse
Affiliation(s)
- Francesca Cisani
- Pharmacology and Toxicology Section, Department of Pharmacy, DIFAR, Genoa, Italy
| | - Guendalina Olivero
- Pharmacology and Toxicology Section, Department of Pharmacy, DIFAR, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Gilles Van Camp
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- International Associated Laboratory (LIA), “Prenatal Stress and Neurodegenerative Diseases”, University of Lille – CNRS, UGSF UMR 8576/Sapienza University of Rome and IRCCS Neuromed, Lille, France
| | - Stefania Maccari
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- International Associated Laboratory (LIA), “Prenatal Stress and Neurodegenerative Diseases”, University of Lille – CNRS, UGSF UMR 8576/Sapienza University of Rome and IRCCS Neuromed, Lille, France
- Department of Science and Medical - Surgical Biotechnology, University Sapienza of Rome, Rome, Italy
| | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- International Associated Laboratory (LIA), “Prenatal Stress and Neurodegenerative Diseases”, University of Lille – CNRS, UGSF UMR 8576/Sapienza University of Rome and IRCCS Neuromed, Lille, France
| | - Anna Maria Pittaluga
- Pharmacology and Toxicology Section, Department of Pharmacy, DIFAR, Genoa, Italy
- IRCCS San Martino Hospital, Genova, Italy
| |
Collapse
|
8
|
Palese F, Bonomi E, Nuzzo T, Benussi A, Mellone M, Zianni E, Cisani F, Casamassa A, Alberici A, Scheggia D, Padovani A, Marcello E, Di Luca M, Pittaluga A, Usiello A, Borroni B, Gardoni F. Anti-GluA3 antibodies in frontotemporal dementia: effects on glutamatergic neurotransmission and synaptic failure. Neurobiol Aging 2019; 86:143-155. [PMID: 31784278 DOI: 10.1016/j.neurobiolaging.2019.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
Despite the great effort of the scientific community in the field, the pathogenesis of frontotemporal dementia (FTD) remains elusive. Recently, a role for autoimmunity and altered glutamatergic neurotransmission in triggering disease onset has been put forward. We reported the presence of autoantibodies recognizing the GluA3 subunit of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in about 25% of FTD cases. In this study, we evaluated the mechanisms involved in anti-GluA3 autoimmunity, through molecular/neurochemical analyses conducted on patients' brain specimens with frontotemporal lobar degeneration-tau neuropathology. We then corroborated these results in vivo in FTD patients with transcranial magnetic stimulation and glutamate, D-serine, and L-serine dosages in the cerebrospinal fluid and serum. We observed that GluA3 autoantibodies affect glutamatergic neurotransmission, decreasing glutamate release and altering GluA3-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor levels. These alterations were accompanied by changes of scaffolding proteins involved in receptor synaptic retention/internalization. The above results were confirmed by transcranial magnetic stimulation, suggesting a significant impairment of indirect measures of glutamatergic neurotransmission in FTD patients compared with controls, with further add-on harmful effect in those FTD patients with anti-GluA3 antibodies. Finally, FTD patients showed a significant increase of glutamate, D-serine, and L-serine levels in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Bonomi
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Tommaso Nuzzo
- Translational Neuroscience Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alberto Benussi
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Manuela Mellone
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Francesca Cisani
- Department of Pharmacy, DiFAR, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Alessia Casamassa
- Translational Neuroscience Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonella Alberici
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Alessandro Usiello
- Translational Neuroscience Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Bonfiglio T, Vergassola M, Olivero G, Pittaluga A. Environmental Training and Synaptic Functions in Young and Old Brain: A Presynaptic Perspective. Curr Med Chem 2019; 26:3670-3684. [PMID: 29493441 DOI: 10.2174/0929867325666180228170450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aging is an unavoidable, physiological process that reduces the complexity and the plasticity of the synaptic contacts in Central Nervous System (CNS), having profound implications for human well-being. The term "cognitive reserve" refers to central cellular adaptations that augment the resilience of human brain to damage and aging. The term "Cognitive training" indicates the cultural, social and physical stimulations proposed as add-on therapy for the cure of central neurological diseases. "Cognitive training" reinforces the "cognitive reserve" permitting to counteract brain impairments and rejuvenating synaptic complexity. The research has begun investigating the clinical impact of the "cognitive training" in aged people, but additional work is needed to definitively assess its effectiveness. In particular, there is a need to understand, from a preclinical point of view, whether "cognitive training" promotes compensatory effects or, alternatively, if it elicits genuine recovery of neuronal defects. Although the translation from rodent studies to the clinical situation could be difficult, the results from pre-clinical models are of high clinical relevance, since they should allow a better understanding of the effects of environmental interventions in aging-associated chronic derangements in mammals. CONCLUSION Data in literature and the recent results obtained in our laboratory concerning the impact of environmental stimulation on the presynaptic release of noradrenaline, glutamate and gamma amino butyric acid (GABA) suggest that these neurotransmitters undergo different adaptations during aging and that they are differently tuned by "cognitive training". The impact of "cognitive training" on neurotransmitter exocytosis might account for the cellular events involved in reinforcement of "cognitive reserve" in young and old animals.
