1
|
Song J, Hao J, Lu Y, Ding X, Li M, Xin Y. Increased m 6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123848. [PMID: 38548149 DOI: 10.1016/j.envpol.2024.123848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is a new epigenetic molecular mechanism involved in various biological or pathological processes. Exposure to aluminum (Al) has been considered to promote neuronal apoptosis resulting in cognitive dysfunction, yet whether m6A modification participates in the underlying mechanism remains largely unknown. Here, rats exposed to aluminum-maltolate [Al(mal)3] for 90 days showed impaired learning and memory function and elevated apoptosis, which were related to the increased m6A level and decreased fat mass and obesity-associated protein (FTO, an m6A demethylase) in the hippocampus. Accordingly, similar results presented in PC12 cells following Al(mal)3 treatment and FTO overexpression relieved the increased apoptosis and m6A level in vitro. Next, we identified brain-derived neurotrophic factor (BDNF) as the functional downstream target of FTO in a m6A-dependent manner. Furthermore, it was found that as the onset of aluminum neurotoxicity, oxidative stress may be the upstream regulator of FTO in aluminum-induced apoptosis. Taken together, these results suggest that increased m6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress.
Collapse
Affiliation(s)
- Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| | - Jiarui Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China
| | - Yang Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xiaohui Ding
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China
| | - Mujia Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Yulu Xin
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| |
Collapse
|
2
|
Lalrinawma TSK, Sangma JT, Renthlei Z, Trivedi AK. Restraint stress-induced effects on learning, memory, cognition, and expression of transcripts in different brain regions of mice. Mol Biol Rep 2024; 51:278. [PMID: 38319482 DOI: 10.1007/s11033-024-09224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Stress is one of the prevalent factors influencing cognition. Several studies examined the effect of mild or chronic stress on cognition. However, most of these studies are limited to a few behavioral tests or the expression of selected RNA/proteins markers in a selected brain region. METHODS This study examined the effect of restraint stress on learning, memory, cognition, and expression of transcripts in key learning centers. Male mice were divided into three groups (n = 6/group)-control group, stress group (adult stressed group; S), and F1 group (parental stressed group). Stress group mice were subjected to physical restraint stress for 2 h before light offset for 2 weeks. The F1 group comprised adult male mice born of stressed parents. All animals were subjected to different tests and were sacrificed at the end. Transcription levels of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (TrkB), Growth Associated Protein 43 (Gap-43), Neurogranin (Ng), cAMP Response Element-Binding Protein (Creb), Glycogen synthase kinase-3β (Gsk3β), Interleukine-1 (IL-1) and Tumour necrosis factor-α (Tnf-α) were studied. RESULTS Results show that both adult and parental stress negatively affect learning, memory and cognition, as reflected by taking longer time to achieve the task or showing reduced exploratory behavior. Expression of Bdnf, TrkB, Gsk3β and Ng was downregulated, while IL-1 and Tnf-α were upregulated in the brain's cortex, thalamus, and hippocampus region of stressed mice. These effects seem to be relatively less severe in the offspring of stressed parents. CONCLUSIONS The findings suggest that physical restraint stress can alter learning, memory, cognition, and expression of transcripts in key learning centers of brain.
