1
|
Khoramipour K, Rezaei MH, Moslemizadeh A, Hosseini MS, Ebrahimnezhad N, Bashiri H. Changes in the hippocampal level of tau but not beta-amyloid may mediate anxiety-like behavior improvement ensuing from exercise in diabetic female rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:9. [PMID: 38702776 PMCID: PMC11067136 DOI: 10.1186/s12993-024-00235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND In the present study, we investigated the effect of high-intensity interval training (HIIT) on cognitive behaviors in female rats with a high-fat diet + streptozotocin (STZ)-induced type 2 diabetes. METHODS Twenty-four female rats were divided into four groups randomly (n = 6): control (C), control + exercise (Co + EX), diabetes mellitus (type 2) (T2D), and diabetes mellitus + exercise (T2D + EX). Diabetes was induced by a two-month high-fat diet and a single dose of STZ (35 mg/kg) in the T2D and T2D + EX groups. The Co + EX and T2D + EX groups performed HIIT for eight weeks (five sessions per week, running on a treadmill at 80-100% of VMax, 4-10 intervals). Elevated plus maze (EPM) and open field test (OFT) were used for assessing anxiety-like behaviors, and passive avoidance test (PAT) and Morris water maze (MWM) were applied for evaluating learning and memory. The hippocampal levels of beta-amyloid (Aβ) and Tau were also assessed using Western blot. RESULTS An increase in fasting blood glucose (FBG), hippocampal level of Tau, and a decrease in the percentage of open arm time (%OAT) as an index of anxiety-like behavior were seen in the female diabetic rats which could be reversed by HIIT. In addition, T2D led to a significant decrease in rearing and grooming in the OFT. No significant difference among groups was seen for the latency time in the PAT and learning and memory in the MWM. CONCLUSIONS HIIT could improve anxiety-like behavior at least in part through changes in hippocampal levels of Tau.
Collapse
MESH Headings
- Animals
- Female
- Hippocampus/metabolism
- tau Proteins/metabolism
- Rats
- Physical Conditioning, Animal/physiology
- Physical Conditioning, Animal/methods
- Physical Conditioning, Animal/psychology
- Anxiety/therapy
- Anxiety/psychology
- Anxiety/metabolism
- Amyloid beta-Peptides/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/therapy
- High-Intensity Interval Training/methods
- Maze Learning/physiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/therapy
- Behavior, Animal/physiology
- Diet, High-Fat/adverse effects
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Student Research Committee, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | | | - Mahdieh Sadat Hosseini
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narjes Ebrahimnezhad
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Sistan and Baluchestan University, Zahedan, Iran
| | - Hamideh Bashiri
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Ferreira de Sá N, Camarini R, Suchecki D. One day away from mum has lifelong consequences on brain and behaviour. Neuroscience 2023:S0306-4522(23)00276-2. [PMID: 37352967 DOI: 10.1016/j.neuroscience.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
This chapter presents a brief overview of attachment theory and discusses the importance of the neonatal period in shaping an individual's physiological and behavioural responses to stress later in life, with a focus on the role of the parent-infant relationship, particularly in rodents. In rodents, the role of maternal behaviours goes far beyond nutrition, thermoregulation and excretion, acting as hidden regulators of the pup's physiology and development. In this review, we will discuss the inhibitory role of specific maternal behaviours on the ACTH and corticosterone (CORT) stress response. The interest of our group to explore the long-term consequences of maternal deprivation for 24 h (DEP) at different ages (3 days and 11 days) in rats was sparked by its opposite effects on ACTH and CORT levels. In early adulthood, DEP3 animals (males and females alike) show greater negative impact on affective behaviours and stress related parameters than DEP11, indicating that the latter is more resilient in tests of anxiety-like behaviour. These findings create an opportunity to explore the neurobiological underpinnings of vulnerability and resilience to stress-related disorders. The chapter also provides a brief historical overview and highlights the relevance of attachment theory, and how DEP helps to understand the effects of childhood parental loss as a risk factor for depression, schizophrenia, and PTSD in both childhood and adulthood. Furthermore, we present the concept of environmental enrichment (EE), its effects on stress responses and related behavioural changes and its benefits for rats previously subjected to DEP, along with the clinical implications of DEP and EE.
Collapse
Affiliation(s)
- Natália Ferreira de Sá
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo
| | - Rosana Camarini
- Department of Pharmacology - Instituto de Ciências Biomédicas, Universidade de São Paulo
| | - Deborah Suchecki
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo.
| |
Collapse
|
3
|
Nisar R, Batool Z, Haider S. Electric foot-shock induces neurobehavioral aberrations due to imbalance in oxidative status, stress hormone, neurochemical profile, and irregular cortical-beta wave pattern in rats: A validated animal model of anxiety. Life Sci 2023; 323:121707. [PMID: 37084951 DOI: 10.1016/j.lfs.2023.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Neuropsychiatric disorders can be modeled on animals to investigate the neural mechanism underlying these disorders. Models of neuropsychiatric disorders, such as anxiety, basically aim to produce the signs and symptoms of human anxiety disorders in laboratory animals. Electric foot-shock is recommended to induce anxiety-like symptoms in rodents. For this purpose, however, a range of current intensities is available in the literature. The present study aims to modify the existing practices of generating anxiety-like symptoms through electric foot-shock by identifying an optimum current intensity and combing it with behavioral paradigms to produce a rat model of anxiety. Furthermore, the validity of the model was confirmed by checking the fulfillment of three validity criteria necessary for the development of any disease model including face validity, construct validity, and predictive validity. In the current study, after pre-testing, 1.0 mA electric intensity was selected to produce the model of anxiety. The results showed that the induction of 1.0 mA electric foot-shock induces abnormal behavioral effects which were similar to anxiety-like effects as evident by social interaction test, light-dark transition test, and open field test. Moreover, aberrations in the levels of the stress hormone, oxidative stress parameters, hippocampal neurotransmitter levels, and cortical-EEG wave pattern were also observed in the rat model of anxiety which were successfully overcome using diazepam. In conclusion, the outcome of our study suggests that electric foot-shock can be an adequate stressor to produce a validated animal model of anxiety and this model can be confidently used to identify and screen new and/or novel anxiolytics.
Collapse
Affiliation(s)
- Rida Nisar
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Zanta NC, Assad N, Suchecki D. Neurobiological mechanisms involved in maternal deprivation-induced behaviours relevant to psychiatric disorders. Front Mol Neurosci 2023; 16:1099284. [PMID: 37122626 PMCID: PMC10133561 DOI: 10.3389/fnmol.2023.1099284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Parental care is essential for proper development of stress response and emotion-related behaviours. Epidemiological studies show that parental loss in childhood represents a major risk factor for the development of mental disorders throughout the lifespan, including schizophrenia, depression, and anxiety. In most mammalian species, the mother is the main source of care and maternal behaviours regulate several physiological systems. Maternal deprivation (DEP) for 24 h is a paradigm widely used to disinhibit the hypothalamic-pituitary-adrenal axis response to stress during the stress hyporesponsive period. In this mini-review we will highlight the main DEP-induced neurobiological and behavioural outcomes, including alterations on stress-related hormones, neurogenesis, neurotransmitter/neuromodulatory systems and neuroinflammation. These neurobiological changes may be reflected by aberrant behaviours, which are relevant to the study of mental disorders. The evidence indicates that DEP consequences depend on the sex, the age when the DEP takes place and the age when the animals are evaluated, reflecting dynamic plasticity and individual variability. Individual variability and sex differences have a great relevance for the study of biological factors of stress resilience and vulnerability and the DEP paradigm is a suitable model for evaluation of phenotypes of stress- and emotion-related psychopathologies.