Collapse
Affiliation(s)
- Tommaso Bonfiglio
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Matteo Vergassola
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
10
|
Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition. iScience 2019; 19:927-939. [PMID: 31518901 PMCID: PMC6742927 DOI: 10.1016/j.isci.2019.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022] Open
Abstract
NMDA receptor (NMDAR) subunit composition plays a pivotal role in synaptic plasticity at excitatory synapses. Still, the mechanisms responsible for the synaptic retention of NMDARs following induction of plasticity need to be fully elucidated. Rabphilin3A (Rph3A) is involved in the stabilization of NMDARs at synapses through the formation of a complex with GluN2A and PSD-95. Here we used different protocols to induce synaptic plasticity in the presence or absence of agents modulating Rph3A function. The use of Forskolin/Rolipram/Picrotoxin cocktail to induce chemical LTP led to synaptic accumulation of Rph3A and formation of synaptic GluN2A/Rph3A complex. Notably, Rph3A silencing or use of peptides interfering with the GluN2A/Rph3A complex blocked LTP induction. Moreover, in vivo disruption of GluN2A/Rph3A complex led to a profound alteration of spatial memory. Overall, our results demonstrate a molecular mechanism needed for NMDAR stabilization at synapses after plasticity induction and to trigger downstream signaling events necessary for cognitive behavior. LTP induces trafficking of Rph3A at synapses and formation of GluN2A/Rph3A complex Disruption of Rph3A/GluN2A complex leads to LTP impairment Rph3A/GluN2A complex is needed for modifications of dendritic spines induced by LTP Disruption of Rph3A/GluN2A complex leads to spatial memory impairment
Collapse
|
11
|
Wickens MM, Deutschmann AU, McGrath AG, Parikh V, Briand LA. Glutamate receptor interacting protein acts within the prefrontal cortex to blunt cocaine seeking. Neuropharmacology 2019; 157:107672. [PMID: 31233823 DOI: 10.1016/j.neuropharm.2019.107672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
Glutamate receptor interacting protein (GRIP) is a neuronal scaffolding protein that anchors GluA2-containing AMPA receptors to the cell membrane. GRIP plays a critical role in activity-dependent synaptic plasticity, including that which occurs after drug exposure. Given that cocaine administration alters glutamate receptor trafficking within the prefrontal cortex (PFC), a better understanding of the role of receptor trafficking proteins could lead to a more complete understanding of addictive phenotypes. AMPA receptor trafficking in general, and GRIP specifically, is known to play a role in cocaine seeking and conditioned reward in the nucleus accumbens, but its role in the PFC has not been characterized. The current study demonstrates that conditional deletion of GRIP1 in the medial prefrontal cortex increases the motivation for cocaine and potentiates cue-induced reinstatement of cocaine seeking in male and female mice. As no effects of PFC GRIP1 deletion were seen in reinstatement of food seeking, strategy set-shifting, or reversal learning the effects on cocaine seeking are not related to generalized alterations in cognitive function. While disrupting GRIP1 might be expected to lead to decreased AMPA transmission, our electrophysiological data indicate an increase in sEPSC amplitude in the prefrontal cortex and a corresponding decrease in paired pulse facilitation in the nucleus accumbens. Taken together this suggests a strengthening of the PFC to NAc input following prefrontal GRIP1 deletion that may mediate the enhanced drug seeking behavior.