Collapse
Affiliation(s)
| | - James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
3
|
Gao S, Zhang L, Wang X, Li R, Han L, Xiong X, Jiang Q, Cheng D, Xiao X, Li H, Yang J. A terrified-sound stress causes cognitive impairment in female mice by impairing neuronal plasticity. Brain Res 2023; 1812:148419. [PMID: 37217110 DOI: 10.1016/j.brainres.2023.148419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Stress is an important environmental factor affecting mental health that cannot be ignored. Moreover, due to the great physiological differences between males and females, the effects of stress may vary by sex. Previous studies have shown that terrified-sound stress, meaning exposed mice to the recorded vocalizations in response to the electric shock by their kind to induce psychological stress, can cause cognitive impairment in male. In the study, we investigated the effects of the terrified-sound stress on adult female mice. METHODS 32 adults female C57BL/6 mice were randomly divided into control (n = 16) and stress group (n = 16). Sucrose preference test (SPT)was carried out to evaluate the depressive-like behavior. Using Open field test (OFT) to evaluate locomotor and exploratory alterations in mice. Spatial learning and memory ability were measured in Morris Water maze test (MWM), Golgi staining and western blotting showed dendritic remodeling after stress. In addition, serum hormone quantifications were performed by ELISA. RESULTS we found the sucrose preference of stress group was significantly decreased (p < 0.05) compared with control group; the escape latency of the stress group was significantly prolonged (p < 0.05), the total swimming distance and the number of target crossings(p < 0.05) were significantly increased (p < 0.05) in MWM; Endocrine hormone, Testosterone (T) (p < 0.05), GnRH (p < 0.05), FSH and LH levels was decreased; Golgi staining and western blotting showed a significant decrease in dendritic arborization, spine density and synaptic plasticity related proteins PSD95 and BDNF in the stress group. CONCLUSION Terrified-sound stress induced depressive-like behaviors, locomotor and exploratory alterations. And impaired cognitive by altering dendritic remodeling and the expression of synaptic plasticity-related proteins. However, females are resilient to terrified-sound stress from a hormonal point of view.
Collapse
Affiliation(s)
- Shanfeng Gao
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xia Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lin Han
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiaofan Xiong
- Department of Tumor and Immunology in Precision Medicine Institute, Western China Science and Technology Innovation Port, Xi'an 710004, PR China
| | - Qingchen Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Daxin Cheng
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China
| | - Xuan Xiao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Huajing Li
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, PR China.
| |
Collapse
|
4
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
5
|
Inactivation of the dorsal CA1 hippocampus impairs the consolidation of discriminative avoidance memory by modulating the intrinsic and extrinsic hippocampal circuitry. J Chem Neuroanat 2023; 128:102209. [PMID: 36496001 DOI: 10.1016/j.jchemneu.2022.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Despite progress in understanding the role of the dorsal hippocampus in the acquisition, consolidation and retrieval of episodic-like memory, plastic changes within the intra- and extrahippocampal circuits for aversive memory formation and anxiety-like behaviours must still be identified since both processes contribute to multiple aspects of flexible decision-making. Here, we investigated the effect of reversible inactivation induced by a muscimol microinfusion into the dorsal CA1 subfield (dCA1) either prior to acquisition or to retrieval testing of a discriminative avoidance task performed in a plus-maze apparatus (PM-DAT). Differential cAMP-response-element-binding protein 1 (CREB-1) expression in the dorsal and ventral CA1 and CA3 of the hippocampus (dCA1, dCA3, vCA1, and vCA3), dorsal dentate gyrus (dDG), and infralimbic (IL) and prelimbic (PrL) regions of the medial prefrontal cortex was also assessed to investigate the molecular changes associated with the consolidation or retrieval of episodic-like memory and anxiety. Adult male Wistar rats were assigned to two control groups, learning (no surgery/no microinfusion, n = 7) and sham-operated (sham surgery/no microinfusion, n = 6) groups, or four experimental groups, in which the vehicle (0.5 µl per side, n = 8/per group) or a GABAA receptor agonist (0.5 µg/0.5 µl muscimol/per side) was bilaterally microinfused in the dCA1 30 min prior to training (n = 9) or prior to testing sessions (n = 6) with a 24 h intertrial interval. Memory was evaluated using the percentage of time spent in the nonaversive enclosed arms, whereas anxiety was measured by calculating the percentages of time spent and entries into open arms and the percentage of time spent self-grooming. Our findings corroborated previous data showing that the dCA1 is required for discriminative avoidance consolidation. Furthermore, additional information indicated that impaired long-term memory was associated with downregulated CREB-1 expression in the dDG and vCA3. Moreover, memory retrieval was not impaired by dCA1 inactivation prior to the testing session, which was associated with the upregulation of CREB-1 in the dCA3 and vCA1 and downregulation in the dCA1 and vCA3. Differential expression of CREB was not identified in the IL or PrL areas. These results improve our understanding of how the hippocampal circuitry mediates the acquisition and retrieval of aversive memory and anxiety.
