1
|
Blednov YA, Shawlot W, Homanics GE, Osterndorff-Kahanek EA, Mason S, Mayfield J, Smalley JL, Moss SJ, Messing RO. The PDE4 inhibitor apremilast modulates ethanol responses in Gabrb1-S409A knock-in mice via PKA-dependent and independent mechanisms. Neuropharmacology 2024; 257:110035. [PMID: 38876310 PMCID: PMC11387004 DOI: 10.1016/j.neuropharm.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
We previously showed that the PDE4 inhibitor apremilast reduces ethanol consumption in mice by protein kinase A (PKA) and GABAergic mechanisms. Preventing PKA phosphorylation of GABAA β3 subunits partially blocked apremilast-mediated decreases in drinking. Here, we produced Gabrb1-S409A mice to render GABAA β1 subunits resistant to PKA-mediated phosphorylation. Mass spectrometry confirmed the presence of the S409A mutation and lack of changes in β1 subunit expression or phosphorylation at other residues. β1-S409A male and female mice did not differ from wild-type C57BL/6J mice in expression of Gabrb1, Gabrb2, or Gabrb3 subunits or in behavioral characteristics. Apremilast prolonged recovery from ethanol ataxia to a greater extent in Gabrb1-S409A mice but prolonged recovery from zolpidem and propofol to a similar extent in both genotypes. Apremilast shortened recovery from diazepam ataxia in wild-type but prolonged recovery in Gabrb1-S409A mice. In wild-type mice, the PKA inhibitor H89 prevented apremilast modulation of ataxia by ethanol and diazepam, but not by zolpidem. In Gabrb1-S409A mice, inhibiting PKA or EPAC2 (exchange protein directly activated by cAMP) partially reversed apremilast potentiation of ethanol, diazepam, and zolpidem ataxia. Apremilast prevented acute tolerance to ethanol ataxia in both genotypes, but there were no genotype differences in ethanol consumption before or after apremilast. In contrast to results in Gabrb3-S408A/S409A mice, PKA phosphorylation of β1-containing GABAA receptors is not required for apremilast's effects on acute tolerance or on ethanol consumption but is required for its ability to decrease diazepam intoxication. Besides PKA we identified EPAC2 as an additional cAMP-dependent mechanism by which apremilast regulates responses to GABAergic drugs.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - William Shawlot
- Center for Biomedical Research Support, Mouse Genetic Engineering Facility, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gregg E Homanics
- Departments of Anesthesiology & Perioperative Medicine, Neurobiology, and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Wang G, Peng S, Reyes Mendez M, Keramidas A, Castellano D, Wu K, Han W, Tian Q, Dong L, Li Y, Lu W. The TMEM132B-GABA A receptor complex controls alcohol actions in the brain. Cell 2024:S0092-8674(24)01024-9. [PMID: 39357522 DOI: 10.1016/j.cell.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
Collapse
Affiliation(s)
- Guohao Wang
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shixiao Peng
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam Reyes Mendez
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Blednov YA, Da Costa A, Mayfield J, Harris RA, Messing RO. Deletion of Tlr3 reduces acute tolerance to alcohol and alcohol consumption in the intermittent access procedure in male mice. Addict Biol 2021; 26:e12932. [PMID: 32604471 DOI: 10.1111/adb.12932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 02/02/2023]
Abstract
Pharmacological studies implicate toll-like receptor 3 (TLR3) signaling in alcohol drinking. We examined the role of TLR3 in behavioral responses to alcohol and GABAergic drugs by studying Tlr3 -/- mice. Because of opposing signaling between TLR3 and MyD88 pathways, we also evaluated Myd88 -/- mice. Ethanol consumption and preference decreased in male but not in female Tlr3 -/- mice during two-bottle choice every-other-day (2BC-EOD) drinking. There were no genotype differences in either sex during continuous or limited-access drinking. Null mutations in Tlr3 or Myd88 did not alter conditioned taste aversion to alcohol and had small or no effects on conditioned place preference. The Tlr3 null mutation did not alter acute alcohol withdrawal. Male, but not female, Tlr3 -/- mice took longer than wild-type littermates to recover from ataxia by ethanol or diazepam and longer to recover from sedative-hypnotic effects of ethanol or gaboxadol, indicating regulation of GABAergic signaling by TLR3. Acute functional tolerance (AFT) to alcohol-induced ataxia was decreased in Tlr3 -/- mice but was increased in Myd88 -/- mice. Thus, MyD88 and TLR3 pathways coordinately regulate alcohol consumption and tolerance to intoxicating doses of alcohol and GABAergic drugs. Despite similar alcohol metabolism and similar amounts of total alcohol consumed during 2BC and 2BC-EOD procedures in C57BL/6J mice, only 2BC-EOD drinking induced tolerance to alcohol-induced ataxia. Ataxia recovery was inversely correlated with level of drinking in wild-type and Tlr3 -/- littermates. Thus, deleting Tlr3 reduces alcohol consumption by reducing AFT to alcohol and not by altering tolerance induced by 2BC-EOD drinking.
