1
|
Vásquez W, Toro CA, Cardozo CP, Cea LA, Sáez JC. Pathophysiological role of connexin and pannexin hemichannels in neuromuscular disorders. J Physiol 2024. [PMID: 39173050 DOI: 10.1113/jp286173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
A growing body of research has provided evidence that de novo expression of connexin hemichannels and upregulation of pannexin hemichannels (Cx HCs and Panx HCs, respectively) in the cytoplasmic membrane of skeletal muscle (sarcolemma) are critical steps in the pathogenesis of muscle dysfunction of many genetic and acquired muscle diseases. This review provides an overview of the current understanding of the molecular mechanisms regulating the expression of Cx and Panx HCs in skeletal muscle, as well as their roles in both muscle physiology and pathologies. Additionally, it addresses existing gaps in knowledge and outlines future challenges in the field.
Collapse
Affiliation(s)
- Walter Vásquez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos A Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis A Cea
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
2
|
Hu CQ, Hou T, Xiang R, Li X, Li J, Wang TT, Liu WJ, Hou S, Wang D, Zhao QH, Yu XX, Xu M, Liu XK, Chi YJ, Yang JC. PANX1-mediated ATP release confers FAM3A's suppression effects on hepatic gluconeogenesis and lipogenesis. Mil Med Res 2024; 11:41. [PMID: 38937853 PMCID: PMC11210080 DOI: 10.1186/s40779-024-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet β cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Cheng-Qing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital/National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Tao Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Wen-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Qing-He Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Xing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital/Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing, 100191, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, the First Hospital of Jilin University, Changchun, 130061, China.
| | - Yu-Jing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Salgado M, Márquez-Miranda V, Ferrada L, Rojas M, Poblete-Flores G, González-Nilo FD, Ardiles ÁO, Sáez JC. Ca 2+ permeation through C-terminal cleaved, but not full-length human Pannexin1 hemichannels, mediates cell death. Proc Natl Acad Sci U S A 2024; 121:e2405468121. [PMID: 38861601 PMCID: PMC11194574 DOI: 10.1073/pnas.2405468121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.
Collapse
Affiliation(s)
- Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Luciano Ferrada
- Centro de Microscopía Avanzada-Biobío, Universidad de Concepción, Concepción4070386, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Gonzalo Poblete-Flores
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Fernando D. González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Álvaro O. Ardiles
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| |
Collapse
|
4
|
Xu L, Li N, Miao D, Huang C, Chen L, Yang H, Wang Z. Early manifestation of hypophosphatemic rickets in goslings: a potential role of insufficient muscular adenosine triphosphate in motility impairment of early P-deficient geese. Poult Sci 2024; 103:103736. [PMID: 38677064 PMCID: PMC11066551 DOI: 10.1016/j.psj.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
We aimed to determine the onset time of hypophosphatemic rickets and investigate the mechanism of motility impairment through adenosine triphosphate (ATP) production in goslings. Two hundred and sixteen 1-day-old male Jiangnan white geese were randomly divided into 3 groups, with 6 replicates and 12 geese per replicate. Birds were fed on 3 diets: a control diet (nonphytic phosphorus, NPP, 0.38%), a P-deficient diet (PD; NPP, 0.08%), and a high P diet (HP; NPP, 0.80%) for 14 d. Subsequently, all birds were shifted to the control diet for an additional 14 d. The cumulative incidence of lameness increased significantly (P < 0.01) starting on d 4, reaching over 80% on d 7 and 100% on d 12 in the PD group. Drinking and eating frequency decreased from d 4 and d 5, respectively, in the PD group compared to the other groups (most P < 0.01). The PD group exhibited shorter and narrower beaks, higher (worse) curvature scores of the beak and costochondral junctions, swelling caput costae, and dirtier feathers since d 4, in contrast to the control and HP groups (most P < 0.01). The HP had bigger (P < 0.05) beak and sternum sizes than the control groups on d 4 to 11. Leg muscle ATP levels were lower (P < 0.01 or 0.05) on d 4 to 11; in contrast, adenosine diphosphate (d 7-11) was higher in PD compared to the control (P < 0.05). Leg muscle ATP level had positive linear (R2 > 0.40) correlations (r > 0.60) with eating and drinking frequencies on d 7 and 11 (P < 0.01). Bone stiffness, feather cleanliness, and ATP levels recovered (P > 0.05) to the control level, whereas bone size did not recover (P < 0.05) in PD and HP after eating the control diet for 2 wk. The onset time of hypophosphatemic rickets was around 4 d in goslings, and insufficient leg muscle ATP was related to the impaired motility observed in early P-deficient geese.
Collapse
Affiliation(s)
- Lei Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ning Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dongzhi Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunhui Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Vitureira N, Rafael A, Abudara V. P2X7 receptors and pannexin1 hemichannels shape presynaptic transmission. Purinergic Signal 2024; 20:223-236. [PMID: 37713157 PMCID: PMC11189373 DOI: 10.1007/s11302-023-09965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Alberto Rafael
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Freeman E, Langlois S, Leyba MF, Ammar T, Léger Z, McMillan HJ, Renaud JM, Jasmin BJ, Cowan KN. Pannexin 1 dysregulation in Duchenne muscular dystrophy and its exacerbation of dystrophic features in mdx mice. Skelet Muscle 2024; 14:8. [PMID: 38671506 PMCID: PMC11046831 DOI: 10.1186/s13395-024-00340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is associated with impaired muscle regeneration, progressive muscle weakness, damage, and wasting. While the cause of DMD is an X-linked loss of function mutation in the gene encoding dystrophin, the exact mechanisms that perpetuate the disease progression are unknown. Our laboratory has demonstrated that pannexin 1 (Panx1 in rodents; PANX1 in humans) is critical for the development, strength, and regeneration of male skeletal muscle. In normal skeletal muscle, Panx1 is part of a multiprotein complex with dystrophin. We and others have previously shown that Panx1 levels and channel activity are dysregulated in various mouse models of DMD. METHODS We utilized myoblast cell lines derived from DMD patients to assess PANX1 expression and function. To investigate how Panx1 dysregulation contributes to DMD, we generated a dystrophic (mdx) mouse model that lacks Panx1 (Panx1-/-/mdx). In depth characterization of this model included histological analysis, as well as locomotor, and physiological tests such as muscle force and grip strength assessments. RESULTS Here, we demonstrate that PANX1 levels and channel function are reduced in patient-derived DMD myoblast cell lines. Panx1-/-/mdx mice have a significantly reduced lifespan, and decreased body weight due to lean mass loss. Their tibialis anterior were more affected than their soleus muscles and displayed reduced mass, myofiber loss, increased centrally nucleated myofibers, and a lower number of muscle stem cells compared to that of Panx1+/+/mdx mice. These detrimental effects were associated with muscle and locomotor functional impairments. In vitro, PANX1 overexpression in patient-derived DMD myoblasts improved their differentiation and fusion. CONCLUSIONS Collectively, our findings suggest that PANX1/Panx1 dysregulation in DMD exacerbates several aspects of the disease. Moreover, our results suggest a potential therapeutic benefit to increasing PANX1 levels in dystrophic muscles.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Connexins/genetics
- Connexins/metabolism
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Male
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Humans