Collapse
|
5
|
Sex-specific effects of neonatal paternal deprivation on microglial cell density in adult California mouse (Peromyscus californicus) dentate gyrus. Brain Behav Immun 2022; 106:1-10. [PMID: 35908654 DOI: 10.1016/j.bbi.2022.07.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Adverse early-life experiences are risk factors for psychiatric disease development, resulting in stress-related neuronal modeling and neurobehavioral changes. Stressful experiences modulate the immune system, contributing to neuronal damage in higher cortical regions, like the hippocampus. Moreover, early-life stressors dysregulate the function of microglia, the resident immune cells of the brain, in the developing hippocampus. Paternal deprivation, an early-life stressor in many biparental species, facilitates sex-dependent inhibitions in hippocampal plasticity, but parental contributors to these sex-specific outcomes are unknown. Also, neurobiological mechanisms contributing to impairments in hippocampal neuroplasticity are less known. Thus, our goals were to 1) determine whether parental behavior is altered in maternal females following removal of the paternal male, 2) assess the effects of paternal deprivation on dentate gyrus (DG) volume and microglia proliferation, and 3) determine if early-life experimental handling mitigates sex-specific reductions in DG cell survival. California mice were born to multiparous breeders and reared by both parents (biparental care) or by their mother alone (i.e., father removed on postnatal day 1; paternal deprivation). One cohort of offspring underwent offspring retrieval tests for eight days beginning on postnatal day 2. On PND 68, these offspring (and a second cohort of mice without behavioral testing) were euthanized and brains visualized for bromodeoxyuridine (BrdU) and neuron-specific class III beta-tubulin (TuJ-1) or ionized calcium binding adaptor molecule 1 (Iba1). While mate absence did not impair maternal retrieval, paternal deprivation reduced DG volume, but Iba1+ cell density was only higher in paternally-deprived females. Neither sex or paternal deprivation significantly altered the number of BrdU+ or Tuj1+ cells in the DG - an absence of a reduction in cell survival may be related to daily handing during early offspring retrieval tests. Together, these data suggest that paternal deprivation impairs hippocampal plasticity; however, sex and early environment may influence the magnitude of these outcomes.
Collapse
|
6
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
7
|
Larivee R, Johnson N, Freedgood NR, Cameron HA, Schoenfeld TJ. Inhibition of Hippocampal Neurogenesis Starting in Adolescence Increases Anxiodepressive Behaviors Amid Stress. Front Behav Neurosci 2022; 16:940125. [PMID: 35864848 PMCID: PMC9294378 DOI: 10.3389/fnbeh.2022.940125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stressors during the adolescent period can affect development of the brain and have long-lasting impacts on behavior. Specifically, adolescent stress impairs hippocampal neurogenesis and can increase risk for anxiety, depression, and a dysregulated stress response in adulthood. In order to model the functional effects of reduced hippocampal neurogenesis during adolescence, a transgenic neurogenesis ablation rat model was used to suppress neurogenesis during the adolescent period and test anxiodepressive behaviors and stress physiology during adulthood. Wildtype and transgenic (TK) rats were given valganciclovir during the first two weeks of adolescence (4-6 weeks old) to knock down neurogenesis in TK rats. Starting in young adulthood (13 weeks old), blood was sampled for corticosterone at several time points following acute restraint stress to measure negative feedback of the stress response, and rats were tested on a battery of anxiodepressive tests at baseline and following acute restraint stress. Although TK rats had large reductions in both cell proliferation during adolescence, as measured by bromodeoxyuridine (BrdU), and ongoing neurogenesis in adulthood (by doublecortin), resulting in decreased volume of the dentate gyrus, negative feedback of the stress response following acute restraint was similar across all rats. Despite similar stress responses, TK rats showed higher anxiety-like behavior at baseline. In addition, only TK rats had increased depressive-like behavior when tested after acute stress. Together, these results suggest that long-term neurogenesis ablation starting in adolescence produces hippocampal atrophy and increases behavioral caution and despair amid stressful environments.
Collapse
Affiliation(s)
- Rachelle Larivee
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
| | - Natalie Johnson
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
| | - Natalie R. Freedgood
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Timothy J. Schoenfeld
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
- *Correspondence: Timothy J. Schoenfeld,
| |
Collapse
|
8
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Rosa DS, Frias AT, Vilela-Costa HH, Junior AS, Sant’Ana AB, Fusse EJ, Suchecki D, Campos AC, Lovick TA, Zangrossi H. Neonatal maternal deprivation facilitates the expression of a panic-like escape behavior in adult rats. Behav Brain Res 2022; 434:114031. [DOI: 10.1016/j.bbr.2022.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
10
|
Nascimento EB, Dierschnabel AL, Lima RH, Sousa MBC, Suchecki D, Silva RH, Ribeiro AM. Stress-related impairment of fear memory acquisition and disruption of risk assessment behavior in female but not in male mice. Behav Processes 2022; 199:104660. [PMID: 35550163 DOI: 10.1016/j.beproc.2022.104660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
Abstract
Stress encompasses reactions to stimuli that promote negative and positive effects on cognitive functions, such as learning and memory processes. Herein, we investigate the effect of restraint stress on learning, memory, anxiety levels and locomotor activity of male and female mice. We used the plus-maze discriminative avoidance task (PMDAT), a behavioral task based on the innate exploratory response of rodents to new environments. Moreover, this task is used to simultaneously evaluate learning, memory, anxiety-like behavior and locomotor activity. Male and female mice were tested after repeated daily restraint stress (4h/day for 3 days). The results showed stress-induced deficits on aversive memory retrieval only in female mice, suggesting a sexual dimorphism on memory acquisition. Furthermore, stressed females exhibited increased anxiety-like behavior and decreased exploratory behavior. Plasma corticosterone levels were similarly increased by restraint stress in both sexes, suggesting that the behavioral outcome was not related to hormonal secretion. Our findings corroborate previous studies, showing a sexually dimorphic effect of restraint stress on cognition. In addition, our study suggests that stress-related acquisition deficit may be the consequence of elevated emotional response in females.
Collapse
Affiliation(s)
| | | | - Ramón Hypolito Lima
- Edmond and Lily Safra International Institute of Neuroscience, Natal, RN, Brazil
| | | | - Deborah Suchecki
- Universidade Federal de São Paulo, Department of Psychobiology, São Paulo, SP, Brazil
| | - Regina H Silva
- Universidade Federal de São Paulo, Department of Pharmacology, São Paulo, SP, Brazil
| | - Alessandra M Ribeiro
- Universidade Federal de São Paulo, Department of Biosciences, Santos, SP, Brazil.
| |
Collapse
|
11
|
de Souza JA, da Silva MC, de Souza Ferraz Junior JC, de Souza FL, de Souza SL. Maternal separation in the light or dark phase of the circadian cycle has different effects on the corticosterone levels and anxiety-like behavior in male adult rats. Physiol Behav 2022; 247:113725. [DOI: 10.1016/j.physbeh.2022.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
|
12
|
Zanta NC, Suchecki D, Girardi CEN. Early life stress alters emotional learning in a sex- and age-dependent manner with no impact on emotional behaviors. Dev Psychobiol 2021; 63:e22182. [PMID: 34423425 DOI: 10.1002/dev.22182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/06/2023]
Abstract
Neonatal adversity can impact neurodevelopmental trajectories. This study examined the long-term effects of maternal deprivation on day 9 (DEP9), associated or not to a stressor (saline injection [SAL]), on contextual fear conditioning (Experiment 1) and emotional behaviors (Experiment 2) in Wistar rats. Whole litters were either assigned to DEP9 or control groups, and on day 10, half of the litters in each group received an SAL or not (NSAL). DEP9-SAL male adolescents showed the longest freezing time and DEP9 adult males froze more than females. Females exhibited less anxiety-like behavior than males; DEP9-SAL females spent more time in the open arms and DEP9 males visited less the extremity of the open arm in the elevated plus maze. Early life stress increased conditioned and innate fear in males, but not in females, indicating a clear sexual dimorphism in the response to potentially threatening stimuli.