Collapse
Affiliation(s)
| | | | | | - Vinay Parikh
- Department of Psychology, Temple University, USA; Neuroscience Program, Temple University, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, USA; Neuroscience Program, Temple University, USA.
| |
Collapse
|
12
|
Short-Term Exposure to Enriched Environment in Adult Rats Restores MK-801-Induced Cognitive Deficits and GABAergic Interneuron Immunoreactivity Loss. Mol Neurobiol 2019; 55:26-41. [PMID: 28822057 DOI: 10.1007/s12035-017-0715-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Perinatal injections of N-methyl-D-aspartate (NMDA) receptor antagonist in rodents emulate some cognitive impairments and neurochemical alterations, such as decreased GABAergic (gamma aminobutyric acid) interneuron immunoreactivity, also found in schizophrenia. These features are pervasive, and developing neuroprotective or neurorestorative strategies is of special interest. In this work, we aimed to investigate if a short exposure to enriched environment (EE) in early adulthood (P55-P73) was an effective strategy to improve cognitive dysfunction and to restore interneuron expression in medial prefrontal cortex (mPFC) and hippocampus (HPC). For that purpose, we administered MK-801 intraperitoneally to Long Evans rats from postnatal days 10 to 20. Twenty-four hours after the last injection, MK-801 produced a transient decrease in spontaneous motor activity and exploration, but those abnormalities were absent at P24 and P55. The open field test on P73 manifested that EE reduced anxiety-like behavior. In addition, MK-801-treated rats showed cognitive impairment in novel object recognition test that was reversed by EE. We quantified different interneuron populations based on their calcium-binding protein expression (parvalbumin, calretinin, and calbindin), glutamic acid decarboxylase 67, and neuronal nuclei-positive cells by means of unbiased stereology and found that EE enhanced interneuron immunoreactivity up to normal values in MK-801-treated rats. Our results demonstrate that a timely intervention with EE is a powerful tool to reverse long-lasting changes in cognition and neurochemical markers of interneurons in an animal model of schizophrenia.
Collapse
|
13
|
Zhou X, Yang H, Song X, Wang J, Shen L, Wang J. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension. Hypertens Res 2019; 42:1142-1151. [PMID: 30842613 DOI: 10.1038/s41440-019-0242-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Glutamatergic activity in the rostral ventrolateral medulla (RVLM), which is an important brain area where angiotensin II (Ang II) elicits its pressor effects, contributes to the onset of hypertension. The present study aimed to explore the effect of central Ang II type 1 receptor (AT1R) blockade on glutamatergic actions in the RVLM of stress-induced hypertensive rats (SIHR). The stress-induced hypertension (SIH) model was established by electric foot shocks combined with noises. Normotensive Sprague-Dawley rats (control) and SIHR were intracerebroventricularly infused with the AT1R antagonist candesartan or artificial cerebrospinal fluid for 14 days. Mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine (NE), glutamate, and the expression of N-methyl-D-aspartic acid (NMDA) receptor subunit NR1, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in the RVLM increased in the SIH group. These increases were blunted by candesartan. Bilateral microinjection of the ionotropic glutamate receptor antagonist kynurenic acid, the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate, or the AMPA/kainate receptors antagonist 6-cyano-7-nitroquinoxaline-2,3-dione into the RVLM caused a depressor response in the SIH group, but not in other groups. NR1 and AMPA receptors expressed in the glutamatergic neurons of the RVLM, and glutamate levels, increased in the intermediolateral column of the spinal cord of SIHR. Central Ang II elicits release of glutamate, which binds to the enhanced ionotropic NMDA and AMPA receptors via AT1R, resulting in activation of glutamatergic neurons in the RVLM, increasing sympathetic excitation in SIHR.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoshan Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Olivero G, Vergassola M, Cisani F, Usai C, Pittaluga A. Immuno-Pharmacological Characterization of Presynaptic GluN3A-Containing NMDA Autoreceptors: Relevance to Anti-NMDA Receptor Autoimmune Diseases. Mol Neurobiol 2019; 56:6142-6155. [PMID: 30734226 DOI: 10.1007/s12035-019-1511-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/24/2019] [Indexed: 01/22/2023]
Abstract