- Mice
- Myoblasts/metabolism
- Cell Line
- Muscle Strength
- Disease Models, Animal
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
Affiliation(s)
- Emily Freeman
- Children's Hospital of Eastern Ontario Research Institute, Pediatric General Surgery, 401 Smyth Rd, Room 3360, Ottawa, ON, K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stéphanie Langlois
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Pediatric General Surgery, 401 Smyth Rd, Room 3360, Ottawa, ON, K1H 8L1, Canada
| | - Marcos F Leyba
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Pediatric General Surgery, 401 Smyth Rd, Room 3360, Ottawa, ON, K1H 8L1, Canada
| | - Tarek Ammar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | - Zacharie Léger
- Children's Hospital of Eastern Ontario Research Institute, Pediatric General Surgery, 401 Smyth Rd, Room 3360, Ottawa, ON, K1H 8L1, Canada
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, Pediatric General Surgery, 401 Smyth Rd, Room 3360, Ottawa, ON, K1H 8L1, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | - Kyle N Cowan
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
- Children's Hospital of Eastern Ontario Research Institute, Pediatric General Surgery, 401 Smyth Rd, Room 3360, Ottawa, ON, K1H 8L1, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Suzuki Y, Shimizu Y, Shiina T. ATP-Induced Contractile Response of Esophageal Smooth Muscle in Mice. Int J Mol Sci 2024; 25:1985. [PMID: 38396664 PMCID: PMC10888660 DOI: 10.3390/ijms25041985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The tunica muscularis of mammalian esophagi is composed of striated muscle and smooth muscle. Contraction of the esophageal striated muscle portion is mainly controlled by cholinergic neurons. On the other hand, smooth muscle contraction and relaxation are controlled not only by cholinergic components but also by non-cholinergic components in the esophagus. Adenosine triphosphate (ATP) is known to regulate smooth muscle contraction and relaxation in the gastrointestinal tract via purinergic receptors. However, the precise mechanism of purinergic regulation in the esophagus is still unclear. Therefore, the aim of the present study was to clarify the effects of ATP on the mechanical responses of the esophageal muscle in mice. An isolated segment of the mouse esophagus was placed in a Magnus's tube and longitudinal mechanical responses were recorded. Exogenous application of ATP induced contractile responses in the esophageal preparations. Tetrodotoxin, a blocker of voltage-dependent sodium channels in neurons and striated muscle, did not affect the ATP-induced contraction. The ATP-evoked contraction was blocked by pretreatment with suramin, a purinergic receptor antagonist. RT-PCR revealed the expression of mRNA of purinergic receptor genes in the mouse esophageal tissue. The findings suggest that purinergic signaling might regulate the motor activity of mouse esophageal smooth muscle.
Collapse
Grants
- 2021 Koshiyama Science & Technology foundation
- 2021 OGAWA Science and Technology Foundation
- 17K08122 Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K06409 Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 23K05553 Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
Collapse
Affiliation(s)
- Yuji Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan (Y.S.)
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan (Y.S.)
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan (Y.S.)
| |
Collapse
|
9
|
Abudara V, Araneda RC, Barrio L, Berthoud VM, Contreras JE, Eugenín E, Lerma J, Orellana JA, Palacios-Prado N, Pérez-Armendariz EM, Retamal MA, Sáez JC. Remembrances of Dr. Michael V.L. Bennett by Iberoamerican Colleagues and Friends. Neuroscience 2024:S0306-4522(24)00021-6. [PMID: 38278514 DOI: 10.1016/j.neuroscience.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Verónica Abudara
- Facultad de Medicina, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Ricardo C Araneda
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Luis Barrio
- Hospital Ramón y Cajal-IRYCIS, Centro de Tecnología Biomédica de la Universidad Politécnica, Madrid, Spain
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, United States
| | - Eliseo Eugenín
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Juan Lerma
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain.
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Palacios-Prado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Elia Martha Pérez-Armendariz
- Unidad de Investigación en Medicina Experimental, Laboratorio de Sinapsis Eléctricas, Facultad de Medicina, UNAM, Ciudad de México, México
| | - Mauricio A Retamal
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P2Y1 and P2Y2 receptors differ in their role in the regulation of signaling pathways during unloading-induced rat soleus muscle atrophy. Arch Biochem Biophys 2024; 751:109844. [PMID: 38043889 DOI: 10.1016/j.abb.2023.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.
Collapse
Affiliation(s)
- Ksenia A Zaripova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
11
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
12
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
13
|
Vega JL, Gutiérrez C, Rojas M, Güiza J, Sáez JC. Contribution of large-pore channels to inflammation induced by microorganisms. Front Cell Dev Biol 2023; 10:1094362. [PMID: 36699007 PMCID: PMC9868820 DOI: 10.3389/fcell.2022.1094362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Plasma membrane ionic channels selectively permeate potassium, sodium, calcium, and chloride ions. However, large-pore channels are permeable to ions and small molecules such as ATP and glutamate, among others. Large-pore channels are structures formed by several protein families with little or no evolutionary linkages including connexins (Cxs), pannexins (Panxs), innexin (Inxs), unnexins (Unxs), calcium homeostasis modulator (CALHMs), and Leucine-rich repeat-containing 8 (LRRC8) proteins. Large-pore channels are key players in inflammatory cell response, guiding the activation of inflammasomes, the release of pro-inflammatory cytokines such as interleukin-1 beta (IL-1ß), and the release of adenosine-5'-triphosphate (ATP), which is considered a danger signal. This review summarizes our current understanding of large-pore channels and their contribution to inflammation induced by microorganisms, virulence factors or their toxins.
Collapse
Affiliation(s)
- José L. Vega
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile,Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta (CIIBBA), Universidad de Antofagasta, Antofagasta, Chile,Centro de Fisiología y Medicina de Altura (FIMEDALT), Universidad de Antofagasta, Antofagasta, Chile,*Correspondence: José L. Vega,
| | - Camila Gutiérrez
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Mauro Rojas
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan Güiza
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
14
|
A Skeletal Muscle-Centric View on Time-Restricted Feeding and Obesity under Various Metabolic Challenges in Humans and Animals. Int J Mol Sci 2022; 24:ijms24010422. [PMID: 36613864 PMCID: PMC9820735 DOI: 10.3390/ijms24010422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Nearly 50% of adults will suffer from obesity in the U.S. by 2030. High obesity rates can lead to high economic and healthcare burdens in addition to elevated mortality rates and reduced health span in patients. Emerging data demonstrate that obesity is a multifactorial complex disease with various etiologies including aging, a lifestyle of chronic high-fat diets (HFD), genetic predispositions, and circadian disruption. Time-restricted feeding/eating (TRF; TRE in humans) is an intervention demonstrated by studies to show promise as an effective alternative therapy for ameliorating the effects of obesity and metabolic disease. New studies have recently suggested that TRF/TRE modulates the skeletal muscle which plays a crucial role in metabolism historically observed to be impaired under obesity. Here we discuss recent findings regarding potential mechanisms underlying TRF's modulation of skeletal muscle function, metabolism, and structure which may shed light on future research related to TRF as a solution to obesity.