Collapse
Affiliation(s)
- Natália C Zanta
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
13
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
14
|
Brandt N, Löffler T, Fester L, Rune GM. Sex-specific features of spine densities in the hippocampus. Sci Rep 2020; 10:11405. [PMID: 32647191 PMCID: PMC7347548 DOI: 10.1038/s41598-020-68371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/18/2020] [Indexed: 01/27/2023] Open
Abstract
Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 μm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period.
Collapse
Affiliation(s)
- Nicola Brandt
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Department of Human Medicine, Division of Anatomy, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Tobias Löffler
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Lars Fester
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Kordestani-Moghadam P, Nasehi M, Khodagholi F, Vaseghi S, Zarrindast MR, Khani M. The fluctuations of metabotropic glutamate receptor subtype 5 (mGluR5) in the amygdala in fear conditioning model of male Wistar rats following sleep deprivation, reverse circadian and napping. Brain Res 2020; 1734:146739. [PMID: 32087111 DOI: 10.1016/j.brainres.2020.146739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Sleep is involved in metabolic system, mental health and cognitive functions. Evidence shows that sleep deprivation (SD) negatively affects mental health and impairs cognitive functions, including learning and memory. Furthermore, the metabotropic glutamate receptor subtype 5 (mGluR5) is a metabolic biomarker, which is affected by various conditions, including stress, sleep deprivation, and cognitive and psychiatric disorders. In this research, we investigated the effect of SD and reverse circadian (RC), and two models of napping (continuous and non-continuous) combined with SD or RC on fear-conditioning memory, anxiety-like behavior and mGluR5 fluctuations in the amygdala. 64 male Wistar rats were used in this study. The water box apparatus was used to induce SD/RC for 48 h, and fear-conditioning memory apparatus was used to assess fear memory. The results showed, fear-conditioning memory was impaired following SD and RC, especially in contextual stage. However, anxiety-like behavior was increased. Furthermore, mGluR5 was increased in the left amygdala more than the right amygdala. Additionally, continuous napping significantly improved fear-conditioning memory, especially freezing behavior. In conclusion, following SD and RC, fear-conditioning memory in contextual stage is more vulnerable than in auditory stage. Furthermore, increase in anxiety-like behavior is related to increase in the activity of left amygdala and mGluR5 receptors.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mojgan Khani
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
de Lima RMS, dos Santos Bento LV, di Marcello Valladão Lugon M, Barauna VG, Bittencourt AS, Dalmaz C, de Vasconcellos Bittencourt APS. Early life stress and the programming of eating behavior and anxiety: Sex-specific relationships with serotonergic activity and hypothalamic neuropeptides. Behav Brain Res 2020; 379:112399. [DOI: 10.1016/j.bbr.2019.112399] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
|
17
|
Cherix A, Larrieu T, Grosse J, Rodrigues J, McEwen B, Nasca C, Gruetter R, Sandi C. Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. eLife 2020; 9:50631. [PMID: 31922486 PMCID: PMC6970538 DOI: 10.7554/elife.50631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that hierarchical status provides vulnerability to develop stress-induced depression. Energy metabolic changes in the nucleus accumbens (NAc) were recently related to hierarchical status and vulnerability to develop depression-like behavior. Acetyl-L-carnitine (LAC), a mitochondria-boosting supplement, has shown promising antidepressant-like effects opening therapeutic opportunities for restoring energy balance in depressed patients. We investigated the metabolic impact in the NAc of antidepressant LAC treatment in chronically-stressed mice using 1H-magnetic resonance spectroscopy (1H-MRS). High rank, but not low rank, mice, as assessed with the tube test, showed behavioral vulnerability to stress, supporting a higher susceptibility of high social rank mice to develop depressive-like behaviors. High rank mice also showed reduced levels of several energy-related metabolites in the NAc that were counteracted by LAC treatment. Therefore, we reveal a metabolic signature in the NAc for antidepressant-like effects of LAC in vulnerable mice characterized by restoration of stress-induced neuroenergetics alterations and lipid function.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Larrieu
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - João Rodrigues
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruce McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
do Nascimento EB, Dierschnabel AL, de Macêdo Medeiros A, Suchecki D, Silva RH, Ribeiro AM. Memory impairment induced by different types of prolonged stress is dependent on the phase of the estrous cycle in female rats. Horm Behav 2019; 115:104563. [PMID: 31377100 DOI: 10.1016/j.yhbeh.2019.104563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
A growing body of evidence demonstrates that estrogen and corticosterone (CORT) impact on cognition and emotion. On the one hand, ovarian hormones may have beneficial effects on several neurophysiological processes, including memory. On the other hand, chronic exposure to stressful conditions has negative effects on brain structures related to learning and memory. In the present study, we used the plus-maze discriminative avoidance task (PMDAT) to evaluate the influence of endogenous variations of sex hormones and exposure to different types of prolonged stressors on learning, memory, anxiety-like behavior and locomotion. Female Wistar rats were submitted to seven consecutive days of restraint stress (4 h/day), overcrowding (18 h/day) or social isolation (18 h/day) and tested in different phases of the estrous cycle. The main results showed that: (1) neither stress conditions nor estrous cycle modified PMDAT acquisition; (2) restraint stress and social isolation induced memory impairments; (3) this impairment was observed particularly in females in metestrus/diestrus; (4) stressed females in estrus displayed less risk assessment behavior, suggesting reduced anxiety-like behavior; (5) restraint stress and social isolation, but not overcrowding, elevated corticosterone levels. Taken together, our findings suggest that the phase of the estrous cycle is an important modulatory factor of the cognitive processing disrupted by stress in female rats. Negative effects were observed in metestrus/diestrus, indicating that the peak of sex hormones may protect females against stress-induced memory impairment.
Collapse
Affiliation(s)
- Ezequiel Batista do Nascimento
- Health Science Center, Universidade Federal do Sul da Bahia, Teixeira de Freitas, BA, Brazil; Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aline Lima Dierschnabel
- Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - André de Macêdo Medeiros
- Laboratory of Behavioral Neuroscience, Department of Pharmacology, Universidade Federal de São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, SP, Brazil
| | - Regina Helena Silva
- Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
19
|
Reyes-Garcés N, Diwan M, Boyacı E, Gómez-Ríos GA, Bojko B, Nobrega JN, Bambico FR, Hamani C, Pawliszyn J. In Vivo Brain Sampling Using a Microextraction Probe Reveals Metabolic Changes in Rodents after Deep Brain Stimulation. Anal Chem 2019; 91:9875-9884. [DOI: 10.1021/acs.analchem.9b01540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Mustansir Diwan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Ezel Boyacı
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - German A. Gómez-Ríos
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - José N. Nobrega
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Francis R. Bambico
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Clement Hamani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
20
|
Junod A, Opendak M, LeDoux JE, Sullivan RM. Development of Threat Expression Following Infant Maltreatment: Infant and Adult Enhancement but Adolescent Attenuation. Front Behav Neurosci 2019; 13:130. [PMID: 31293397 PMCID: PMC6603125 DOI: 10.3389/fnbeh.2019.00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Early life maltreatment by the caregiver constitutes a major risk factor for the development of later-life psychopathologies, including fear-related pathologies. Here, we used an animal model of early life maltreatment induced by the Scarcity-Adversity Model of low bedding (LB) where the mother is given insufficient bedding for nest building while rat pups were postnatal days (PN) 8-12. To assess effects of maltreatment on the expression of threat-elicited defensive behaviors, animals underwent odor-shock threat conditioning at three developmental stages: late infancy (PN18), adolescence (PN45) or adulthood (>PN75) and tested the next day with odor only presentations (cue test). Results showed that in typically developing rats, the response to threat increases with maturation, although experience with maltreatment in early infancy produced enhanced responding to threat in infancy and adulthood, but a decrease in maltreated adolescents. To better understand the unique features of this decreased threat responding in adolescence, c-Fos expression was assessed within the amygdala and ventromedial prefrontal cortex (vmPFC) associated with the cued expression of threat learning. Fos counts across amygdala subregions were lower in LB rats compared to controls, while enhanced c-Fos expression was observed in the vmPFC prelimbic cortex (PL). Correlational analysis between freezing behavior and Fos revealed freezing levels were correlated with CeA in controls, although more global correlations were detected in LB-reared rats, including the BA, LA, and CeA. Functional connectivity analysis between brain regions showed that LB reared rats exhibited more diffuse interconnectivity across amygdala subnuclei, compared the more heterogeneous patterns observed in controls. In addition, functional connectivity between the IL and LA switched from positive to negative in abused adolescents. Overall, these results suggest that in adolescence, the unique developmental decrease in fear expression following trauma is associated with distinct changes in regional function and long-range connectivity, reminiscent of pathological brain function. These results suggest that early life maltreatment from the caregiver perturbs the developmental trajectory of threat-elicited behavior. Indeed, it is possible that this form of trauma, where the infant's safety signal or "safe haven" (the caregiver) is actually the source of the threat, produces distinct outcomes across development.