Collapse
Affiliation(s)
- Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
- Department of Neuroscience The University of Texas at Austin Austin Texas USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
- Department of Neuroscience The University of Texas at Austin Austin Texas USA
- Department of Neurology, Dell Medical School The University of Texas at Austin Austin Texas USA
| |
Collapse
|
4
|
Vanaveski T, Molchanova S, Pham DD, Schäfer A, Pajanoja C, Narvik J, Srinivasan V, Urb M, Koivisto M, Vasar E, Timmusk T, Minkeviciene R, Eriksson O, Lalowski M, Taira T, Korhonen L, Voikar V, Lindholm D. PGC-1α Signaling Increases GABA(A) Receptor Subunit α2 Expression, GABAergic Neurotransmission and Anxiety-Like Behavior in Mice. Front Mol Neurosci 2021; 14:588230. [PMID: 33597848 PMCID: PMC7882546 DOI: 10.3389/fnmol.2021.588230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondria biogenesis and cell stress playing a role in metabolic and degenerative diseases. In the brain PGC-1α expression has been localized mainly to GABAergic interneurons but its overall role is not fully understood. We observed here that the protein levels of γ-aminobutyric acid (GABA) type A receptor-α2 subunit (GABARα2) were increased in hippocampus and brain cortex in transgenic (Tg) mice overexpressing PGC-1α in neurons. Along with this, GABARα2 expression was enhanced in the hippocampus of the PGC-1α Tg mice, as shown by quantitative PCR. Double immunostaining revealed that GABARα2 co-localized with the synaptic protein gephyrin in higher amounts in the striatum radiatum layer of the hippocampal CA1 region in the Tg compared with Wt mice. Electrophysiology revealed that the frequency of spontaneous and miniature inhibitory postsynaptic currents (mIPSCs) was increased in the CA1 region in the Tg mice, indicative of an augmented GABAergic transmission. Behavioral tests revealed an increase for anxiety-like behavior in the PGC-1α Tg mice compared with controls. To study whether drugs acting on PPARγ can affect GABARα2, we employed pioglitazone that elevated GABARα2 expression in primary cultured neurons. Similar results were obtained using the specific PPARγ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine hydrate (GW1929). These results demonstrate that PGC-1α regulates GABARα2 subunits and GABAergic neurotransmission in the hippocampus with behavioral consequences. This indicates further that drugs like pioglitazone, widely used in the treatment of type 2 diabetes, can influence GABARα2 expression via the PPARγ/PGC-1α system.
Collapse
Affiliation(s)
- Taavi Vanaveski
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Svetlana Molchanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dan Duc Pham
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Schäfer
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ceren Pajanoja
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jane Narvik
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Vignesh Srinivasan
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Maria Koivisto
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tönis Timmusk
- Protobios LCC, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Biomedical Proteomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Laura Korhonen
- Department of Child and Adolescent Psychiatry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vootele Voikar
- Neuroscience Center and Laboratory Animal Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
5
|
Parker CC, Lusk R, Saba LM. Alcohol Sensitivity as an Endophenotype of Alcohol Use Disorder: Exploring Its Translational Utility between Rodents and Humans. Brain Sci 2020; 10:E725. [PMID: 33066036 PMCID: PMC7600833 DOI: 10.3390/brainsci10100725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, relapsing disorder with multiple interacting genetic and environmental influences. Numerous studies have verified the influence of genetics on AUD, yet the underlying biological pathways remain unknown. One strategy to interrogate complex diseases is the use of endophenotypes, which deconstruct current diagnostic categories into component traits that may be more amenable to genetic research. In this review, we explore how an endophenotype such as sensitivity to alcohol can be used in conjunction with rodent models to provide mechanistic insights into AUD. We evaluate three alcohol sensitivity endophenotypes (stimulation, intoxication, and aversion) for their translatability across human and rodent research by examining the underlying neurobiology and its relationship to consumption and AUD. We show examples in which results gleaned from rodents are successfully integrated with information from human studies to gain insight in the genetic underpinnings of AUD and AUD-related endophenotypes. Finally, we identify areas for future translational research that could greatly expand our knowledge of the biological and molecular aspects of the transition to AUD with the broad hope of finding better ways to treat this devastating disorder.