Mouse hippocampal glutamatergic nerve endings express presynaptic release-regulating NMDA autoreceptors (NMDARs). The presence of GluN1, GluN2A, GluN2B, and GluN3A subunits in hippocampal vesicular glutamate transporter type 1-positive synaptosomes was confirmed with confocal microscopy. GluN2C, GluN2D, and GluN3B immunopositivity was scarcely present. Incubation of synaptosomes with the anti-GluN1, the anti-GluN2A, the anti-GluN2B, or the anti-GluN3A antibody prevented the 30 μM NMDA/1 μM glycine-evoked [3H]D-aspartate ([3H]D-ASP) release. The NMDA/glycine-evoked [3H]D-ASP release was reduced by increasing the external protons, consistent with the participation of GluN1 subunits lacking the N1 cassette to the receptor assembly. The result also excludes the involvement of GluN1/GluN3A dimers into the NMDA-evoked overflow. Complement (1:300) released [3H]D-ASP in a dizocilpine-sensitive manner, suggesting the participation of a NMDAR-mediated component in the releasing activity. Accordingly, the complement-evoked glutamate overflow was reduced in anti-GluN-treated synaptosomes when compared to the control. We speculated that incubation with antibodies had favored the internalization of NMDA receptors. Indeed, a significant reduction of the GluN1 and GluN2B proteins in the plasma membranes of anti-GluN1 or anti-GluN2B antibody-treated synaptosomes emerged in biotinylation studies. Altogether, our findings confirm the existence of presynaptic GluN3A-containing release-regulating NMDARs in mouse hippocampal glutamatergic nerve endings. Furthermore, they unveil presynaptic alteration of the GluN subunit insertion in synaptosomal plasma membranes elicited by anti-GluN antibodies that might be relevant to the central alterations occurring in patients suffering from autoimmune anti-NMDA diseases.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Matteo Vergassola
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Francesca Cisani
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, via De Marini 6, 16149, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
15
|
Vergassola M, Olivero G, Cisani F, Usai C, Bossi S, Puliti A, Pittaluga A. Presynaptic mGlu1 Receptors Control GABA B Receptors in an Antagonist-Like Manner in Mouse Cortical GABAergic and Glutamatergic Nerve Endings. Front Mol Neurosci 2018; 11:324. [PMID: 30279647 PMCID: PMC6153310 DOI: 10.3389/fnmol.2018.00324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 01/03/2023] Open
Abstract
Mouse cortical GABAergic synaptosomes possess presynaptic inhibitory GABAB autoreceptors. Accordingly, (±)baclofen (3 μM) inhibits in a CGP53423-sensitive manner the 12 mM KCl-evoked release of preloaded [3H]GABA. Differently, the existence of presynaptic release-regulating metabotropic glutamate type 1 (mGlu1) heteroreceptors in these terminals is still matter of discussion, although confocal microscopy unveiled the existence of mGlu1α with GABAB1 or GABAB2 proteins in cortical VGAT-positive synaptosomes. The group I mGlu agonist 3,5-DHPG failed to modify on its own the 12 mM KCl-evoked [3H]GABA exocytosis from cortical nerve endings, but, when added concomitantly to the GABAB agonist, it significantly reduced the 3 μM (±)baclofen-induced inhibition of [3H]GABA exocytosis. Conversely, the mGlu1 antagonist LY367385 (0.03–1 μM), inactive on its own on GABA exocytosis, amplified the 3 μM (±)baclofen-induced inhibition of [3H]GABA overflow. The ( ± )baclofen-induced inhibition of [3H]GABA exocytosis was more pronounced in cortical synaptosomes from Grm1crv4/crv4 mice, which bear a spontaneous mutation of the Grm1 gene leading to the functional inactivation of the mGlu1 receptor. Inasmuch, the expression of GABAB2 receptor protein in cortical synaptosomal lysates from Grm1crv4/crv4 mice was increased when compared to controls. Altogether, these observations seem best interpreted by assuming that mGlu1 coexist with GABAB receptors in GABAergic cortical synaptosomes, where they control GABA receptors in an antagonist-like manner. We then asked whether the mGlu1-mediated control of GABAB receptors is restricted to GABAergic terminals, or if it occurs also in other subpopulations of nerve endings. Release-regulating GABAB receptors also exist in glutamatergic nerve endings. (±)baclofen (1 μM) diminished the 12 mM KCl-evoked [3H]D-aspartate overflow. Also in these terminals, the concomitant presence of 1 μM LY367385, inactive on its own, significantly amplified the inhibitory effect exerted by (±)baclofen on [3H]D-aspartate exocytosis. Confocal microscopy confirmed the colocalization of mGlu1 with GABAB1 and GABAB2 labeling in vesicular glutamate type1 transporter-positive particles. Our results support the conclusion that mGlu1 receptors modulate in an antagonist-like manner presynaptic release-regulating GABAB receptors. This receptor–receptor interaction could be neuroprotective in central disease typified by hyperglutamatergicity.