Collapse
|
6
|
Ballesio A, Zagaria A, Curti DG, Moran R, Goadsby PJ, Rosenzweig I, Lombardo C. Peripheral brain-derived neurotrophic factor (BDNF) in insomnia: A systematic review and meta-analysis. Sleep Med Rev 2023; 67:101738. [PMID: 36577338 DOI: 10.1016/j.smrv.2022.101738] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is associated with emotional and cognitive functioning, and it is considered a transdiagnostic biomarker for mental disorders. Literature on insomnia related BDNF changes yielded contrasting results and it has never been synthetized using meta-analysis. To fill this gap, we conducted a systematic review and meta-analysis of case-control studies examining the levels of peripheric BDNF in individuals with insomnia and healthy controls using the PRISMA guidelines. PubMed, Scopus, Medline, PsycINFO and CINAHL were searched up to Nov 2022. Nine studies met the inclusion criteria and were assessed using the Newcastle-Ottawa Scale. Eight studies reported sufficient data for meta-analysis. Random-effects models showed lower BDNF in subjects with insomnia (n = 446) than in controls (n = 706) (Hedge's g = -0.86, 95% CI: -1.39 to -0.32, p = .002). Leave-one-out sensitivity analysis confirmed that the pooled effect size was robust and not driven by any single study. However, given the small sample size, the cross-sectional nature of the measurement, and the high heterogeneity of included data, the results should be cautiously interpreted. Progress in the study of BDNF in insomnia is clinically relevant to better understand the mechanisms that may explain the relationship between disturbed sleep and mental disorders.
Collapse
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Italy.
| | - Andrea Zagaria
- Department of Psychology, Sapienza University of Rome, Italy
| | | | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK; Sleep Disorders Centre, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | | |
Collapse
|
7
|
Jiang W, Tian Y, Fan F, Fu F, Wei D, Tang S, Chen J, Li Y, Zhu R, Wang L, Shi Z, Wang D, Zhang XY. Effects of comorbid posttraumatic stress disorder on cognitive dysfunction in Chinese male methamphetamine patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110611. [PMID: 35907518 DOI: 10.1016/j.pnpbp.2022.110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Cognitive dysfunction and posttraumatic stress disorder (PTSD) are common in methamphetamine patients. However, few studies have investigated the cognitive performance of methamphetamine patients with PTSD. The purpose of this study was to investigate the impact of comorbid PTSD on cognitive function in Chinese male methamphetamine patients. METHODS We analyzed 464 methamphetamine patients and 156 healthy volunteers. The PTSD Screening Scale (PCL-5) was used to assess PTSD and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess cognitive function. RESULTS Compared with healthy controls, methamphetamine patients had more cognitive dysfunction in immediate memory, visuospatial/constructional, language, attention and delayed memory. Moreover, methamphetamine patients with PTSD had less cognitive dysfunction in immediate memory, attention, and delayed memory than methamphetamine patients without PTSD. Further stepwise regression analysis showed that PTSD alterations in arousal and reactivity cluster were risk predictors for language, and PTSD negative alteration in cognition and mood cluster were risk predictors for delayed memory. CONCLUSIONS Our results indicate that methamphetamine patients without PTSD have poorer cognitive dysfunction than those with PTSD. Some demographic and PTSD symptom clusters are protective or risk factors for cognitive dysfunction in methamphetamine patients.