Collapse
Affiliation(s)
- Clarissa C. Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Ryan Lusk
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
6
|
Blednov YA, Borghese CM, Dugan MP, Pradhan S, Thodati TM, Kichili NR, Harris RA, Messing RO. Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling. Neuropharmacology 2020; 178:108220. [PMID: 32736086 DOI: 10.1016/j.neuropharm.2020.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase type 4 (PDE4) inhibitors prevent hydrolysis of cyclic adenosine monophosphate and increase protein kinase A (PKA)-mediated phosphorylation. PDE4 inhibitors also regulate responses to ethanol and GABAergic drugs. We investigated mechanisms by which the PDE4 inhibitor, apremilast, regulates acute effects of ethanol and GABAergic drugs in male and female mice. Apremilast prolonged the sedative-hypnotic effects of gaboxadol, zolpidem, and propofol but did not alter etomidate effects, and unexpectedly shortened the sedative-hypnotic effects of diazepam. Apremilast prolonged rotarod ataxia induced by zolpidem, propofol, and loreclezole, shortened recovery from diazepam, but had no effect on ataxia induced by gaboxadol or etomidate. The PKA inhibitor H-89 blocked apremilast's ability to prolong the sedative-hypnotic effects of ethanol, gaboxadol, and propofol and to prolong ethanol- and propofol-induced ataxia. H-89 also blocked apremilast's ability to shorten the sedative-hypnotic and ataxic effects of diazepam. The β1-specific antagonist, salicylidene salicylhydrazide (SCS), produced faster recovery from ethanol- and diazepam-induced ataxia, but did not alter propofol- or etomidate-induced ataxia. SCS shortened the sedative-hypnotic effects of ethanol and diazepam but not of propofol. In Xenopus oocytes, a phosphomimetic (aspartate) mutation at the PKA phosphorylation site in β1 subunits decreased the maximal GABA current in receptors containing α1 or α3, but not α2 subunits. In contrast, phosphomimetic mutations at PKA sites in β3 subunits increased the maximal GABA current in receptors containing α1 or α2, but not α3 subunits. The GABA potency and allosteric modulation by ethanol, propofol, etomidate, zolpidem, flunitrazepam, or diazepam were not altered by these mutations. We propose a model whereby apremilast increases PKA-mediated phosphorylation of β1-and β3-containing GABAA receptors and selectively alters acute tolerance to ethanol and GABAergic drugs.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael P Dugan
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Swetak Pradhan
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Thanvi M Thodati
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nikhita R Kichili
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
8
|
Berro LF, Rüedi-Bettschen D, Cook JE, Golani LK, Li G, Jahan R, Rashid F, Cook JM, Rowlett JK, Platt DM. GABA A Receptor Subtypes and the Abuse-Related Effects of Ethanol in Rhesus Monkeys: Experiments with Selective Positive Allosteric Modulators. Alcohol Clin Exp Res 2019; 43:791-802. [PMID: 30861153 PMCID: PMC6601614 DOI: 10.1111/acer.14000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous studies have investigated α1GABAA and α5GABAA receptor mechanisms in the behavioral effects of ethanol (EtOH) in monkeys. However, genetic studies in humans and preclinical studies with mutant mice suggest a role for α2GABAA and/or α3GABAA receptors in the effects of EtOH. The development of novel positive allosteric modulators (PAMs) with functional selectivity (i.e., selective efficacy) at α2GABAA and α3GABAA receptors allows for probing of these subtypes in preclinical models of the discriminative stimulus and reinforcing effects of EtOH in rhesus macaques. METHODS In discrimination studies, subjects were trained to discriminate EtOH (2 g/kg, intragastrically) from water under a fixed-ratio (FR) schedule of food delivery. In oral self-administration studies, subjects were trained to self-administer EtOH (2% w/v) or sucrose (0.3 to 1% w/v) under an FR schedule of solution availability. RESULTS In discrimination studies, functionally selective PAMs at α2GABAA and α3GABAA (HZ-166) or α3GABAA (YT-III-31) receptors substituted fully (maximum percentage of EtOH-lever responding ≥80%) for the discriminative stimulus effects of EtOH without altering response rates. Full substitution for EtOH also was engendered by a nonselective PAM (triazolam), an α5GABAA -preferring PAM (QH-ii-066) and a PAM at α2GABAA , α3GABAA , and α5GABAA receptors (L-838417). A partial (MRK-696) or an α1GABAA -preferring (zolpidem) PAM only engendered partial substitution (i.e., ~50 to 60% EtOH-lever responding). In self-administration studies, pretreatments with the functionally selective PAMs at α2GABAA and α3GABAA (XHe-II-053 and HZ-166) or α3GABAA (YT-III-31 and YT-III-271) receptors increased EtOH, but not sucrose, drinking at doses that had few, or no, observable sedative-motor effects. CONCLUSIONS Our results confirm prior findings regarding the respective roles of α1GABAA and α5GABAA receptors in the discriminative stimulus effects of EtOH and, further, suggest a key facilitatory role for α3GABAA and potentially α2GABAA receptors in several abuse-related effects of EtOH in monkeys. Moreover, they reveal a potential role for these latter subtypes in EtOH's sedative effects.