Collapse
Affiliation(s)
| | | | | | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Simone Bossi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Olivero G, Grilli M, Vergassola M, Bonfiglio T, Padolecchia C, Garrone B, Di Giorgio FP, Tongiani S, Usai C, Marchi M, Pittaluga A. 5-HT 2A-mGlu2/3 receptor complex in rat spinal cord glutamatergic nerve endings: A 5-HT 2A to mGlu2/3 signalling to amplify presynaptic mechanism of auto-control of glutamate exocytosis. Neuropharmacology 2018; 133:429-439. [PMID: 29499271 DOI: 10.1016/j.neuropharm.2018.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic mGlu2/3 autoreceptors exist in rat spinal cord nerve terminals as suggested by the finding that LY379268 inhibited the 15 mM KCl-evoked release of [3H]D-aspartate ([3H]D-Asp) in a LY341495-sensitive manner. Spinal cord glutamatergic nerve terminals also possess presynaptic release-regulating 5-HT2A heteroreceptors. Actually, the 15 mM KCl-evoked [3H]D-Asp exocytosis from spinal cord synaptosomes was reduced by the 5-HT2A agonist (±)DOI, an effect reversed by the 5-HT2A antagonists MDL11,939, MDL100907, ketanserin and trazodone (TZD). We investigated whether mGlu2/3 and 5-HT2A receptors colocalize and cross-talk in these terminals and if 5-HT2A ligands modulate the mGlu2/3-mediated control of glutamate exocytosis. Western blot analysis and confocal microscopy highlighted the presence of mGlu2/3 and 5-HT2A receptor proteins in spinal cord VGLUT1 positive synaptosomes, where mGlu2/3 and 5-HT2A receptor immunoreactivities largely colocalize. Furthermore, mGlu2/3 immunoprecipitates from spinal cord synaptosomes were also 5-HT2A immunopositive. Interestingly, the 100 pM LY379268-induced reduction of the 15 mM KCl-evoked [3H]D-Asp overflow as well as its inhibition by 100 nM (±)DOI became undetectable when the two agonists were concomitantly added. Conversely, 5-HT2A antagonists (MDL11,939, MDL100907, ketanserin and TZD) reinforced the release-regulating activity of mGlu2/3 autoreceptors. Increased expression of mGlu2/3 receptor proteins in synaptosomal plasmamembranes paralleled the gain of function of the mGlu2/3 autoreceptors elicited by 5-HT2A antagonists. Based on these results, we propose that in spinal cord glutamatergic terminals i) mGlu2/3 and 5-HT2A receptors colocalize and interact one each other in an antagonist-like manner, ii) 5-HT2A antagonists are indirect positive allosteric modulator of mGlu2/3 autoreceptors controlling glutamate exocytosis.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy
| | - Matteo Vergassola
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Cristina Padolecchia
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Beatrice Garrone
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Piazzale della Stazione Snc, 00071, S. Palomba-Pomezia (Rome), Italy
| | - Francesco Paolo Di Giorgio
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Piazzale della Stazione Snc, 00071, S. Palomba-Pomezia (Rome), Italy
| | - Serena Tongiani
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Piazzale della Stazione Snc, 00071, S. Palomba-Pomezia (Rome), Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
17
|
Bonfiglio T, Olivero G, Vergassola M, Di Cesare Mannelli L, Pacini A, Iannuzzi F, Summa M, Bertorelli R, Feligioni M, Ghelardini C, Pittaluga A. Environmental training is beneficial to clinical symptoms and cortical presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. Neuropharmacology 2018; 145:75-86. [PMID: 29402503 DOI: 10.1016/j.neuropharm.2018.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/08/2023]
Abstract
The effect of "prophylactic" environmental stimulation on clinical symptoms and presynaptic defects in mice suffering from the experimental autoimmune encephalomyelitis (EAE) at the acute stage of disease (21 ± 1 days post immunization, d.p.i.) was investigated. In EAE mice raised in an enriched environment (EE), the clinical score was reduced when compared to EAE mice raised in standard environment (SE).Concomitantly, gain of weight and increased spontaneous motor activity and curiosity were observed, suggesting increased well-being in mice. Impaired glutamate exocytosis and cyclic adenosine monophosphate (cAMP) production in cortical terminals of SE-EAE mice were evident at 21 ± 1 d.p.i.. Differently, the 12 mM KCl-evoked glutamate exocytosis from cortical synaptosomes of EE-EAE mice was comparable to that observed in SE and EE-control mice, but significantly higher than that in SE-EAE mice. Similarly, the 12 mM KCl-evoked cAMP production in EE-EAE mice cortical synaptosomes recovered to the level observed in SE and EE-control mice. MUNC-18 and SNAP25 contents, but not Syntaxin-1a and Synaptotagmin 1 levels, were increased in cortical synaptosomes from EE-EAE mice when compared to SE-EAE mice. Circulating IL-1β was increased in the spinal cord, but not in the cortex, of SE-EAE mice, and it did not recover in EE-EAE mice. Inflammatory infiltrates were reduced in the cortex but not in the spinal cord of EE-EAE mice. Demyelination was observed in the spinal cord; EE significantly diminished it. We conclude that "prophylactic" EE is beneficial to synaptic derangements and preserves glutamate transmission in the cortex of EAE mice. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- T Bonfiglio