Collapse
Affiliation(s)
- Anouchka Junod
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Joseph E. LeDoux
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
21
|
Robinson-Drummer PA, Opendak M, Blomkvist A, Chan S, Tan S, Delmer C, Wood K, Sloan A, Jacobs L, Fine E, Chopra D, Sandler C, Kamenetzky G, Sullivan RM. Infant Trauma Alters Social Buffering of Threat Learning: Emerging Role of Prefrontal Cortex in Preadolescence. Front Behav Neurosci 2019; 13:132. [PMID: 31293398 PMCID: PMC6598593 DOI: 10.3389/fnbeh.2019.00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Within the infant-caregiver attachment system, the primary caregiver holds potent reward value to the infant, exhibited by infants' strong preference for approach responses and proximity-seeking towards the mother. A less well-understood feature of the attachment figure is the caregiver's ability to reduce fear via social buffering, commonly associated with the notion of a "safe haven" in the developmental literature. Evidence suggests this infant system overlaps with the neural network supporting social buffering (attenuation) of fear in the adults of many species, a network known to involve the prefrontal cortex (PFC). Here, using odor-shock conditioning in young developing rats, we assessed when the infant system transitions to the adult-like PFC-dependent social buffering of threat system. Rat pups were odor-shock conditioned (0.55 mA-0.6 mA) at either postnatal day (PN18; dependent on mother) or 28 (newly independent, weaned at PN23). Within each age group, the mother was present or absent during conditioning, with PFC assessment following acquisition using 14C 2-DG autoradiography and cue testing the following day. Since the human literature suggests poor attachment attenuates the mother's ability to socially buffer the infants, half of the pups at each age were reared with an abusive mother from PN8-12. The results showed that for typical control rearing, the mother attenuated fear in both PN18 and PN28 pups, although the PFC [infralimbic (IL) and ventral prelimbic (vPL) cortices] was only engaged at PN28. Abuse rearing completely disrupted social buffering of pups by the mother at PN18. The results from PN28 pups showed that while the mother modulated learning in both control and abuse-reared pups, the behavioral and PFC effects were attenuated after maltreatment. Our data suggest that pups transition to the adult-like PFC social support circuit after independence from the mother (PN28), and this circuit remains functional after early-life trauma, although its effectiveness appears reduced. This is in sharp contrast to the effects of early life trauma during infancy, where social buffering of the infant is more robustly impacted. We suggest that the infant social buffering circuit is disengaged by early-life trauma, while the adolescent PFC-dependent social buffering circuit may use a safety signal with unreliable safety value.
Collapse
Affiliation(s)
- Patrese A. Robinson-Drummer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Anna Blomkvist
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Stephanie Chan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Stephen Tan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Cecilia Delmer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Kira Wood
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Aliza Sloan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Lily Jacobs
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Eliana Fine
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Divija Chopra
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Chaim Sandler
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Giselle Kamenetzky
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Instituto de Investigaciones Médicas A Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
22
|
Peirce JM, Alviña K. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res 2019; 97:1223-1241. [PMID: 31144383 DOI: 10.1002/jnr.24476] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
The study of the gut microbiome has increasingly revealed an important role in modulating brain function and mental health. In this review, we underscore specific pathways and mechanisms by which the gut microbiome can promote the development of mental disorders such as depression and anxiety. First, we review the involvement of the stress response and immune system activation in the development of depression and anxiety. Then, we examine germ-free murine models used to uncover the role of the gut microbiome in developing and modulating pertinent activity in the brain and the immune system. We also document multiple pathways by which stress-induced inflammation harms brain function and ultimately affects mental health, and review how probiotic and prebiotic treatments have shown to be beneficial. Lastly, we provide an overview of gut microbiome-derived compounds (short-chain fatty acids, tryptophan catabolites, microbial pattern recognition) and related mechanisms (vagal nerve activity and fecal microbiota transplants) involved in mediating the influence of the gut microbiome to mental health. Overall, a picture of the gut microbiome playing a facilitating role between stress response, inflammation, and depression, and anxiety is emerging. Future research is needed to firmly establish the microbiome's causal role, to further elucidate the mechanisms by which gut microbes influence brain function and mental health, and to possibly develop treatments that improve mental health through microbiotic targets.
Collapse
Affiliation(s)
- Jason M Peirce
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas.,Honors College, Texas Tech University, Lubbock, Texas
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
23
|
Miragaia AS, de Oliveira Wertheimer GS, Consoli AC, Cabbia R, Longo BM, Girardi CEN, Suchecki D. Maternal Deprivation Increases Anxiety- and Depressive-Like Behaviors in an Age-Dependent Fashion and Reduces Neuropeptide Y Expression in the Amygdala and Hippocampus of Male and Female Young Adult Rats. Front Behav Neurosci 2018; 12:159. [PMID: 30131681 PMCID: PMC6090069 DOI: 10.3389/fnbeh.2018.00159] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023] Open
Abstract
Maternal deprivation for 24 h produces an immediate increase in basal and stress-induced corticosterone (CORT) secretion. Given the impact of elevated CORT levels on brain development, the goal of the present study was to characterize the effects of maternal deprivation at postnatal days 3 (DEP3) or 11 (DEP11) on emotional behavior and neuropeptide Y immunoreactivity (NPY-ir) in the basolateral amygdala (BLA) and dorsal hippocampus (dHPC) of male and female rats. Litters were distributed in control non-deprived (CTL), DEP3, or DEP11 groups. In Experiment 1, within each litter, one male and one female were submitted to one of the following tests: novelty suppressed feeding (NSF), sucrose negative contrast test (SNCT), and forced swimming test (FST), between postnatal days 52 and 60. In Experiment 2, two males and two females per litter were exposed to the elevated plus maze and 1 h later, perfused for investigation of NPY-ir, on PND 52. The results showed that DEP3 rats displayed greater anxiety-like behavior in the NSF and EPM, compared to CTL and DEP11 counterparts. In the SNCT, DEP3 and DEP11 males showed less suppression of the lower sucrose concentration intake, whereas all females suppressed less than males. Both manipulated groups displayed more immobility in the FST, although this effect was greater in DEP3 than in DEP11 rats. NPY-ir was reduced in DEP3 and DEP11 males and females in the BLA, whereas in the dHPC, DEP3 males showed less NPY-ir than DEP11, which, in turn, presented less NPY-ir than CTL rats. Females showed less NPY-ir than males in both structures. Because the deprivation effects were more intense in DEP3 than in DEP11, in Experiment 3, the frequency of nursing posture, licking-grooming, and interaction with pups was assessed upon litter reunion with mothers. Mothers of DEP11 litters engaged more in anogenital licking than mothers of DEP3 litters. The present results indicate that maternal deprivation changed affective behavior with greater impact in the earlier age and reduced the expression of NPY in emotion-related brain areas. The age-dependent differential effects of deprivation on maternal behavior could, at least in part, explain the outcomes in young adult rats.