Collapse
|
15
|
Wakefield B, Penuela S. Potential Implications of Exercise Training on Pannexin Expression and Function. J Vasc Res 2022; 60:114-124. [PMID: 36366809 DOI: 10.1159/000527240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 09/05/2023] Open
Abstract
Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.
Collapse
Affiliation(s)
- Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Rusiecka OM, Tournier M, Molica F, Kwak BR. Pannexin1 channels-a potential therapeutic target in inflammation. Front Cell Dev Biol 2022; 10:1020826. [PMID: 36438559 PMCID: PMC9682086 DOI: 10.3389/fcell.2022.1020826] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
An exaggerated inflammatory response is the hallmark of a plethora of disorders. ATP is a central signaling molecule that orchestrates the initiation and resolution of the inflammatory response by enhancing activation of the inflammasome, leukocyte recruitment and activation of T cells. ATP can be released from cells through pannexin (Panx) channels, a family of glycoproteins consisting of three members, Panx1, Panx2, and Panx3. Panx1 is ubiquitously expressed and forms heptameric channels in the plasma membrane mediating paracrine and autocrine signaling. Besides their involvement in the inflammatory response, Panx1 channels have been shown to contribute to different modes of cell death (i.e., pyroptosis, necrosis and apoptosis). Both genetic ablation and pharmacological inhibition of Panx1 channels decrease inflammation in vivo and contribute to a better outcome in several animal models of inflammatory disease involving various organs, including the brain, lung, kidney and heart. Up to date, several molecules have been identified to inhibit Panx1 channels, for instance probenecid (Pbn), mefloquine (Mfq), flufenamic acid (FFA), carbenoxolone (Cbx) or mimetic peptides like 10Panx1. Unfortunately, the vast majority of these compounds lack specificity and/or serum stability, which limits their application. The recent availability of detailed structural information on the Panx1 channel from cryo-electron microscopy studies may open up innovative approaches to acquire new classes of synthetic Panx1 channel blockers with high target specificity. Selective inhibition of Panx1 channels may not only limit acute inflammatory responses but may also prove useful in chronic inflammatory diseases, thereby improving human health. Here, we reviewed the current knowledge on the role of Panx1 in the initiation and resolution of the inflammatory response, we summarized the effects of Panx1 inhibition in inflammatory pathologies and recapitulate current Panx1 channel pharmacology with an outlook towards future approaches.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Malaury Tournier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Zaripova KА, Belova SP, Shenkman BS, Nemirovskaya TL. The Role of P2Y Receptors in the Regulation of Atrophic Processes in Rat Skeletal Muscles under Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Freeman E, Langlois S, Scott K, Ravel-Chapuis A, Jasmin BJ, Cowan KN. Sex-dependent role of Pannexin 1 in regulating skeletal muscle and satellite cell function. J Cell Physiol 2022; 237:3944-3959. [PMID: 35938715 DOI: 10.1002/jcp.30850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Abstract
The development and regeneration of skeletal muscle are mediated by satellite cells (SCs), which ensure the efficient formation of myofibers while repopulating the niche that allows muscle repair following injuries. Pannexin 1 (Panx1) channels are expressed in SCs and their levels increase during differentiation in vitro, as well as during skeletal muscle development and regeneration in vivo. Panx1 has recently been shown to regulate muscle regeneration by promoting bleb-based myoblast migration and fusion. While skeletal muscle is largely influenced in a sex-specific way, the sex-dependent roles of Panx1 in regulating skeletal muscle and SC function remain to be investigated. Here, using global Panx1 knockout (KO) mice, we demonstrate that Panx1 loss reduces muscle fiber size and strength, decreases SC number, and alters early SC differentiation and myoblast fusion in male, but not in female mice. Interestingly, while both male and female Panx1 KO mice display an increase in the number of regenerating fibers following acute injury, the newly formed fibers in male Panx1 KO mice are smaller. Overall, our results demonstrate that Panx1 plays a significant role in regulating muscle development, regeneration, and SC number and function in male mice and reveal distinct sex-dependent functions of Panx1 in skeletal muscle.
Collapse
Affiliation(s)
- Emily Freeman
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Kaylee Scott
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Endogenous pannexin1 channels form functional intercellular cell-cell channels with characteristic voltage-dependent properties. Proc Natl Acad Sci U S A 2022; 119:e2202104119. [PMID: 35486697 PMCID: PMC9171361 DOI: 10.1073/pnas.2202104119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pannexin1 is a glycoprotein that has been shown to form functional plasma membrane channels and mediate many cellular signaling pathways. However, the formation and function of pannexin1-based intercellular cell–cell channels in mammalian cells and vertebrate tissue is a question of substantial debate. This work provides robust electrophysiological evidence to demonstrate that endogenously expressed human pannexin1 forms cell–cell channels and lays the groundwork for studying a potential new type of electrical synapses between many mammalian cell types that endogenously express pannexin1. The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell–cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell–cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell–cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell–cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell–cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell–cell channels in different cell types might require special attention.
Collapse
|
20
|
Suarez-Berumen K, Collins-Hooper H, Gromova A, Meech R, Sacco A, Dash PR, Mitchell R, Shestopalov VI, Woolley TE, Vaiyapuri S, Patel K, Makarenkova HP. Pannexin 1 Regulates Skeletal Muscle Regeneration by Promoting Bleb-Based Myoblast Migration and Fusion Through a Novel Lipid Based Signaling Mechanism. Front Cell Dev Biol 2021; 9:736813. [PMID: 34676213 PMCID: PMC8523994 DOI: 10.3389/fcell.2021.736813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle has robust regenerative capabilities due to the presence of a resident stem cell population called satellite cells. Muscle injury leads to these normally quiescent cells becoming molecularly and metabolically activated and embarking on a program of proliferation, migration, differentiation, and fusion culminating in the repair of damaged tissue. These processes are highly coordinated by paracrine signaling events that drive cytoskeletal rearrangement and cell-cell communication. Pannexins are a family of transmembrane channel proteins that mediate paracrine signaling by ATP release. It is known that Pannexin1 (Panx1) is expressed in skeletal muscle, however, the role of Panx1 during skeletal muscle development and regeneration remains poorly understood. Here we show that Panx1 is expressed on the surface of myoblasts and its expression is rapidly increased upon induction of differentiation and that Panx1-/- mice exhibit impaired muscle regeneration after injury. Panx1-/- myoblasts activate the myogenic differentiation program normally, but display marked deficits in migration and fusion. Mechanistically, we show that Panx1 activates P2 class purinergic receptors, which in turn mediate a lipid signaling cascade in myoblasts. This signaling induces bleb-driven amoeboid movement that in turn supports myoblast migration and fusion. Finally, we show that Panx1 is involved in the regulation of cell-matrix interaction through the induction of ADAMTS (Disintegrin-like and Metalloprotease domain with Thrombospondin-type 5) proteins that help remodel the extracellular matrix. These studies reveal a novel role for lipid-based signaling pathways activated by Panx1 in the coordination of myoblast activities essential for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Katia Suarez-Berumen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,West Anaheim Medical Center, Anaheim, CA, United States
| | | | - Anastasia Gromova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Adelaide, SA, Australia
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Phil R Dash
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, United States.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Thomas E Woolley
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
21
|
D'Amico D, Valdebenito S, Eugenin EA. The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus. Purinergic Signal 2021; 17:563-576. [PMID: 34542793 DOI: 10.1007/s11302-021-09817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
22
|
A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII. Proc Natl Acad Sci U S A 2021; 118:2108967118. [PMID: 34301850 DOI: 10.1073/pnas.2108967118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.