Collapse
Affiliation(s)
- Lais F. Berro
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jemma E. Cook
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Lalit K. Golani
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Guanguan Li
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Rajwana Jahan
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Farjana Rashid
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - James M. Cook
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - James K. Rowlett
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Donna M. Platt
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
9
|
Mulligan MK, Abreo T, Neuner SM, Parks C, Watkins CE, Houseal MT, Shapaker TM, Hook M, Tan H, Wang X, Ingels J, Peng J, Lu L, Kaczorowski CC, Bryant CD, Homanics GE, Williams RW. Identification of a Functional Non-coding Variant in the GABA A Receptor α2 Subunit of the C57BL/6J Mouse Reference Genome: Major Implications for Neuroscience Research. Front Genet 2019; 10:188. [PMID: 30984232 PMCID: PMC6449455 DOI: 10.3389/fgene.2019.00188] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Timothy Abreo
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sarah M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States.,The Jackson Laboratory, Bar Harbor, ME, United States
| | - Cory Parks
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Christine E Watkins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - M Trevor Houseal
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thomas M Shapaker
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Haiyan Tan
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Xusheng Wang
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | | | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Gregg E Homanics
- Departments of Anesthesiology and Perioperative Medicine, Neurobiology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
Olsen RW, Liang J. Role of GABA A receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 2017; 10:45. [PMID: 28931433 PMCID: PMC5605989 DOI: 10.1186/s13041-017-0325-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
GABAergic inhibitory transmission is involved in the acute and chronic effects of ethanol on the brain and behavior. One-dose ethanol exposure induces transient plastic changes in GABAA receptor subunit levels, composition, and regional and subcellular localization. Rapid down-regulation of early responder δ subunit-containing GABAA receptor subtypes mediating ethanol-sensitive tonic inhibitory currents in critical neuronal circuits corresponds to rapid tolerance to ethanol's behavioral responses. Slightly slower, α1 subunit-containing GABAA receptor subtypes mediating ethanol-insensitive synaptic inhibition are down-regulated, corresponding to tolerance to additional ethanol behaviors plus cross-tolerance to other GABAergic drugs including benzodiazepines, anesthetics, and neurosteroids, especially sedative-hypnotic effects. Compensatory up-regulation of synaptically localized α4 and α2 subunit-containing GABAA receptor subtypes, mediating ethanol-sensitive synaptic inhibitory currents follow, but exhibit altered physio-pharmacology, seizure susceptibility, hyperexcitability, anxiety, and tolerance to GABAergic positive allosteric modulators, corresponding to heightened alcohol withdrawal syndrome. All these changes (behavioral, physiological, and biochemical) induced by ethanol administration are transient and return to normal in a few days. After chronic intermittent ethanol (CIE) treatment the same changes are observed but they become persistent after 30 or more doses, lasting for at least 120 days in the rat, and probably for life. We conclude that the ethanol-induced changes in GABAA receptors represent aberrant plasticity contributing critically to ethanol dependence and increased voluntary consumption. We suggest that the craving, drug-seeking, and increased consumption in the rat model are tied to ethanol-induced plastic changes in GABAA receptors, importantly the development of ethanol-sensitive synaptic GABAA receptor-mediating inhibitory currents that participate in maintained positive reward actions of ethanol on critical neuronal circuits. These probably disinhibit nerve endings of inhibitory GABAergic neurons on dopamine reward circuit cells, and limbic system circuits mediating anxiolysis in hippocampus and amygdala. We further suggest that the GABAA receptors contributing to alcohol dependence in the rat and presumably in human alcohol use disorders (AUD) are the ethanol-induced up-regulated subtypes containing α4 and most importantly α2 subunits. These mediate critical aspects of the positive reinforcement of ethanol in the dependent chronic user while alleviating heightened withdrawal symptoms experienced whenever ethanol is absent. The speculative conclusions based on firm observations are readily testable.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
11
|
Blednov YA, Borghese CM, Ruiz CI, Cullins MA, Da Costa A, Osterndorff-Kahanek EA, Homanics GE, Harris RA. Mutation of the inhibitory ethanol site in GABA A ρ1 receptors promotes tolerance to ethanol-induced motor incoordination. Neuropharmacology 2017. [PMID: 28623169 DOI: 10.1016/j.neuropharm.2017.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genes encoding the ρ1/2 subunits of GABAA receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABAA ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans.