Collapse
Affiliation(s)
- Alexandra S Miragaia
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Amanda C Consoli
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rafael Cabbia
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz M Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos E N Girardi
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Suchecki D. Maternal regulation of the infant's hypothalamic-pituitary-adrenal axis stress response: Seymour 'Gig' Levine's legacy to neuroendocrinology. J Neuroendocrinol 2018; 30:e12610. [PMID: 29774962 DOI: 10.1111/jne.12610] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022]
Abstract
Thirty years ago, Seymour 'Gig' Levine published a serendipitous, yet, seminal finding with respect to the regulatory role of maternal presence on the corticosterone stress response of neonatal rats during the developmental period known as the stress hyporesponsive period. At the same time, his group of students also investigated the stress response of infant monkeys with respect to maternal separation, as a means of understanding the stress to the primary caregiver resulting from disruptions of attachment. Gig and his group of students and collaborators, mainly in the USA and the Netherlands, investigated how initial social relationships buffer the stress response of nonhuman primates and rodent infants. His work in rodents involved determining how prolonged deprivation of maternal care disinhibits the stress response of neonates and how maternal behaviours regulate specific aspects of the hypothalamic-pituitary-adrenal axis. Maternal deprivation for 24 hours was useful for determining the importance of nutrition in suppressing the corticosterone stress response, whereas anogenital licking and grooming inhibited stress-induced adrenocortoctrophic hormone release, with the combination of both behaviours preventing the effects of maternal deprivation on the central hypothalamic stress response. Levine's group also studied the consequences of maternal deprivation on basal and stress-induced activity of the hypothalamic-pituitary-adrenal axis in juveniles and the persistent effects of the replacement of maternal behaviours on these parameters. Gig's legacy allowed many groups around the world to use the 24-hour maternal deprivation paradigm as an animal model of vulnerability and resilience to stress-related psychiatric disorders, as well as in studies of the neurobiological underpinnings of disruption of the mother-infant relationship and loss of parental care, a highly prevalent condition in humans. This review pays homage to a great scientist and mentor, whose discoveries paved the way for the understanding of how early social relationsships build resilience or lead to susceptibility to emotional disorders later in life.
Collapse
Affiliation(s)
- D Suchecki
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Cabbia R, Consoli A, Suchecki D. Association of 24 h maternal deprivation with a saline injection in the neonatal period alters adult stress response and brain monoamines in a sex-dependent fashion. Stress 2018; 21:333-346. [PMID: 29607713 DOI: 10.1080/10253890.2018.1456525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Maternal deprivation (MD) disinhibits the adrenal glands, rendering them responsive to various stressors, including saline injection, and this increased corticosterone (CORT) response can last for as long as 2 h. In the present study, we tested the hypothesis that association of MD on day 11 with a saline injection would alter emotional behavior, CORT response, and brain monoamine levels, in male and female adult rats. Rats were submitted to the novelty suppressed feeding (NSF), the sucrose negative contrast test (SNCT), social investigation test (SIT), and the elevated plus maze (EPM). One quarter of each group was not tested (providing basal values of CORT and brain monoamines) and the remainder was decapitated 15, 45, or 75 min after the EPM, to assess CORT reactivity. Monoamine levels were determined in the hypothalamus (HPT), frontal cortex (FC), amygdala (AMY), ventral, and dorsal hippocampus (vHPC, dHPC, respectively). MD reduced food intake, in the home-cage, and latency to eat in the NSF in both sexes; females explored less the target animal in the SIT and explored more the open arms of the EPM than males; the CORT response to the EPM was greater in maternally-deprived males and females than in their control counterparts, and this response was further elevated in maternally-deprived females injected with saline. Regarding monoamine levels, females were less affected, showing isolated effects of the stressors, while in males, MD increased 5-HT levels in the HPT and decreased this monoamine in the FC, MD associated with saline reduced dopamine levels in all brain regions, except the HPT. MD at 11 days did not alter emotional behaviors in adult rats, but had an impact in neurobiological parameters associated with this class of behaviors. The impact of MD associated with saline on dopamine levels suggests that males may be vulnerable to motivation-related disorders.
Collapse
Affiliation(s)
- Rafael Cabbia
- a Departamento de Psicobiologia, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brasil
| | - Amanda Consoli
- a Departamento de Psicobiologia, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brasil
| | - Deborah Suchecki
- a Departamento de Psicobiologia, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brasil
| |
Collapse
|
26
|
Banqueri M, Méndez M, Arias JL. Why are maternally separated females inflexible? Brain activity pattern of COx and c-Fos. Neurobiol Learn Mem 2018; 155:30-41. [PMID: 29908971 DOI: 10.1016/j.nlm.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
Abstract
Subjects' early life events will affect them later in life. When these events are stressful, such as child abuse in humans or repeated maternal separation in rodents, subjects can show some behavioral and brain alterations. This study used young adult female Wistar rats that were maternally raised (AFR), maternally separated from post-natal day (PND) 1 to PND10 (MS10), or maternally separated from PND1 to PND21 (MS21), in order to assess the effects of maternal separation (MS) on spatial learning and memory, as well as cognitive flexibility, using the Morris Water Maze (MWM). We performed quantitative cytochrome oxidase (COx) histochemistry on selected brain areas in order to identify whether maternal separation affects brain energy metabolism. We also performed c-Fos immunohistochemistry on the medial prefrontal cortex (mPFC), thalamus, and hippocampus to explore whether this immediate early gene activity was altered in stressed subjects. We obtained a similar spatial learning pattern in maternally raised and maternally separated subjects on the reference memory task, but only the controls were flexible enough to solve the reversal learning successfully. Separated groups showed less c-Fos activity in the mPFC and less complex neural networks on COx.
Collapse
Affiliation(s)
- María Banqueri
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain.
| | - Marta Méndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain
| |
Collapse
|
27
|
Katahira T, Miyazaki N, Motoyama J. Immediate effects of maternal separation on the development of interneurons derived from medial ganglionic eminence in the neonatal mouse hippocampus. Dev Growth Differ 2018; 60:278-290. [DOI: 10.1111/dgd.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Tatsuya Katahira
- Organization of Advanced Research and Education; Doshisha University; Kyoto Japan
| | | | - Jun Motoyama
- Laboratory of Developmental Neurobiology; Graduate School of Brain Science; Doshisha University; Kyoto Japan
| |
Collapse
|
28
|
Prenatal stress induced gender-specific alterations of N -methyl- d -aspartate receptor subunit expression and response to Aβ in offspring hippocampal cells. Behav Brain Res 2018; 336:182-190. [DOI: 10.1016/j.bbr.2017.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022]
|
29
|
Reshetnikov V, Studenikina A, Ryabushkina J, Merkulova T, Bondar N. The impact of early-life stress on the expression of HPA-associated genes in the adult murine brain. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Early life is an important period for the development of the nervous system and for the programming of behavioural phenotypes in adulthood. In our study, two types of early-life stress were used: prolonged separation of pups from their mothers (for 3 h/day, maternal separation (MS)) and brief separation (for 15 min/day, handling (HD)). We analysed the effects of early-life stress on behaviour and the expression of HPA-associated genes in the hypothalamus, hippocampus, and frontal cortex of male mice. Adult mice in the MS group demonstrated reduced locomotor activity and deficiencies in spatial long-term memory, while the HD showed no significant changes. Additionally, early-life MS resulted in reduced hippocampal Crhr1 mRNA, increased MR/GR mRNA in the hippocampus and hypothalamus. Both groups, HD and MS, showed increased Avp mRNA in the hypothalamus. Thus, prolonged maternal separation but not brief leads to adverse behavioural changes and influences the expression of HPA-associated genes in a brain region-specific manner.