Collapse
|
23
|
Harcha PA, Garcés P, Arredondo C, Fernández G, Sáez JC, van Zundert B. Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer's Disease, ALS, and Harmful Stress Conditions. Int J Mol Sci 2021; 22:ijms22041924. [PMID: 33672031 PMCID: PMC7919494 DOI: 10.3390/ijms22041924] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.
Collapse
Affiliation(s)
- Paloma A. Harcha
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Polett Garcés
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Germán Fernández
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| |
Collapse
|
24
|
Bhat EA, Sajjad N. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles. Mol Cell Biochem 2021; 476:1529-1540. [PMID: 33394272 DOI: 10.1007/s11010-020-04002-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Pannexins, large non-gap junction super family exists in vertebrates, play multiple roles in different cellular functions through their ATP release. Panx1-mediated adenosine 5'-triphosphate (ATP) release plays a vital role in physiological and pathophysiological conditions and is known major extracellular molecule in purinergic signaling. To modulate their function in vivo, a proper regulation of channel is necessary. Post-translational modifications are considered to be some regulating mechanisms for PANX1, while PANX2, PANX3 have been uncharacterized to date. Through their significant evidences, PANXs exclude from gap junction and conduits ATP release and other cellular molecules from cells by various mechanisms. PANX1 is most extensive characterized and implicated in ATP signaling and inflammatory processes. Despite the constant advances, much significance of PANX1 in physiological processes remains elusive. Recently, various research groups along with our group have reported the Cryo-EM structure of Panx1 channel and uncovered the hidden functions in structure-function mechanism as well as to provide the clear understanding in physiological and pathophysiological roles. These research groups reported the novel heptameric structure with contains 4 transmembrane helices (TM), two extracellular loops and one intracellular loop with N and C terminus located at the intracellular side. In addition, the structure contains a large pore of which an inhibitor CBX act as a plug that blocking the passage of substrate. In this context, this review will present current mechanistic understanding in structure and function together with significant physiological roles particularly ATP release in health and disease. As such, this review emphasizes on recent functional properties associated with novel heptameric channel and demystifies channel-mediated ATP release function.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Science Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| |
Collapse
|
25
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
26
|
López X, Escamilla R, Fernández P, Duarte Y, González-Nilo F, Palacios-Prado N, Martinez AD, Sáez JC. Stretch-Induced Activation of Pannexin 1 Channels Can Be Prevented by PKA-Dependent Phosphorylation. Int J Mol Sci 2020; 21:ijms21239180. [PMID: 33276429 PMCID: PMC7731223 DOI: 10.3390/ijms21239180] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity-measured by changes in DAPI uptake-of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water-lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit.
Collapse
Affiliation(s)
- Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| | - Rosalba Escamilla
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Yorley Duarte
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Nicolás Palacios-Prado
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Agustín D. Martinez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Juan C. Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| |
Collapse
|
27
|
Blockade of Hemichannels Normalizes the Differentiation Fate of Myoblasts and Features of Skeletal Muscles from Dysferlin-Deficient Mice. Int J Mol Sci 2020; 21:ijms21176025. [PMID: 32825681 PMCID: PMC7503700 DOI: 10.3390/ijms21176025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Dysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown. In the present work, we found that numerous myoblasts bearing a mutated dysferlin when induced to acquire myogenic commitment express PPARγ, revealing adipogenic instead of myogenic commitment. These cell cultures presented many mononucleated cells with fat accumulation and within 48 h of differentiation formed fewer multinucleated cells. In contrast, dysferlin deficient myoblasts treated with boldine, a connexin hemichannels blocker, neither expressed PPARγ, nor accumulated fat and formed similar amount of multinucleated cells as wild type precursor cells. We recently demonstrated that myofibers of skeletal muscles from blAJ mice (an animal model of dysferlinopathies) express three connexins (Cx39, Cx43, and Cx45) that form functional hemichannels (HCs) in the sarcolemma. In symptomatic blAJ mice, we now show that eight-week treatment with a daily dose of boldine showed a progressive recovery of motor activity reaching normality. At the end of this treatment, skeletal muscles were comparable to those of wild type mice and presented normal CK activity in serum. Myofibers of boldine-treated blAJ mice also showed strong dysferlin-like immunoreactivity. These findings reveal that muscle dysfunction results from a pathophysiologic mechanism triggered by mutated dysferlin and downstream connexin hemichannels expressed de novo lead to a drastic reduction of myogenesis and favor muscle damage. Thus, boldine could represent a therapeutic opportunity to treat dysfernilopathies.
Collapse
|
28
|
eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. Int J Mol Sci 2020; 21:ijms21175963. [PMID: 32825102 PMCID: PMC7504480 DOI: 10.3390/ijms21175963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.
Collapse
|
29
|
Navis KE, Fan CY, Trang T, Thompson RJ, Derksen DJ. Pannexin 1 Channels as a Therapeutic Target: Structure, Inhibition, and Outlook. ACS Chem Neurosci 2020; 11:2163-2172. [PMID: 32639715 DOI: 10.1021/acschemneuro.0c00333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pannexin 1 (Panx1) channels are transmembrane proteins that release adenosine triphosphate and play an important role in intercellular communication. They are widely expressed in somatic and nervous system tissues, and their activity has been associated with many pathologies such as stroke, epilepsy, inflammation, and chronic pain. While there are a variety of small molecules known to inhibit Panx1, currently little is known about the mechanism of channel inhibition, and there is a dearth of sufficiently potent and selective drugs targeting Panx1. Herein we provide a review of the current literature on Panx1 structural biology and known pharmacological agents that will help provide a basis for rational development of Panx1 chemical modulators.