Collapse
Affiliation(s)
- Yuri A Blednov
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Cecilia M Borghese
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Carlos I Ruiz
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Madeline A Cullins
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Adriana Da Costa
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | | | - Gregg E Homanics
- University of Pittsburgh, Departments of Anesthesiology, Neurobiology, and Pharmacology & Chemical Biology, Pittsburgh, PA 15261, United States
| | - R Adron Harris
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States.
| |
Collapse
|
12
|
Blednov YA, Black M, Benavidez JM, Da Costa A, Mayfield J, Harris RA. Sedative and Motor Incoordination Effects of Ethanol in Mice Lacking CD14, TLR2, TLR4, or MyD88. Alcohol Clin Exp Res 2017; 41:531-540. [PMID: 28160299 PMCID: PMC5332292 DOI: 10.1111/acer.13314] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/14/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND In our companion article, we examined the role of MyD88-dependent signaling in ethanol (EtOH) consumption in mice lacking key components of this inflammatory pathway and observed differential effects on drinking. Here, we studied the role of these same signaling components in the acute sedative, intoxicating, and physiological effects of EtOH. Toll-like receptor 4 (TLR4) has been reported to strongly reduce the duration of EtOH-induced sedation, although most studies do not support its direct involvement in EtOH consumption. We examined TLR4 and other MyD88 pathway molecules to determine signaling specificity in acute EtOH-related behaviors. We also studied other GABAergic sedatives to gauge the EtOH specificity and potential role for GABA in EtOH's sedative and intoxicating effects in the mutant mice. METHODS Loss of righting reflex (LORR) and recovery from motor incoordination were studied following acute injection of EtOH or other sedative drugs in male and female control C57BL/6J mice versus mice lacking CD14, TLR2, TLR4 (C57BL/10ScN), or MyD88. We also examined EtOH-induced hypothermia and blood EtOH clearance in these mice. RESULTS Male and female mice lacking TLR4 or MyD88 showed reduced duration of EtOH-induced LORR and faster recovery from EtOH-induced motor incoordination in the rotarod test. MyD88 knockout mice had slightly faster recovery from EtOH-induced hypothermia compared to control mice. None of the mutants differed from control mice in the rate of blood EtOH clearance. All of the mutants showed similar decreases in the duration of gaboxadol-induced LORR, but only mice lacking TLR4 were less sensitive to the sedative effects of pentobarbital. Faster recovery from diazepam-induced motor impairment was observed in CD14, TLR4, and MyD88 null mice of both sexes. CONCLUSIONS TLR4 and MyD88 were key mediators of the sedative and intoxicating effects of EtOH and GABAergic sedatives, indicating a strong influence of TLR4-MyD88 signaling on GABAergic function. Despite the involvement of TLR4 in EtOH's acute behaviors, it did not regulate EtOH consumption in any drinking model as shown in our companion article. Collectively, our studies demonstrate differential effects of TLR-MyD88 components in the acute versus chronic actions of EtOH.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Jillian M Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
FMRP regulates an ethanol-dependent shift in GABA BR function and expression with rapid antidepressant properties. Nat Commun 2016; 7:12867. [PMID: 27666021 PMCID: PMC5052688 DOI: 10.1038/ncomms12867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
Alcohol promotes lasting neuroadaptive changes that may provide relief from depressive symptoms, often referred to as the self-medication hypothesis. However, the molecular/synaptic pathways that are shared by alcohol and antidepressants are unknown. In the current study, acute exposure to ethanol produced lasting antidepressant and anxiolytic behaviours. To understand the functional basis of these behaviours, we examined a molecular pathway that is activated by rapid antidepressants. Ethanol, like rapid antidepressants, alters γ-aminobutyric acid type B receptor (GABABR) expression and signalling, to increase dendritic calcium. Furthermore, new GABABRs are synthesized in response to ethanol treatment, requiring fragile-X mental retardation protein (FMRP). Ethanol-dependent changes in GABABR expression, dendritic signalling, and antidepressant efficacy are absent in Fmr1-knockout (KO) mice. These findings indicate that FMRP is an important regulator of protein synthesis following alcohol exposure, providing a molecular basis for the antidepressant efficacy of acute ethanol exposure. Alcohol is thought to lead to neuroadaptive changes, although the underlying molecular mechanisms are unclear. Here, the authors find ethanol treatment alters GABAB-receptor expression via fragile-X mental retardation protein in mice, leading to antidepressant-like behaviours.