Collapse
Affiliation(s)
- V.V. Reshetnikov
- aLaboratory of Gene Expression Regulation, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - A.A. Studenikina
- aLaboratory of Gene Expression Regulation, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- bNovosibirsk State Medical University, Novosibirsk, Russia
| | - J.A. Ryabushkina
- aLaboratory of Gene Expression Regulation, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- cNovosibirsk State University, Novosibirsk, Russia
| | - T.I. Merkulova
- aLaboratory of Gene Expression Regulation, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- cNovosibirsk State University, Novosibirsk, Russia
| | - N.P. Bondar
- aLaboratory of Gene Expression Regulation, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- cNovosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
30
|
Shi QX, Yang LK, Shi WL, Wang L, Zhou SM, Guan SY, Zhao MG, Yang Q. The novel cannabinoid receptor GPR55 mediates anxiolytic-like effects in the medial orbital cortex of mice with acute stress. Mol Brain 2017; 10:38. [PMID: 28800762 PMCID: PMC5553743 DOI: 10.1186/s13041-017-0318-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/30/2017] [Indexed: 01/30/2023] Open
Abstract
The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid receptor, whose exact role in anxiety remains unknown. The present study was conducted to explore the possible mechanisms by which GPR55 regulates anxiety and to evaluate the effectiveness of O-1602 in the treatment of anxiety-like symptoms. Mice were exposed to two types of acute stressors: restraint and forced swimming. Anxiety behavior was evaluated using the elevated plus maze and the open field test. We found that O-1602 alleviated anxiety-like behavior in acutely stressed mice. We used lentiviral shRNA to selective ly knockdown GPR55 in the medial orbital cortex and found that knockdown of GPR55 abolished the anxiolytic effect of O-1602. We also used Y-27632, a specific inhibitor of ROCK, and U73122, an inhibitor of PLC, and found that both inhibitors attenuated the effectiveness of O-1602. Western blot analysis revealed that O-1602 downregulated the expression of GluA1 and GluN2A in mice. Taken together, these results suggest that GPR55 plays an important role in anxiety and O-1602 may have therapeutic potential in treating anxiety-like symptoms.
Collapse
Affiliation(s)
- Qi-xin Shi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Liu-kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Wen-long Shi
- Department of Pharmacy, The 155th Central Hospital of PLA, Kaifeng, China
| | - Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shi-meng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shao-yu Guan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
31
|
da Silva Rocha-Lopes J, Machado RB, Suchecki D. Chronic REM Sleep Restriction in Juvenile Male Rats Induces Anxiety-Like Behavior and Alters Monoamine Systems in the Amygdala and Hippocampus. Mol Neurobiol 2017; 55:2884-2896. [DOI: 10.1007/s12035-017-0541-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|
32
|
Tabbaa M, Lei K, Liu Y, Wang Z. Paternal deprivation affects social behaviors and neurochemical systems in the offspring of socially monogamous prairie voles. Neuroscience 2017; 343:284-297. [PMID: 27998780 PMCID: PMC5266501 DOI: 10.1016/j.neuroscience.2016.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
Abstract
Early life experiences, particularly the experience with parents, are crucial to phenotypic outcomes in both humans and animals. Although the effects of maternal deprivation on offspring well-being have been studied, paternal deprivation (PD) has received little attention despite documented associations between father absence and children health problems in humans. In the present study, we utilized the socially monogamous prairie vole (Microtus ochrogaster), which displays male-female pair bonding and bi-parental care, to examine the effects of PD on adult behaviors and neurochemical expression in the hippocampus. Male and female subjects were randomly assigned into one of two experimental groups that grew up with both the mother and father (MF) or with the mother-only (MO, to generate PD experience). Our data show that MO subjects received less parental licking/grooming and carrying and were left alone in the nest more frequently than MF subjects. At adulthood (∼75days of age), MO subjects displayed increased social affiliation (SOA) toward a conspecific compared to MF subjects, but the two groups did not differ in social recognition (SOR) and anxiety-like behavior. Interestingly, MO subjects showed consistent increases in both gene and protein expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) as well as the levels of total histone 3 and histone 3 acetylation in the hippocampus compared to MF subjects. Further, PD experience increased glucocorticoid receptor beta (GRβ) protein expression in the hippocampus of females as well as increased corticotrophin receptor 2 (CRHR2) protein expression in the hippocampus of males, but decreased CRHR2 mRNA in both sexes. Together, our data suggest that PD has a long-lasting, behavior-specific effect on SOA and alters hippocampal neurochemical systems in the vole brain. The functional role of such altered neurochemical systems in social behaviors and the potential involvement of epigenetic events should be further studied.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Kelly Lei
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 2017; 342:101-119. [DOI: 10.1016/j.neuroscience.2015.08.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
|
34
|
Zidar J, Sorato E, Malmqvist AM, Jansson E, Rosher C, Jensen P, Favati A, Løvlie H. Early experience affects adult personality in the red junglefowl: A role for cognitive stimulation? Behav Processes 2017; 134:78-86. [DOI: 10.1016/j.beproc.2016.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/15/2016] [Accepted: 06/03/2016] [Indexed: 01/15/2023]
|
35
|
Effects of Neonatal Methamphetamine and Stress on Brain Monoamines and Corticosterone in Preweanling Rats. Neurotox Res 2016; 31:269-282. [PMID: 27817108 DOI: 10.1007/s12640-016-9680-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023]
Abstract
Neonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no bedding. Separate litters were assessed at P15 or P20 for organ weights (adrenals, spleen, thymus); corticosterone; and monoamine assessments (dopamine, serotonin, norepinephrine) and their metabolites within the neostriatum, hippocampus, and prefrontal cortex. Findings show neonatal MA altered monoamines, corticosterone, and organ characteristics alone, and as a function of developmental age and stress compared with controls. These alterations may in part be responsible for MA and early life stress-induced long-term learning and memory deficits.
Collapse
|
36
|
MATSAP: An automated analysis of stretch-attend posture in rodent behavioral experiments. Sci Rep 2016; 6:31286. [PMID: 27503239 PMCID: PMC4977506 DOI: 10.1038/srep31286] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
Stretch-attend posture (SAP) occurs during risk assessment and is prevalent in common rodent behavioral tests. Measuring this behavior can enhance behavioral tests. For example, stretch-attend posture is a more sensitive measure of the effects of anxiolytics than traditional spatiotemporal indices. However, quantifying stretch-attend posture using human observers is time consuming, somewhat subjective, and prone to errors. We have developed MATLAB-based software, MATSAP, which is a quick, consistent, and open source program that provides objective automated analysis of stretch-attend posture in rodent behavioral experiments. Unlike human observers, MATSAP is not susceptible to fatigue or subjectivity. We assessed MATSAP performance with videos of male Swiss mice moving in an open field box and in an elevated plus maze. MATSAP reliably detected stretch-attend posture on par with human observers. This freely-available program can be broadly used by biologists and psychologists to accelerate neurological, pharmacological, and behavioral studies.