Collapse
Affiliation(s)
- Kathleen E. Navis
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Churmy Y. Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Roger J. Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Darren J. Derksen
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
30
|
Bogacheva P, Balezina O. Delayed increase of acetylcholine quantal size induced by the activity-dependent release of endogenous CGRP but not ATP in neuromuscular junctions. Synapse 2020; 74:e22175. [PMID: 32478912 DOI: 10.1002/syn.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 11/09/2022]
Abstract
In mouse motor synapses tetanic neuromuscular activity (30 Hz, 2 min) led to a delayed posttetanic potentiation of amplitude and duration of spontaneous miniature endplate potentials (MEPPs). Microelectrode recordings of MEPPs before and after nerve stimulation showed an increase in MEPP amplitude and time course by 30% and 15%, respectively, without changes in their frequency. Peak effect was detected 20 min after tetanic activity and progressively faded throughout the next 40 min of recording. The revealed potentiation of MEPPs was fully preserved in preparations from pannexin 1 knockout mice. It means, that myogenic ATP released via pannexin 1 channels from contracting muscle fibers is not likely to participate in the described phenomenon. But posttetanic potentiation of MEPPs was fully prevented by competitive antagonist of calcitonin gene-related peptide (CGRP) receptors CGRP8-37 , ryanodine receptors inhibitor ryanodine and by vesicular acetylcholine transporter inhibitor vesamicol. It is suggested that the combination of intensive synaptic and contractile activity in neuromuscular junctions is required to induce Ca2+ -dependent exocytosis of endogenous CGRP. The accumulation of CGRP in the synaptic cleft and its presynaptic activity may induce posttetanic potentiation of MEPP amplitude due to CGRP-stimulated acetylcholine loading into vesicles and subsequent increase of quantal size.
Collapse
Affiliation(s)
- Polina Bogacheva
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Balezina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
31
|
Vitamin E Blocks Connexin Hemichannels and Prevents Deleterious Effects of Glucocorticoid Treatment on Skeletal Muscles. Int J Mol Sci 2020; 21:ijms21114094. [PMID: 32521774 PMCID: PMC7312599 DOI: 10.3390/ijms21114094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids are frequently used as anti-inflammatory and immunosuppressive agents. However, high doses and/or prolonged use induce undesired secondary effects such as muscular atrophy. Recently, de novo expression of connexin43 and connexin45 hemichannels (Cx43 HCs and Cx45 HCs, respectively) has been proposed to play a critical role in the mechanism underlying myofiber atrophy induced by dexamethasone (Dex: a synthetic glucocorticoid), but their involvement in specific muscle changes promoted by Dex remains poorly understood. Moreover, treatments that could prevent the undesired effects of glucocorticoids on skeletal muscles remain unknown. In the present work, a 7-day Dex treatment in adult mice was found to induce weight loss and skeletal muscle changes including expression of functional Cx43/Cx45 HCs, elevated atrogin immunoreactivity, atrophy, oxidative stress and mitochondrial dysfunction. All these undesired effects were absent in muscles of mice simultaneously treated with Dex and vitamin E (VitE). Moreover, VitE was found to rapidly inhibit the activity of Cx HCs in freshly isolated myofibers of Dex treated mice. Exposure to alkaline pH induced free radical generation only in HeLa cells expressing Cx43 or Cx45 where Ca2+ was present in the extracellular milieu, response that was prevented by VitE. Besides, VitE and two other anti-oxidant compounds, Tempol and Resveratrol, were found to inhibit Cx43 HCs in HeLa cells transfectants. Thus, we propose that in addition to their intrinsic anti-oxidant potency, some antioxidants could be used to reduce expression and/or opening of Cx HCs and consequently reduce the undesired effect of glucocorticoids on skeletal muscles.
Collapse
|
32
|
Myofibers deficient in connexins 43 and 45 expression protect mice from skeletal muscle and systemic dysfunction promoted by a dysferlin mutation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165800. [PMID: 32305450 DOI: 10.1016/j.bbadis.2020.165800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 11/23/2022]
Abstract
Dysferlinopathy is a genetic human disease caused by mutations in the gene that encodes the dysferlin protein (DYSF). Dysferlin is believed to play a relevant role in cell membrane repair. However, in dysferlin-deficient (blAJ) mice (a model of dysferlinopathies) the recovery of the membrane resealing function by means of the expression of a mini-dysferlin does not arrest progressive muscular damage, suggesting the participation of other unknown pathogenic mechanisms. Here, we show that proteins called connexins 39, 43 and 45 (Cx39, Cx43 and Cx45, respectively) are expressed by blAJ myofibers and form functional hemichannels (Cx HCs) in the sarcolemma. At rest, Cx HCs increased the sarcolemma permeability to small molecules and the intracellular Ca2+ signal. In addition, skeletal muscles of blAJ mice showed lipid accumulation and lack of dysferlin immunoreactivity. As sign of extensive damage and atrophy, muscles of blAJ mice presented elevated numbers of myofibers with internal nuclei, increased number of myofibers with reduced cross-sectional area and elevated creatine kinase activity in serum. In agreement with the extense muscle damage, mice also showed significantly low motor performance. We generated blAJ mice with myofibers deficient in Cx43 and Cx45 expression and found that all above muscle and systemic alterations were absent, indicating that these two Cxs play a critical role in a novel pathogenic mechanism of dysfernolophaties, which is discussed herein. Therefore, Cx HCs could constitute an attractive target for pharmacologic treatment of dyferlinopathies.
Collapse
|
33
|
Harcha PA, López X, Sáez PJ, Fernández P, Barría I, Martínez AD, Sáez JC. Pannexin-1 Channels Are Essential for Mast Cell Degranulation Triggered During Type I Hypersensitivity Reactions. Front Immunol 2019; 10:2703. [PMID: 31849935 PMCID: PMC6896164 DOI: 10.3389/fimmu.2019.02703] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
Mast cells (MCs) release pro-inflammatory mediators through a process called degranulation response. The latter may be induced by several conditions, including antigen recognition through immunoglobulin E (IgE) or "cross-linking," classically associated with Type I hypersensitivity reactions. Early in this reaction, Ca2+ influx and subsequent increase of intracellular free Ca2+ concentration are essential for MC degranulation. Several membrane channels that mediate Ca2+ influx have been proposed, but their role remains elusive. Here, we evaluated the possible contribution of pannexin-1 channels (Panx1 Chs), well-known as ATP-releasing channels, in the increase of intracellular Ca2+ triggered during cross-linking reaction of MCs. The contribution of Panx1 Chs in the degranulation response was evaluated in MCs from wild type (WT) and Panx1 knock out (Panx1-/-) mice after anti-ovalbumin (OVA) IgE sensitization. Notably, the degranulation response (toluidine blue and histamine release) was absent in Panx1-/- MCs. Moreover, WT MCs showed a rapid and transient increase in Ca2+ signal followed by a sustained increase after antigen stimulation. However, the sustained increase in Ca2+ signal triggered by OVA was absent in Panx1-/- MCs. Furthermore, OVA stimulation increased the membrane permeability assessed by dye uptake, a prevented response by Panx1 Ch but not by connexin hemichannel blockers and without effect on Panx1-/- MCs. Interestingly, the increase in membrane permeability of WT MCs was also prevented by suramin, a P2 purinergic inhibitor, suggesting that Panx1 Chs act as ATP-releasing channels impermeable to Ca2+. Accordingly, stimulation with exogenous ATP restored the degranulation response and sustained increase in Ca2+ signal of OVA stimulated Panx1-/- MCs. Moreover, opening of Panx1 Chs in Panx1 transfected HeLa cells increased dye uptake and ATP release but did not promote Ca2+ influx, confirming that Panx1 Chs permeable to ATP are not permeable to Ca2+. These data strongly suggest that during antigen recognition, Panx1 Chs contribute to the sustained Ca2+ signal increase via release of ATP that activates P2 receptors, playing a critical role in the sequential events that leads to degranulation response during Type I hypersensitivity reactions.