Collapse
|
14
|
Abstract
Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD.
Collapse
Affiliation(s)
- Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Darlington TM, McCarthy RD, Cox RJ, Miyamoto-Ditmon J, Gallego X, Ehringer MA. Voluntary wheel running reduces voluntary consumption of ethanol in mice: identification of candidate genes through striatal gene expression profiling. GENES BRAIN AND BEHAVIOR 2016; 15:474-90. [PMID: 27063791 DOI: 10.1111/gbb.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
Abstract
Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.
Collapse
Affiliation(s)
- T M Darlington
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Current address: Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - R D McCarthy
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - R J Cox
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - J Miyamoto-Ditmon
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - X Gallego
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
16
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
17
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Wei J, Yao L, Yang L, Zhao W, Shi S, Cai Q, Chen D, Li W, Wang Q. Alteration of glutamate/GABA balance during acute alcohol intoxication in rats: effect of Xingnaojing injection. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:333-339. [PMID: 25800798 DOI: 10.1016/j.jep.2015.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/06/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xingnaojing Injection (XNJI) is a modern Chinese formula came from famous Chinese medicine An Gong Niu Huang Pill. XNJI has been used for treatment of cerebral diseases and stroke in China, and is approved by the State Food and Drug Administration of China for the treatment of acute alcohol intoxication (AAI). XNJI belongs to the ethnopharmacological family of medicines. In this study, we investigated the mechanisms of the XNJI effect on AAI. AIM OF THE STUDY To investigate the effects of XNJI on glutamate, gamma-aminobutyric acid (GABA) and related receptor in lateral hypothalamic area (LHA) of AAI rat. MATERIAL AND METHODS Adult male Sprague-Dawley rats were implanted with microdialysis probes in LHA. Rats were randomly divided into control, model, 1.36mg/kg XNJI, 0.68mg/kg XNJI and 0.34mg/kg XNJI groups. During microdialysis, baseline samples were collected from 1h to 2.5h; thereafter, the rats were given an intraperitoneal injection of 52% ethanol, 5.2g/kg, or saline for control group. Twenty minutes later, three doses of XNJI was given by unilateral injection respectively, while saline for control and model groups, and samples were collected for the next 4h. The extracellular glutamate and GABA levels were measured in the LHA by a high performance liquid chromatography coupled with fluorescence detector (HPLC-FLU). The expression levels of related receptors N-methyl-d-aspartate receptor (NR) subunit NR2A, NR2B and GABAA were analyzed by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Ethanol (5.2g/kg) significantly decreased the extracellular levels of glutamate and increased extracellular GABA in LHA. On the other hand ethanol significantly decreased NR2A and NR2B mRNAs expression, and increase GABAA mRNA expression. XNJI could increase the extracellular level of glutamate and decrease that of GABA; moreover, induced an increase in NR2A and NR2B mRNA expression, and a decrease in GABAA mRNA expression in LHA. CONCLUSIONS The current changes in glutamate, GABA and mRNA expressions of related receptors in LHA after injection of XNJI suggest that changes in these neurotransmitters and receptors as a potential mechanism of action for AAI.