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - G Olivero
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - M Vergassola
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pacini
- Department of Experimental and Clinical Medicine, DMSC, Section of Anatomy and Histology, University of Florence, Italy
| | - F Iannuzzi
- EBRI-European Brain Research Institute, Rome, Italy
| | - M Summa
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - R Bertorelli
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - M Feligioni
- EBRI-European Brain Research Institute, Rome, Italy; Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pittaluga
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
18
|
Bossi S, Musante I, Bonfiglio T, Bonifacino T, Emionite L, Cerminara M, Cervetto C, Marcoli M, Bonanno G, Ravazzolo R, Pittaluga A, Puliti A. Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1 crv4 mouse model of SCAR13 ataxia. Neurobiol Dis 2017; 109:44-53. [PMID: 28982591 DOI: 10.1016/j.nbd.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/13/2017] [Accepted: 10/01/2017] [Indexed: 01/29/2023] Open
Abstract
Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1crv4/crv4) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1crv4 and Grm5ko mice to generate double mutants (Grm1crv4/crv4Grm5ko/ko) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia.
Collapse
Affiliation(s)
- Simone Bossi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy
| | - Ilaria Musante
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS A.U.O. San Martino-IST, Largo Rosanna Benzi 10, Genoa, Italy
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, via Gaslini 5, 16148 Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, via Gaslini 5, 16148 Genoa, Italy.
| |
Collapse
|
19
|
Florenzano F, Veronica C, Ciasca G, Ciotti MT, Pittaluga A, Olivero G, Feligioni M, Iannuzzi F, Latina V, Maria Sciacca MF, Sinopoli A, Milardi D, Pappalardo G, Marco DS, Papi M, Atlante A, Bobba A, Borreca A, Calissano P, Amadoro G. Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer's disease and other tauopathies. Oncotarget 2017; 8:64745-64778. [PMID: 29029390 PMCID: PMC5630290 DOI: 10.18632/oncotarget.17371] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.
Collapse
Affiliation(s)
| | | | - Gabriele Ciasca
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Gunedalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Marco Feligioni
- European Brain Research Institute, Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | | | | | | | | | - Danilo Milardi
- Institute of Biostructures and Bioimaging, CNR, Catania, Italy
| | | | - De Spirito Marco
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Borreca
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
20
|
Pittaluga A. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis. Front Immunol 2017; 8:1079. [PMID: 28928746 PMCID: PMC5591427 DOI: 10.3389/fimmu.2017.01079] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Haglerød C, Hussain S, Nakamura Y, Xia J, Haug FMS, Ottersen OP, Henley JM, Davanger S. Presynaptic PICK1 facilitates trafficking of AMPA-receptors between active zone and synaptic vesicle pool. Neuroscience 2017; 344:102-112. [PMID: 28057533 DOI: 10.1016/j.neuroscience.2016.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
Abstract
Previous studies have indicated that presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) contribute to the regulation of neurotransmitter release. In hippocampal synapses, the presynaptic surface expression of several AMPAR subunits, including GluA2, is regulated in a ligand-dependent manner. However, the molecular mechanisms underlying the presynaptic trafficking of AMPARs are still unknown. Here, using bright-field immunocytochemistry, western blots, and quantitative immunogold electron microscopy of the hippocampal CA1 area from intact adult rat brain, we demonstrate the association of AMPA receptors with the presynaptic active zone and with small presynaptic vesicles, in Schaffer collateral synapses in CA1 of the hippocampus. Furthermore, we show that GluA2 and protein interacting with C kinase 1 (PICK1) are colocalized at presynaptic vesicles. Similar to postsynaptic mechanisms, overexpression of either PICK1 or pep2m, which inhibit the N-ethylmaleimide sensitive fusion protein (NSF)-GluA2 interaction, decreases the concentration of GluA2 in the presynaptic active zone membrane. These data suggest that the interacting proteins PICK1 and NSF act as regulators of presynaptic GluA2-containing AMPAR trafficking between the active zone and a vesicle pool that may provide the basis of presynaptic components of synaptic plasticity.