Collapse
Affiliation(s)
- Paloma A Harcha
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Iván Barría
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
34
|
Cea LA, Balboa E, Vargas AA, Puebla C, Brañes MC, Escamilla R, Regueira T, Sáez JC. De novo expression of functional connexins 43 and 45 hemichannels increases sarcolemmal permeability of skeletal myofibers during endotoxemia. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2765-2773. [DOI: 10.1016/j.bbadis.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
|
35
|
Scorpion venom increases acetylcholine release by prolonging the duration of somatic nerve action potentials. Neuropharmacology 2019; 153:41-52. [PMID: 30995441 DOI: 10.1016/j.neuropharm.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Scorpionism is frequently accompanied by a massive release of catecholamines and acetylcholine from peripheral nerves caused by neurotoxic peptides present in these venoms, which have high specificity and affinity for ion channels. Tityus bahiensis is the second most medically important scorpion species in Brazil but, despite this, its venom remains scarcely studied, especially with regard to its pharmacology on the peripheral (somatic and autonomic) nervous system. Here, we evaluated the activity of T. bahiensis venom on somatic neurotransmission using myographic (chick and mouse neuromuscular preparations), electrophysiological (MEPP, EPP, resting membrane potentials, perineural waveforms, compound action potentials) and calcium imaging (on DRG neurons and muscle fibres) techniques. Our results show that the major toxic effects of T. bahiensis venom on neuromuscular function are presynaptically driven by the increase in evoked and spontaneous neurotransmitter release. Low venom concentrations prolong the axonal action potential, leading to a longer depolarization of the nerve terminals that enhances neurotransmitter release and facilitates nerve-evoked muscle contraction. The venom also stimulates the spontaneous release of neurotransmitters, probably through partial neuronal depolarization that allows calcium influx. Higher venom concentrations block the generation of action potentials and resulting muscle twitches. These effects of the venom were reversed by low concentrations of TTX, indicating voltage-gated sodium channels as the primary target of the venom toxins. These results suggest that the major neuromuscular toxicity of T. bahiensis venom is probably mediated mainly by α- and β-toxins interacting with presynaptic TTX-sensitive ion channels on both axons and nerve terminals.
Collapse
|
36
|
Bosutti A, Bernareggi A, Massaria G, D'Andrea P, Taccola G, Lorenzon P, Sciancalepore M. A "noisy" electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP. Exp Cell Res 2019; 381:121-128. [PMID: 31082374 DOI: 10.1016/j.yexcr.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
An in vitro system of electrical stimulation was used to explore whether an innovative "noisy" stimulation protocol derived from human electromyographic recordings (EMGstim) could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 μM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that "noisy" electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that "noisy" stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Gabriele Massaria
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy; Area Science Park, Padriciano, 99, I-34149, Trieste, Italy
| | - Paola D'Andrea
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Giuliano Taccola
- Department of Neuroscience, SISSA, Via Bonomea 265, 34136, Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, 33100, Udine, Italy
| | - Paola Lorenzon
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy.
| |
Collapse
|
37
|
DeLalio LJ, Billaud M, Ruddiman CA, Johnstone SR, Butcher JT, Wolpe AG, Jin X, Keller TCS, Keller AS, Rivière T, Good ME, Best AK, Lohman AW, Swayne LA, Penuela S, Thompson RJ, Lampe PD, Yeager M, Isakson BE. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem 2019; 294:6940-6956. [PMID: 30814251 DOI: 10.1074/jbc.ra118.006982] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical for α1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr198 We demonstrate that PANX1-mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation. Using a PANX1 Tyr198-specific antibody, SFK inhibitors, SRC knockdown, temperature-dependent SRC cells, and kinase assays, we found that PANX1-mediated ATP release and vasoconstriction involves constitutive phosphorylation of PANX1 Tyr198 by SRC. We specifically detected SRC-mediated Tyr198 phosphorylation at the plasma membrane and observed that it is not enhanced or induced by α1-AR activation. Last, we show that PANX1 immunostaining is enriched in the smooth muscle layer of arteries from hypertensive humans and that Tyr198 phosphorylation is detectable in these samples, indicative of a role for membrane-associated PANX1 in small arteries of hypertensive humans. Our discovery adds insight into the regulation of PANX1 by post-translational modifications and connects a significant purinergic vasoconstriction pathway with a previously identified, yet unexplored, tyrosine kinase-based α1-AR constriction mechanism. This work implicates SRC-mediated PANX1 function in normal vascular hemodynamics and suggests that Tyr198-phosphorylated PANX1 is involved in hypertensive vascular pathology.