Collapse
|
37
|
Sex-specific effects of prenatal chronic mild stress on adult spatial learning capacity and regional glutamate receptor expression profiles. Exp Neurol 2016; 281:66-80. [DOI: 10.1016/j.expneurol.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/04/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
|
38
|
Wertheimer GS, Girardi CEN, de Oliveira AM, Monteiro Longo B, Suchecki D. Maternal deprivation alters growth, food intake, and neuropeptide Y in the hypothalamus of adolescent male and female rats. Dev Psychobiol 2016; 58:1066-1075. [DOI: 10.1002/dev.21440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/06/2016] [Indexed: 02/05/2023]
Affiliation(s)
| | | | | | | | - Deborah Suchecki
- Department of Psychobiology; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
39
|
Albrecht A, Ivens S, Papageorgiou IE, Çalışkan G, Saiepour N, Brück W, Richter-Levin G, Heinemann U, Stork O. Shifts in excitatory/inhibitory balance by juvenile stress: A role for neuron-astrocyte interaction in the dentate gyrus. Glia 2016; 64:911-22. [PMID: 26875694 DOI: 10.1002/glia.22970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/25/2022]
Abstract
Childhood trauma is a well-described risk factor for the development of stress-related psychopathology such as posttraumatic stress disorder or depression later in life. Childhood adversity can be modeled in rodents by juvenile stress (JS) protocols, resulting in impaired coping with stressful challenges in adulthood. In the current study, we investigated the long-lasting impact of JS on the expression of molecular factors for glutamate and γ-aminobutyric acid (GABA) uptake and turnover in sublayers of the dentate gyrus (DG) using laser microdissection and quantitative real-time polymerase chain reaction. We observed reduced mRNA expression levels after JS for factors mediating astrocytic glutamate and GABA uptake and degradation. These alterations were prominently observed in the dorsal but not ventral DG granule cell layer, indicating a lasting change in astrocytic GABA and glutamate metabolism that may affect dorsal DG network activity. Indeed, we observed increased inhibition and a lack of facilitation in response to paired-pulse stimulation at short interstimulus intervals in the dorsal DG after JS, while no alterations were evident in basal synaptic transmission or forms of long-term plasticity. The shift in paired-pulse response was mimicked by pharmacologically blocking the astrocytic GABA transporter GAT-3 in naïve animals. Accordingly, reduced expression levels of GAT-3 were confirmed at the protein level in the dorsal granule cell layer of rats stressed in juvenility. Together, these data demonstrate a lasting shift in the excitatory/inhibitory balance of dorsal DG network activity by JS that appears to be mediated by decreased GABA uptake into astrocytes.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute for the Study of Affective Neuroscience (ISAN), Haifa, Israel.,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sebastian Ivens
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ismini E Papageorgiou
- Institute of Diagnostic and Interventional Neuroradiology, University of Göttingen, Göttingen, Germany
| | - Gürsel Çalışkan
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nasrin Saiepour
- Institute of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute for the Study of Affective Neuroscience (ISAN), Haifa, Israel.,Department of Psychology, University of Haifa, Haifa, Israel
| | - Uwe Heinemann
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Stork
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, Germany
| |
Collapse
|
40
|
van der Kooij MA, Grosse J, Zanoletti O, Papilloud A, Sandi C. The effects of stress during early postnatal periods on behavior and hippocampal neuroplasticity markers in adult male mice. Neuroscience 2015; 311:508-18. [PMID: 26548415 DOI: 10.1016/j.neuroscience.2015.10.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
Abstract
Infancy is a critical period for brain development. Emerging evidence indicates that stress experienced during that period can have long-term programming effects on the brain and behavior. However, whether different time periods represent different vulnerabilities to the programming of different neurobehavioral domains is not yet known. Disrupted maternal care is known to interfere with neurodevelopmental processes and may lead to the manifestation of behavioral abnormalities in adulthood. Mouse dams confronted with insufficient bedding/nesting material have been shown to provide fragmented maternal care to their offspring. Here, we compared the impact of this model of early-life stress (ELS) during different developmental periods comprising either postnatal days (PNDs) 2-9 (ELS-early) or PND 10-17 (ELS-late) on behavior and hippocampal cell adhesion molecules in male mice in adulthood. ELS-early treatment caused a permanent reduction in bodyweight, whereas this reduction only occurred transiently during juvenility in ELS-late mice. Anxiety was only affected in ELS-late mice, while cognition and sociability were equally impaired in both ELS-treated groups. We analyzed hippocampal gene expression of the γ2 subunit of the GABAa receptor (Gabrg2) and of genes encoding cell adhesion molecules. Gabrg2 expression was increased in the ventral hippocampus in ELS-late-treated animals and was correlated with anxiety-like behavior in the open-field (OF) test. ELS-early-treated animals exhibited an increase in nectin-1 expression in the dorsal hippocampus, and this increase was associated with the social deficits seen in these animals. Our findings highlight the relevance of developmental age on stress-induced long-term behavioral alterations. They also suggest potential links between early stress-induced alterations in hippocampal Gabrg2 expression and the developmental programming of anxiety and between changes in hippocampal nectin-1 expression and stress-induced social impairments.
Collapse
Affiliation(s)
- M A van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland; Johannes Gutenberg University Medical Centre, Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Mainz, Germany
| | - J Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - O Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - A Papilloud
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
41
|
Duncan NW, Hayes DJ, Wiebking C, Tiret B, Pietruska K, Chen DQ, Rainville P, Marjańska M, Ayad O, Doyon J, Hodaie M, Northoff G. Negative childhood experiences alter a prefrontal-insular-motor cortical network in healthy adults: A preliminary multimodal rsfMRI-fMRI-MRS-dMRI study. Hum Brain Mapp 2015; 36:4622-37. [PMID: 26287448 PMCID: PMC4827445 DOI: 10.1002/hbm.22941] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/21/2015] [Accepted: 08/05/2015] [Indexed: 11/07/2022] Open
Abstract
Research in humans and animals has shown that negative childhood experiences (NCE) can have long-term effects on the structure and function of the brain. Alterations have been noted in grey and white matter, in the brain's resting state, on the glutamatergic system, and on neural and behavioural responses to aversive stimuli. These effects can be linked to psychiatric disorder such as depression and anxiety disorders that are influenced by excessive exposure to early life stressors. The aim of the current study was to investigate the effect of NCEs on these systems. Resting state functional MRI (rsfMRI), aversion task fMRI, glutamate magnetic resonance spectroscopy (MRS), and diffusion magnetic resonance imaging (dMRI) were combined with the Childhood Trauma Questionnaire (CTQ) in healthy subjects to examine the impact of NCEs on the brain. Low CTQ scores, a measure of NCEs, were related to higher resting state glutamate levels and higher resting state entropy in the medial prefrontal cortex (mPFC). CTQ scores, mPFC glutamate and entropy, correlated with neural BOLD responses to the anticipation of aversive stimuli in regions throughout the aversion-related network, with strong correlations between all measures in the motor cortex and left insula. Structural connectivity strength, measured using mean fractional anisotropy, between the mPFC and left insula correlated to aversion-related signal changes in the motor cortex. These findings highlight the impact of NCEs on multiple inter-related brain systems. In particular, they highlight the role of a prefrontal-insular-motor cortical network in the processing and responsivity to aversive stimuli and its potential adaptability by NCEs.