Collapse
Affiliation(s)
- Jingjing Wei
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Limei Yao
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, 321 Longdong North Road, Tianhe District, Guangzhou 510520, China
| | - Lei Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Si Shi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Qingyan Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Dingsheng Chen
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, 321 Longdong North Road, Tianhe District, Guangzhou 510520, China
| | - Weirong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| |
Collapse
|
19
|
Blednov YA, Benavidez JM, Black M, Mayfield J, Harris RA. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines. Neuropharmacology 2015; 95:309-20. [PMID: 25839897 DOI: 10.1016/j.neuropharm.2015.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
Abstract
Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jillian M Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Bajo M, Herman MA, Varodayan FP, Oleata CS, Madamba SG, Harris RA, Blednov YA, Roberto M. Role of the IL-1 receptor antagonist in ethanol-induced regulation of GABAergic transmission in the central amygdala. Brain Behav Immun 2015; 45:189-97. [PMID: 25479427 PMCID: PMC4405101 DOI: 10.1016/j.bbi.2014.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 12/26/2022] Open
Abstract
The IL-1 receptor antagonist (IL-1ra), encoded by the Il1rn gene, is an endogenous antagonist of the IL-1 receptor. Studies of Il1rn knockout (KO) and wild type (WT) mice identified differences in several ethanol-related behaviors, some of which may be mediated by GABAergic transmission in the central nucleus of the amygdala (CeA). In this study we examined phasic (both evoked and spontaneous) and tonic GABAergic transmission in the CeA of Il1rn KO and WT mice and the ethanol sensitivity of these GABAergic synapses. The mean amplitude of baseline evoked GABAA-inhibitory postsynaptic potentials (IPSPs), and the baseline frequency of spontaneous GABAA-inhibitory postsynaptic currents (sIPSCs), but not the frequency of miniature GABAA-IPSCs (mIPSCs), were significantly increased in KO compared to WT mice, indicating enhanced presynaptic action potential-dependent GABA release in the CeA of KO mice. In KO mice, we also found a cell-type specific switch in the ongoing tonic GABAA receptor conductance such that the tonic conductance in low threshold bursting (LTB) neurons is lost and a tonic conductance in late spiking (LS) neurons appears. Notably, the ethanol-induced facilitation of evoked and spontaneous GABA release was lost in most of the CeA neurons from KO compared to WT mice. Ethanol superfusion increased the sIPSC rise and decay times in both KO and WT mice, suggesting ethanol-induced postsynaptic effects. The pretreatment of CeA slices with exogenous IL-1ra (Kineret; 100ng/ml) returned sIPSC frequency in KO mice to the levels found in WT. Importantly, Kineret also restored ethanol-induced potentiation of the sIPSC frequency in the KO mice. These results show that IL-1ra regulates baseline GABAergic transmission in the CeA and is critical for the ethanol effects at these synapses.
Collapse
Affiliation(s)
- M Bajo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - M A Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - F P Varodayan
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - C S Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - S G Madamba
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - M Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Barkley-Levenson AM, Cunningham CL, Smitasin PJ, Crabbe JC. Rewarding and aversive effects of ethanol in High Drinking in the Dark selectively bred mice. Addict Biol 2015; 20:80-90. [PMID: 23910826 DOI: 10.1111/adb.12079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Both rewarding and aversive effects contribute to alcohol consumption. Animals genetically predisposed to be high drinkers show reduced sensitivity to the aversive effects of alcohol, and in some instances, increased sensitivity to alcohol's rewarding effects. The present studies tested the high drinking in the dark (HDID) selected lines, a genetic model of drinking to intoxication, to determine whether intake in these mice was genetically related to sensitivity to alcohol aversion or reward. Male HDID mice from the first and second replicate lines (HDID-1 and HDID-2, respectively) and mice from the heterogeneous progenitor control population (HS/Npt, or HS) were conditioned for a taste aversion to a salt solution using two doses of alcohol, and lithium chloride (LiCl) and saline controls. In separate experiments, male and female HDID-1, HDID-2 and HS mice were conditioned for place preference using alcohol. HDID mice were found to have an attenuated sensitivity to alcohol at a moderate (2 g/kg) dose compared to HS mice, but did not differ on conditioned taste aversion to a high (4 g/kg) dose or LiCl or saline injections. HDID and HS mice showed comparable development of alcohol-induced conditioned place preference. These results indicate that high blood alcohol levels after drinking in the HDID mice is genetically related to attenuated aversion to alcohol, while sensitivity to alcohol reward is not altered in these mice. Thus, HDID mice may find a moderate dose of alcohol to be less aversive than control mice and consequently may drink more because of this reduced aversive sensitivity.