Collapse
Affiliation(s)
- Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Marie Billaud
- the Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Claire A Ruddiman
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | | | - Joshua T Butcher
- the Department of Physiology, Augusta University, Augusta, Georgia 30912
| | - Abigail G Wolpe
- From the Robert M. Berne Cardiovascular Research Center.,Department of Cell Biology, and
| | - Xueyao Jin
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - T C Stevenson Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Alexander S Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Thibaud Rivière
- the Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France
| | | | - Angela K Best
- From the Robert M. Berne Cardiovascular Research Center
| | - Alexander W Lohman
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Leigh Anne Swayne
- the Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Silvia Penuela
- the Departments of Anatomy and Cell Biology and Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada, and
| | - Roger J Thompson
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul D Lampe
- the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Yeager
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
38
|
Zhou KQ, Green CR, Bennet L, Gunn AJ, Davidson JO. The Role of Connexin and Pannexin Channels in Perinatal Brain Injury and Inflammation. Front Physiol 2019; 10:141. [PMID: 30873043 PMCID: PMC6400979 DOI: 10.3389/fphys.2019.00141] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Perinatal brain injury remains a major cause of death and life-long disability. Perinatal brain injury is typically associated with hypoxia-ischemia and/or infection/inflammation. Both hypoxia-ischemia and infection trigger an inflammatory response in the brain. The inflammatory response can contribute to brain cell loss and chronic neuroinflammation leading to neurological impairments. It is now well-established that brain injury evolves over time, and shows a striking spread from injured to previously uninjured regions of the brain. There is increasing evidence that this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in almost all cell types in the brain. Blocking connexin hemichannels within the first 3 h after hypoxia-ischemia has been shown to improve outcomes in term equivalent fetal sheep but it is important to also understand the downstream pathways linking membrane channel opening with the development of injury in order to identify new therapeutic targets. Open membrane channels release adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important physiological role, but has also been reported to act as a damage-associated molecular pattern (DAMP) signal mediated through specific purinergic receptors and so act as a primary signal 1 in the innate immune system inflammasome pathway. More crucially, extracellular ATP is a key inflammasome signal 2 activator, with purinergic receptor binding triggering the assembly of the multi-protein inflammasome complex. The inflammasome pathway and complex formation contribute to activation of inflammatory caspases, and the release of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, and vascular endothelial growth factor (VEGF). We propose that the NOD-like receptor protein-3 (NLRP3) inflammasome, which has been linked to inflammatory responses in models of ischemic stroke and various inflammatory diseases, may be one mechanism by which connexin hemichannel opening especially mediates perinatal brain injury.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Sepsis-Induced Channelopathy in Skeletal Muscles is Associated with Expression of Non-Selective Channels. Shock 2019; 49:221-228. [PMID: 28562477 DOI: 10.1097/shk.0000000000000916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscles (∼50% of the body weight) are affected during acute and late sepsis and represent one sepsis associate organ dysfunction. Cell membrane changes have been proposed to result from a channelopathy of yet unknown cause associated with mitochondrial dysfunction and muscle atrophy. We hypothesize that the channelopathy might be explained at least in part by the expression of non-selective channels. Here, this possibility was studied in a characterized mice model of late sepsis with evident skeletal muscle atrophy induced by cecal ligation and puncture (CLP). At day seven after CLP, skeletal myofibers were found to present de novo expression (immunofluorescence) of connexins 39, 43, and 45 and P2X7 receptor whereas pannexin1 did not show significant changes. These changes were associated with increased sarcolemma permeability (∼4 fold higher dye uptake assay), ∼25% elevated in intracellular free-Ca concentration (FURA-2), activation of protein degradation via ubiquitin proteasome pathway (Murf and Atrogin 1 reactivity), moderate reduction in oxygen consumption not explained by changes in levels of relevant respiratory proteins, ∼3 fold decreased mitochondrial membrane potential (MitoTracker Red CMXRos) and ∼4 fold increased mitochondrial superoxide production (MitoSox). Since connexin hemichannels and P2X7 receptors are permeable to ions and small molecules, it is likely that they are main protagonists in the channelopathy by reducing the electrochemical gradient across the cell membrane resulting in detrimental metabolic changes and muscular atrophy.
Collapse
|
40
|
Barría I, Güiza J, Cifuentes F, Zamorano P, Sáez JC, González J, Vega JL. Trypanosoma cruzi Infection Induces Pannexin-1 Channel Opening in Cardiac Myocytes. Am J Trop Med Hyg 2018; 98:105-112. [PMID: 29141748 DOI: 10.4269/ajtmh.17-0293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas diseases, invades the cardiac tissue causing acute myocarditis and heart electrical disturbances. In T. cruzi invasion, the parasite induces [Ca2+]i transients in the host cells, an essential phenomenon for invasion. To date, knowledge on the mechanism that elicits transients of [Ca2+]i during the infection of cardiac myocytes has not been fully characterized. Pannexin1 (Panx1) channel are poorly selective channels found in all vertebrates that serve as a pathway for ATP release. In this article, we demonstrate that T. cruzi infection results in the opening of Panx1 channels in cardiac myocytes. We show that pharmacological blockade of Panx1 channels inhibits T. cruzi-induced [Ca2+]i transients and invasion in cardiac myocytes. Our results indicate that opening of Panx1 channels are required for T. cruzi invasion in cardiac myocytes, and we propose that targeting Panx1 channel could provide new potential therapeutic approaches to treat Chagas disease.
Collapse
Affiliation(s)
- Iván Barría
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan Güiza
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| | - Fredi Cifuentes
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| | - Pedro Zamorano
- Laboratory of Neurobiology, Department of Biomedicine, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge González
- Molecular Parasitology Unit, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - José L Vega
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
41
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Pham TL, St-Pierre ME, Ravel-Chapuis A, Parks TEC, Langlois S, Penuela S, Jasmin BJ, Cowan KN. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy. J Cell Physiol 2018; 233:7057-7070. [PMID: 29744875 DOI: 10.1002/jcp.26629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/30/2018] [Indexed: 01/17/2023]
Abstract
Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles.
Collapse
Affiliation(s)
- Tammy L Pham
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Tara E C Parks
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Dvoriantchikova G, Pronin A, Kurtenbach S, Toychiev A, Chou TH, Yee CW, Prindeville B, Tayou J, Porciatti V, Sagdullaev BT, Slepak VZ, Shestopalov VI. Pannexin 1 sustains the electrophysiological responsiveness of retinal ganglion cells. Sci Rep 2018; 8:5797. [PMID: 29643381 PMCID: PMC5895610 DOI: 10.1038/s41598-018-23894-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play a key role in purinergic signaling in the nervous system in both normal and pathological conditions. In the retina, particularly high levels of Panx1 are found in retinal ganglion cells (RGCs), but the normal physiological function in these cells remains unclear. In this study, we used patch clamp recordings in the intact inner retina to show that evoked currents characteristic of Panx1 channel activity were detected only in RGCs, particularly in the OFF-type cells. The analysis of pattern electroretinogram (PERG) recordings indicated that Panx1 contributes to the electrical output of the retina. Consistently, PERG amplitudes were significantly impaired in the eyes with targeted ablation of the Panx1 gene in RGCs. Under ocular hypertension and ischemic conditions, however, high Panx1 activity permeated cell membranes and facilitated the selective loss of RGCs or stably transfected Neuro2A cells. Our results show that high expression of the Panx1 channel in RGCs is essential for visual function in the inner retina but makes these cells highly sensitive to mechanical and ischemic stresses. These findings are relevant to the pathophysiology of retinal disorders induced by increased intraocular pressure, such as glaucoma.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Alexey Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Sarah Kurtenbach
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Abduqodir Toychiev
- Department of Ophthalmology, Weill Cornell Medical College, 156 William St., New York, NY, 10038, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Christopher W Yee
- Winifred Masterson Burke Medical Research Institute, New York, 785 Mamaroneck Ave., White Plains, NY, 10605, USA
| | - Breanne Prindeville
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Junior Tayou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Botir T Sagdullaev
- Department of Ophthalmology, Weill Cornell Medical College, 156 William St., New York, NY, 10038, USA
- Winifred Masterson Burke Medical Research Institute, New York, 785 Mamaroneck Ave., White Plains, NY, 10605, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
- Vavilov Institute for General Genetics, Gubkina Str. 3, Russian Academy of Sciences, Moscow, Russia.