Collapse
Affiliation(s)
- Niall W. Duncan
- Graduate Institute of Humanities in Medicine, Taipei Medical UniversityTaipeiTaiwan
- Brain and Consciousness Research Center, Taipei Medical University‐Shuang Ho HospitalNew Taipei CityTaiwan
- Centre for Cognition and Brain DisordersHangzhou Normal UniversityHangzhouChina
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of OttawaOttawaCanada
| | - Dave J. Hayes
- Division of Neurosurgery, Department of SurgeryUniversity of Toronto and Division of Brain Imaging and Behaviour Systems Neuroscience, Toronto Western Research InstituteTorontoOntarioCanada
| | - Christine Wiebking
- Cluster of Excellence in Cognitive Sciences, Department of Sociology of Physical Activity and HealthUniversity of PotsdamPotsdamGermany
| | - Brice Tiret
- Functional Neuroimaging Unit and Department of PsychologyUniversité de MontréalMontréalCanada
| | - Karin Pietruska
- Faculté de médecine dentaire, Université de MontréalMontréalCanada
| | - David Q. Chen
- Division of Neurosurgery, Department of SurgeryUniversity of Toronto and Division of Brain Imaging and Behaviour Systems Neuroscience, Toronto Western Research InstituteTorontoOntarioCanada
| | - Pierre Rainville
- Faculté de médecine dentaire, Université de MontréalMontréalCanada
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of RadiologyUniversity of MinnesotaMinneapolisMinnesota
| | - Omar Ayad
- Graduate Institute of Humanities in Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Julien Doyon
- Functional Neuroimaging Unit and Department of PsychologyUniversité de MontréalMontréalCanada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of SurgeryUniversity of Toronto and Division of Brain Imaging and Behaviour Systems Neuroscience, Toronto Western Research InstituteTorontoOntarioCanada
| | - Georg Northoff
- Graduate Institute of Humanities in Medicine, Taipei Medical UniversityTaipeiTaiwan
- Brain and Consciousness Research Center, Taipei Medical University‐Shuang Ho HospitalNew Taipei CityTaiwan
- Centre for Cognition and Brain DisordersHangzhou Normal UniversityHangzhouChina
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of OttawaOttawaCanada
| |
Collapse
|
42
|
Wang Y, Ma Y, Hu J, Cheng W, Jiang H, Zhang X, Li M, Ren J, Li X. Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats. Neuroscience 2015; 301:363-74. [DOI: 10.1016/j.neuroscience.2015.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/31/2022]
|
43
|
Takatsuru Y, Koibuchi N. Alteration of somatosensory response in adulthood by early life stress. Front Mol Neurosci 2015; 8:15. [PMID: 26041988 PMCID: PMC4436820 DOI: 10.3389/fnmol.2015.00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023] Open
Abstract
Early life stress is well-known as a critical risk factor for mental and cognitive disorders in adulthood. Such disorders are accompanied by altered neuro- (synapto-) genesis and gene expression. Because psychosomatic disorders induced by early life stress (e.g., physical and/or sexual abuse, and neglect) have become a socio-economic problem, it is very important to clarify the mechanisms underlying these changes. However, despite of intensive clinical and animal studies, such mechanisms have not yet been clarified. Although the disturbance of glucocorticoid and glutamate homeostasis by stress has been well-documented, it has not yet been clarified whether such disturbance by early life stress persists for life. Furthermore, since previous studies have focused on the detection of changes in specific brain regions, such as the hippocampus and prefrontal cortex, it has not been clarified whether early life stress induced changes in the sensory/motor system. Thus, in this review, we introduce recent studies on functional/structural changes in the somatosensory cortex induced by early life stress. We believe that this review provides new insights into the functional alteration of the somatosensory system induced by early life stress. Such information may have clinical relevance in terms of providing effective therapeutic interventions to early life stressed individuals.
Collapse
Affiliation(s)
- Yusuke Takatsuru
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi Japan
| |
Collapse
|
44
|
Wang Y, Ma Y, Cheng W, Jiang H, Zhang X, Li M, Ren J, Zhang X, Li X. Sexual differences in long‐term effects of prenatal chronic mild stress on anxiety‐like behavior and stress‐induced regional glutamate receptor expression in rat offspring. Int J Dev Neurosci 2015; 41:80-91. [DOI: 10.1016/j.ijdevneu.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yan Wang
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Yuchao Ma
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Wenwen Cheng
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Han Jiang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyang110001China
| | - Xinxin Zhang
- The Research Center for Medical GenomicsKey Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of EducationChina Medical UniversityShenyang110001China
| | - Min Li
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Jintao Ren
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Xiaosong Zhang
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Xiaobai Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyang110001China
| |
Collapse
|
45
|
Dalmaz C, Noschang C, Krolow R, Raineki C, Lucion AB. How postnatal insults may program development: studies in animal models. ADVANCES IN NEUROBIOLOGY 2015; 10:121-47. [PMID: 25287539 DOI: 10.1007/978-1-4939-1372-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the postnatal period, the nervous system is modified and shaped by experience, in order to adjust it to the particular environment in which the animal will live. This plasticity, one of the most remarkable characteristics of the nervous system, promotes adaptive changes, but it also makes brain more vulnerable to insults. This chapter will focus on the effects of interventions during the postnatal development in animal models of neonatal handling (usually up to 15 min of handling) and maternal separation (usually at least for 3 h). Sex-specific changes and effects of prepubertal stress such as social isolation later on in life were also considered. These interventions during development induce long-lasting traces in the pups' nervous system, which will be reflected in changes in neuroendocrine functions, including the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-gonadal axes; anxiety and cognitive performance; and feeding, sexual, and social behavior. These enduring changes may be adaptive or maladaptive, depending on the environment in which the animal will live. The challenge researchers facing now is to determine how to reverse the deleterious effects that may result from early-life stress exposure.
Collapse
Affiliation(s)
- Carla Dalmaz
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porte Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
46
|
Kindsvatter A, Geroski A. The Impact of Early Life Stress on the Neurodevelopment of the Stress Response System. JOURNAL OF COUNSELING AND DEVELOPMENT 2014. [DOI: 10.1002/j.1556-6676.2014.00173.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Anne Geroski
- Graduate Counseling Program, University of Vermont
| |
Collapse
|
47
|
Mikania glomerata: Phytochemical, Pharmacological, and Neurochemical Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:710410. [PMID: 25202336 PMCID: PMC4151546 DOI: 10.1155/2014/710410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
The present study primarily aims to identify the relative density and the fatty acids (methyl esters) content present in the standardized ethanol extract of leaves of M. glomerata (EPMG). Meanwhile, in a second moment, this study evaluated the effects of the EPMG on the levels of amino acids in the hippocampus, and the mechanism of sedative and anxiolytic action. Adult mice were treated with doses of 200, 300, and 400 mg/kg and evaluated in open field, elevated plus-maze, light dark, and rotarod tests. Moreover, in the behavioral tests diazepam (GABAergic anxiolytic, 2 mg/kg) as positive control and flumazenil (GABA antagonist, 2.5 mg/kg) were used to identify mechanism of sedative and anxiolytic action produced by EPMG. The EPMG is constituted by the following compounds: methyl cinnamate, 2H-1-benzopyran-2-one, (2-hydroxyphenyl)methyl propionate, (Z)-methyl-hexadec-7-enoate, methyl hexadecanoate, hexadecanoic acid, (Z)-methyl-octadec-9-enoate, octadecanoic acid, and squalene. This extract demonstrated anxiolytic effects, which may be mediated by GABAergic system, and was able to increase GABA levels and reduce of glutamate and aspartate concentrations in mice hippocampus, which can directly and/or indirectly assist in their anxiolytic effect. Although more studies are needed, the EPMG could represent an interesting therapeutical strategy in the treatment of anxiety.
Collapse
|
48
|
Bock J, Rether K, Gröger N, Xie L, Braun K. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci 2014; 8:11. [PMID: 24550772 PMCID: PMC3913903 DOI: 10.3389/fnins.2014.00011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life.
Collapse
Affiliation(s)
- Jörg Bock
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Kathy Rether
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Lan Xie
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Center for Behavioral Brain Sciences Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| |
Collapse
|
49
|
Wang H, Gondré-Lewis MC. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS One 2013; 8:e65517. [PMID: 23785432 PMCID: PMC3681797 DOI: 10.1371/journal.pone.0065517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.
Collapse
Affiliation(s)
- Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
50
|
Paternal deprivation alters play-fighting, serum corticosterone and the expression of hypothalamic vasopressin and oxytocin in juvenile male mandarin voles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:787-96. [DOI: 10.1007/s00359-012-0748-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 01/25/2023]
|