Collapse
Affiliation(s)
- Amanda M. Barkley-Levenson
- Department of Behavioral Neuroscience; Oregon Health & Science University; Portland OR USA
- Portland Alcohol Research Center; VA Medical Center; Portland OR USA
| | | | - Phoebe J. Smitasin
- Department of Behavioral Neuroscience; Oregon Health & Science University; Portland OR USA
| | - John C. Crabbe
- Department of Behavioral Neuroscience; Oregon Health & Science University; Portland OR USA
- Portland Alcohol Research Center; VA Medical Center; Portland OR USA
| |
Collapse
|
22
|
Bajo M, Madamba SG, Roberto M, Blednov YA, Sagi VN, Roberts E, Rice KC, Harris RA, Siggins GR. Innate immune factors modulate ethanol interaction with GABAergic transmission in mouse central amygdala. Brain Behav Immun 2014; 40:191-202. [PMID: 24675033 PMCID: PMC4126651 DOI: 10.1016/j.bbi.2014.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/12/2014] [Accepted: 03/16/2014] [Indexed: 12/30/2022] Open
Abstract
Excessive ethanol drinking in rodent models may involve activation of the innate immune system, especially toll-like receptor 4 (TLR4) signaling pathways. We used intracellular recording of evoked GABAergic inhibitory postsynaptic potentials (eIPSPs) in central amygdala (CeA) neurons to examine the role of TLR4 activation by lipopolysaccharide (LPS) and deletion of its adapter protein CD14 in acute ethanol effects on the GABAergic system. Ethanol (44, 66 or 100mM) and LPS (25 and 50μg/ml) both augmented eIPSPs in CeA of wild type (WT) mice. Ethanol (44mM) decreased paired-pulse facilitation (PPF), suggesting a presynaptic mechanism of action. Acute LPS (25μg/ml) had no effect on PPF and significantly increased the mean miniature IPSC amplitude, indicating a postsynaptic mechanism of action. Acute LPS pre-treatment potentiated ethanol (44mM) effects on eIPSPs in WT mice and restored ethanol's augmenting effects on the eIPSP amplitude in CD14 knockout (CD14 KO) mice. Both the LPS and ethanol (44-66mM) augmentation of eIPSPs was diminished significantly in most CeA neurons of CD14 KO mice; however, ethanol at the highest concentration tested (100mM) still increased eIPSP amplitudes. By contrast, ethanol pre-treatment occluded LPS augmentation of eIPSPs in WT mice and had no significant effect in CD14 KO mice. Furthermore, (+)-naloxone, a TLR4-MD-2 complex inhibitor, blocked LPS effects on eIPSPs in WT mice and delayed the ethanol-induced potentiation of GABAergic transmission. In CeA neurons of CD14 KO mice, (+)-naloxone alone diminished eIPSPs, and subsequent co-application of 100mM ethanol restored the eIPSPs to baseline levels. In summary, our results indicate that TLR4 and CD14 signaling play an important role in the acute ethanol effects on GABAergic transmission in the CeA and support the idea that CD14 and TLR4 may be therapeutic targets for treatment of alcohol abuse.
Collapse
Affiliation(s)
- Michal Bajo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA.
| | - Samuel G. Madamba
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Vasudeva N. Sagi
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - George R. Siggins
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci 2014; 35:317-23. [PMID: 24865944 PMCID: PMC4089033 DOI: 10.1016/j.tips.2014.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Alcohol dependence is a complex condition with clear genetic factors. Some of the leading candidate genes code for subunits of the inhibitory GABAA and glycine receptors. These and related ion channels are also targets for the acute actions of alcohol, and there is considerable progress in understanding interactions of alcohol with these proteins at the molecular and even atomic levels. X-ray structures of open and closed states of ion channels combined with structural modeling and site-directed mutagenesis have elucidated direct actions of alcohol. Alcohol also alters channel function by translational and post-translational mechanisms, including phosphorylation and protein trafficking. Construction of mutant mice with either deletion of key proteins or introduction of alcohol-resistant channels has further linked specific proteins with discrete behavioral effects of alcohol. A combination of approaches, including genome wide association studies in humans, continues to advance the molecular basis of alcohol action on receptor structure and function.
Collapse
Affiliation(s)
- James R Trudell
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Abstract
Alcohol dependence is a complex disorder affecting all social and ethnic groups. Although the scientific understanding of the mechanism governing this multifactorial disease is still in its infancy, understanding its biological bases, including the potential contribution of genetic factors, is key to characterizing individual's risk and developing efficacious therapeutic target to combat the disease. This review provides an overview of different approaches that are being increasingly integrated to extend our knowledge of the genetic underpinnings of alcohol dependence.
Collapse
Affiliation(s)
- Awoyemi A Awofala
- a Department of Biological Sciences , Tai Solarin University of Education , Ijagun , Ogun State , Nigeria
| |
Collapse
|
25
|
Silveri MM. GABAergic contributions to alcohol responsivity during adolescence: insights from preclinical and clinical studies. Pharmacol Ther 2014; 143:197-216. [PMID: 24631274 DOI: 10.1016/j.pharmthera.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/04/2023]
Abstract
There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol use disorders.
Collapse
Affiliation(s)
- Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM, Hanrahan JR, Johnston GAR, Chebib M, Harris RA. GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS One 2014; 9:e85525. [PMID: 24454882 PMCID: PMC3894180 DOI: 10.1371/journal.pone.0085525] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022] Open
Abstract
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.
Collapse
Affiliation(s)
- Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jillian M. Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Courtney R. Leiter
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - David Johnson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Cecilia M. Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jane R. Hanrahan
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | | | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.
Collapse
Affiliation(s)
- Dana Most
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - Laura Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA.
| |
Collapse
|