Collapse
Affiliation(s)
- C Haglerød
- Institute of Basic Medical Sciences, Division of Anatomy, University of Oslo, Oslo, Norway
| | - S Hussain
- Institute of Basic Medical Sciences, Division of Anatomy, University of Oslo, Oslo, Norway
| | - Y Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - J Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - F-M S Haug
- Institute of Basic Medical Sciences, Division of Anatomy, University of Oslo, Oslo, Norway
| | - O P Ottersen
- Institute of Basic Medical Sciences, Division of Anatomy, University of Oslo, Oslo, Norway
| | - J M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - S Davanger
- Institute of Basic Medical Sciences, Division of Anatomy, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Willed-movement training reduces brain damage and enhances synaptic plasticity related proteins synthesis after focal ischemia. Brain Res Bull 2016; 120:90-6. [DOI: 10.1016/j.brainresbull.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022]
|
23
|
Marchi M, Grilli M, Pittaluga AM. Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals. Front Pharmacol 2015; 6:89. [PMID: 25972809 PMCID: PMC4413670 DOI: 10.3389/fphar.2015.00089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/10/2015] [Indexed: 11/13/2022] Open
Abstract
This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them. Indeed, in the rat nucleus accumbens (NAc), the function of some AMPA and NMDA receptors present on the dopaminergic and glutamatergic nerve terminals can be regulated negatively or positively in response to a brief activation of nAChRs. This effect occurs rapidly and involves the trafficking of AMPA and NMDA receptors. The event takes place also at very low concentrations of nicotine and involves the activation of several nAChRs subtypes. This dynamic control by cholinergic nicotinic system of glutamatergic NMDA and AMPA receptors might therefore represent an important neuronal presynaptic adaptation associated with nicotine administration. The understanding of the role of these nicotine-induced functional changes might open new and interesting perspectives both in terms of explaining the mechanisms that underlie some of the effects of nicotine addiction and in the development of new drugs for smoking cessation.
Collapse
Affiliation(s)
- Mario Marchi
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa , Genoa, Italy ; Center of Excellence for Biomedical Research, University of Genoa , Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa , Genoa, Italy
| | - Anna M Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa , Genoa, Italy ; Center of Excellence for Biomedical Research, University of Genoa , Genoa, Italy
| |
Collapse
|
24
|
Disruption of glutamate receptor-interacting protein in nucleus accumbens enhances vulnerability to cocaine relapse. Neuropsychopharmacology 2014; 39:759-69. [PMID: 24126453 PMCID: PMC3895254 DOI: 10.1038/npp.2013.265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022]
Abstract
Trafficking and stabilization of AMPA receptors at synapses in response to cocaine exposure is thought to be critical for expression of cocaine addiction and relapse. Glutamate receptor-interacting protein (GRIP) is a neuronal scaffolding protein that stabilizes GluA2 AMPARs at synapses but its role in cocaine addiction has not been examined. The current study demonstrates that conditional deletion of GRIP within the nucleus accumbens potentiates cue-induced reinstatement of cocaine seeking without affecting operant learning, locomotor activity, or reinstatement of natural reward seeking. This is the first study to demonstrate a role for accumbal GRIP in behavior. Electrophysiological recordings revealed increased rectification of AMPAR-mediated currents in the nucleus accumbens and increased AMPAR sensitivity to the GluA2-lacking AMPAR antagonist, 1-naphthylacetyl spermine, indicative of an increased contribution of GluA2-lacking calcium-permeable AMPARs. In addition, accumbal GRIP deletion was associated with blunted long-term depression, similar to what is seen following cocaine self-administration. Taken together, these results indicate that GRIP may modulate addictive phenotypes through its regulation of synaptic AMPARs by controlling their subunit composition and susceptibility to LTD. These effects are associated with changes in vulnerability to cocaine relapse and highlight GRIP as a novel target for the development of cocaine addiction therapeutics.