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
44
|
Angiotensin II-Induced Mesangial Cell Damaged Is Preceded by Cell Membrane Permeabilization Due to Upregulation of Non-Selective Channels. Int J Mol Sci 2018; 19:ijms19040957. [PMID: 29570626 PMCID: PMC5979336 DOI: 10.3390/ijms19040957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43), pannexin1 (Panx1) and P2X7 receptor (P2X7R) are expressed in kidneys and are known to constitute a feedforward mechanism leading to inflammation in other tissues. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remain unknown. In the present work, we found that MES-13 cells, from a cell line derived from mesangial cells, stimulated with angiotensin II (AngII) developed oxidative stress (OS, thiobarbituric acid reactive species (TBARS) and generated pro-inflammatory cytokines (ELISA; IL-1β and TNF-α). The membrane permeability increased progressively several hours before the latter outcome, which was a response prevented by Losartan, indicating the involvement of AT1 receptors. Western blot analysis showed that the amount of phosphorylated MYPT (a substrate of RhoA/ROCK) and Cx43 increased progressively and in parallel in cells treated with AngII, a response followed by an increase in the amount in Panx1 and P2X7R. Greater membrane permeability was partially explained by opening of Cx43 hemichannels (Cx43 HCs) and Panx1 channels (Panx1 Chs), as well as P2X7Rs activation by extracellular ATP, which was presumably released via Cx HCs and Panx1 Chs. Additionally, inhibition of RhoA/ROCK blocked the progressive increase in membrane permeability, and the remaining response was explained by the other non-selective channels. The rise of activity in the RhoA/ROCK-dependent pathway, as well as in Cx HCs, P2X7R, and to a minor extent in Panx1 Chs led to higher amounts of TBARS and pro-inflammatory cytokines. We propose that AngII-induced mesangial cell damage could be effectively inhibited by concomitantly inhibiting the RhoA/ROCK-dependent pathway and one or more non-selective channel(s) activated through this pathway.
Collapse
|
45
|
Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 2018; 8:36973-36983. [PMID: 28445139 PMCID: PMC5514885 DOI: 10.18632/oncotarget.16937] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 01/27/2023] Open
Abstract
The membrane channel Pannexin 1 (Panx1) mediates apoptotic and inflammatory signaling cascades in injured neurons, responses previously shown to be sexually dimorphic under ischemic conditions. We tested the hypothesis that Panx1 plays an underlying role in mediating sex differences in stroke outcome responses. Middle-aged, 8-9 month old male and female wild type and Panx1 KO mice were subjected to permanent middle cerebral artery (MCA) occlusion, and infarct size and astrocyte and microglia activation were assessed 4 days later. The sexually dimorphic nature of Panx1 deletion was also explored by testing the effect of probenecid a known Panx1 blocker to alter stroke volume. Panx1 KO females displayed significantly smaller infarct volumes (~ 50 % reduction) compared to their wild-type counterparts, whereas no such KO effect occurred in males. This sex-specific effect of Panx1 KO was recapitulated by significant reductions in peri-infarct inflammation and astrocyte reactivity, as well as smaller infarct volumes in probenecid treated females, but not males. Finally, females showed overall, higher Panx1 protein levels than males under ischemic conditions. These findings unmask a deleterious role for Panx1 in response to permanent MCA occlusion, that is unique to females, and provide several new frameworks for understanding sex differences in stroke outcome.
Collapse
|
46
|
Guarracino JF, Cinalli AR, Veggetti MI, Losavio AS. Endogenous purines modulate K + -evoked ACh secretion at the mouse neuromuscular junction. J Neurosci Res 2018; 96:1066-1079. [PMID: 29436006 DOI: 10.1002/jnr.24223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 11/11/2022]
Abstract
At the mouse neuromuscular junction, adenosine triphosphate (ATP) is co-released with the neurotransmitter acetylcholine (ACh), and once in the synaptic cleft, it is hydrolyzed to adenosine. Both ATP/adenosine diphosphate (ADP) and adenosine modulate ACh secretion by activating presynaptic P2Y13 and A1 , A2A , and A3 receptors, respectively. To elucidate the action of endogenous purines on K+ -dependent ACh release, we studied the effect of purinergic receptor antagonists on miniature end-plate potential (MEPP) frequency in phrenic diaphragm preparations. At 10 mM K+ , the P2Y13 antagonist N-[2-(methylthio)ethyl]-2-[3,3,3-trifluoropropyl]thio-5'-adenylic acid, monoanhydride with (dichloromethylene)bis[phosphonic acid], tetrasodium salt (AR-C69931MX) increased asynchronous ACh secretion while the A1 , A3 , and A2A antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(±)-dihydropyridine-3,5-, dicarboxylate (MRS-1191), and 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH-58261) did not modify neurosecretion. The inhibition of equilibrative adenosine transporters by S-(p-nitrobenzyl)-6-thioinosine provoked a reduction of 10 mM K+ -evoked ACh release, suggesting that the adenosine generated from ATP is being removed from the synaptic space by the transporters. At 15 and 20 mM K+ , endogenous ATP/ADP and adenosine bind to inhibitory P2Y13 and A1 and A3 receptors since AR-C69931MX, DPCPX, and MRS-1191 increased MEPP frequency. Similar results were obtained when the generation of adenosine was prevented by using the ecto-5'-nucleotidase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt. SCH-58261 only reduced neurosecretion at 20 mM K+ , suggesting that more adenosine is needed to activate excitatory A2A receptors. At high K+ concentration, the equilibrative transporters appear to be saturated allowing the accumulation of adenosine in the synaptic cleft. In conclusion, when motor nerve terminals are depolarized by increasing K+ concentrations, the ATP/ADP and adenosine endogenously generated are able to modulate ACh secretion by sequential activation of different purinergic receptors.
Collapse
Affiliation(s)
- Juan F Guarracino
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro R Cinalli
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela I Veggetti
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana S Losavio
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
47
|
Miteva AS, Gaydukov AE, Shestopalov VI, Balezina OP. The role of pannexin 1 in the purinergic regulation of synaptic transmission in mouse motor synapses. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. RECENT FINDINGS Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA
| | - Bruno A Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
50
|
Droguett K, Rios M, Carreño DV, Navarrete C, Fuentes C, Villalón M, Barrera NP. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium. J Physiol 2017; 595:4755-4767. [PMID: 28422293 PMCID: PMC5509870 DOI: 10.1113/jp273996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Extracellular ATP, in association with [Ca2+ ]i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. ABSTRACT Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca2+ ]i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca2+ ]i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml-1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 μm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca2+ ]i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation.
Collapse
Affiliation(s)
- Karla Droguett
- Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Mariana Rios
- Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Daniela V. Carreño
- Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Camilo Navarrete
- Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Christian Fuentes
- Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Manuel Villalón
- Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Nelson P. Barrera
- Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|