Collapse
|
25
|
CCL5-glutamate interaction in central nervous system: Early and acute presynaptic defects in EAE mice. Neuropharmacology 2013; 75:337-46. [PMID: 23958452 DOI: 10.1016/j.neuropharm.2013.07.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/15/2023]
Abstract
We investigated the CCL5-glutamate interaction in the cortex and in the spinal cord from mice with Experimental Autoimmune Encephalomyelitis (EAE) at 13 and 21/30 days post immunization (d.p.i.), representing the onset and the peak of the disease, respectively. An early reduction of the KCl-evoked glutamate release was observed in cortical terminals from EAE mice at 13 d.p.i., persisting until 21/30 d.p.i. A concomitant reduction of the depolarization-evoked cyclic adenosine monophosphate (cAMP), but not of the inositol 1,4,5-trisphosphate (IP3) cortical production also occurred at 13 d.p.i, that still was detectable at the acute stage of disease (21 dp.i.). Inasmuch, the CCL5-mediated inhibition of glutamate exocytosis observed in control mice turned to facilitation in EAE mouse cortex at 13 d.p.i., then becoming undetectable at 21/30 d.p.i. Differently, glutamate exocytosis, as well as IP3 and cAMP productions were unaltered in spinal cord synaptosomes from EAE mice at 13 d.p.i., but significantly increased at 21/30 d.p.i., while the presynaptic CCL5-mediated facilitation of glutamate exocytosis observed in control mice remained unchanged. In both CNS regions, the presynaptic defects were parallelled by increased CCL5 availability. Inasmuch, the presynaptic defects so far described in EAE mice were reminiscent of the effects acute CCL5 exerts in control conditions. Based on these observations we propose that increased CCL5 bioavailability could have a role in determining the abovedescribed impaired presynaptic impairments in both CNS regions. These presynaptic defects could be relevant to the onset of early cognitive impairments and acute neuroinflammation and demyelinating processes observed in multiple sclerosis patients.
Collapse
|
26
|
Effects of the neoclerodane Hardwickiic acid on the presynaptic opioid receptors which modulate noradrenaline and dopamine release in mouse central nervous system. Neurochem Int 2013; 62:354-9. [DOI: 10.1016/j.neuint.2013.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
|
27
|
Grilli M, Summa M, Salamone A, Olivero G, Zappettini S, Di Prisco S, Feligioni M, Usai C, Pittaluga A, Marchi M. In vitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals. Neuropharmacology 2012; 63:916-26. [PMID: 22771975 DOI: 10.1016/j.neuropharm.2012.06.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 01/02/2023]
Abstract
Here we provide functional and immunocytochemical evidence supporting the presence on Nucleus Accumbens (NAc) dopaminergic terminals of cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors, which activation causes Ca²⁺-dependent [³H]dopamine ([³H]DA) exocytosis. These AMPA receptors cross-talk with co-localized nicotinic receptors (nAChRs), as suggested by the finding that in vitro short-term pre-exposure of synaptosomes to 30 μM nicotine caused a significant reduction of both the 30 μM nicotine and the 100 μM AMPA-evoked [³H]DA overflow. Entrapping pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA receptor endocytosis, in NAC synaptosomes prevented the nicotine-induced reduction of AMPA-mediated [³H]DA exocytosis, while pep2-SVKE, used as negative control, was inefficacious. Immunocytochemical studies showed that a significant percentage of NAc terminals were dopaminergic and that most of these terminals also posses GluA2 receptor subunits. Western blot analysis of GluA2 immunoreactivity showed that presynaptic GluA2 proteins in NAc terminals were reduced in nicotine-pretreated synaptosomes when compared to the control. The nACh-AMPA receptor-receptor interaction was not limited to dopaminergic terminals since nicotine pre-exposure also affected the presynaptic AMPA receptors controlling hippocampal noradrenaline release, but not the presynaptic AMPA receptors controlling GABA and acetylcholine release. These observations could be relevant to the comprehension of the molecular mechanisms at the basis of nicotine rewarding.
Collapse
Affiliation(s)
- Massimo Grilli
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|