Collapse
Affiliation(s)
- Wei Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Tian
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fusheng Fan
- Xin Hua Drug Rehabilitation Center, Sichuan, China
| | - Fabing Fu
- Xin Hua Drug Rehabilitation Center, Sichuan, China
| | - Dejun Wei
- Xin Hua Drug Rehabilitation Center, Sichuan, China
| | | | - Jiajing Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhanbiao Shi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Sun W, Lu Z, Chen X, Yang, Mei Y, Li X, An L. Aluminum Oxide Nanoparticles Impair Working Memory and Neuronal Activity through the GSK3β/BDNF Signaling Pathway of Prefrontal Cortex in Rats. ACS Chem Neurosci 2022; 13:3352-3361. [PMID: 36444509 DOI: 10.1021/acschemneuro.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies demonstrated that alumina nanoparticles (alumina NPs) impair spatial cognition and hippocampus-dependent synaptic plasticity. Although alumina NPs accumulate in the prefrontal cortex (PFC), their effects on PFC-mediated neuronal and cognitive function have been not yet documented. Here, alumina NPs (10 or 20 μg/kg of body weight) were bilaterally injected into the medial PFC (mPFC) of adult rats, and the levels of glycogen synthase kinase 3β (GSK3β) and the brain-derived neurotrophic factor (BDNF) were detected. The PFC-dependent working memory task with one-minute or three-minute delay time was conducted. Meanwhile, the neuronal correlates of working memory performance were recorded. The specific expression of neuronal BDNF was assessed by colabeled BDNF expression with the neuronal nuclear antigen (NeuN). Whole-cell patch-clamp recordings were employed to detect neuronal excitability. Intra-mPFC alumina NP infusions significantly enhanced the expression of GSK3β but reduced the phosphorylation of GSK3β (pGSK3β) and BDNF levels more severely at a dose of 20 μg/kg. Alumina NPs acted in a dose-dependent manner to impair working memory. The neuronal expression of BDNF in the 20 μg/kg group was markedly declined compared with the 10 μg/kg group. During the delay time, the neuronal frequency of pyramidal cells but not interneurons was significantly weakened. Furthermore, both the frequency and amplitude of the excitatory postsynaptic currents (EPSCs) were descended in the mPFC slices. Additionally, the infusion of GSK3β inhibitor SB216763 or BDNF could effectively attenuate the impairments in neuronal correlate, neuronal activity, and working memory. From the perspective of the identified GSK3β/BDNF pathway, these findings demonstrated for the first time that alumina NPs exposure can be a risk factor for prefrontal neuronal and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Zhenzhong Lu
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Xiao Chen
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| |
Collapse
|
9
|
Tanshinone IIA ameliorates chronic unpredictable mild stress-induced depression-like behavior and cognitive impairment in rats through the BDNF/TrkB/GAT1 signaling pathway. Eur J Pharmacol 2022; 938:175385. [PMID: 36379259 DOI: 10.1016/j.ejphar.2022.175385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Depression is a common disorder with a complex pathogenesis. Tanshinone IIA (TAN IIA) is a botanical agent with neuroprotective and antidepressant properties. OBJECTIVE To examine the effects of TAN IIA on chronic unpredictable mild stress (CUMS)-induced depression-like behavior and cognitive impairment in rats. METHODS Rats were exposed to CUMS for 4 weeks, followed by the oral administration of TAN IIA, Deanxit (DEAN), or normal saline for an additional 4 weeks. The control rats were fed with regular chow and administered with normal saline for 4 weeks. Behavioral tests were performed to assess the effects of TAN IIA on depression-like behavior and cognitive impairment in rats with CUMS. The morphology of dendrites was analyzed by Golgi staining. Immunofluorescence staining was performed to determine protein localization. RESULTS TAN IIA treatment ameliorated CUMS-induced depression-like behavior and cognitive impairment in rats. TAN IIA treatment also reversed the effects of CUMS on dendritic complexity and the levels of gamma-aminobutyric acid (GABA) in the hippocampus and prefrontal cortex. Rats with CUMS showed decreased levels of brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin receptor kinase B (TrkB), upregulated expression of GABA transporter 1 (GAT1), and reduced expression of synaptic proteins in the hippocampus, while TAN IIA treatment significantly diminished the effects of CUMS exposure. In addition, GAT1 was colocalized with N-methyl-D-aspartate receptor 2B. CONCLUSION TAN IIA ameliorates CUMS-induced depression-like behavior and cognitive impairment in rats by regulating the BDNF/TrkB/GAT1 signaling pathway, suggesting that TAN IIA may be a candidate drug for the treatment of depression.
Collapse
|
10
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
11
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
12
|
Demir EA, Gulbol-Duran G, Urhan-Kucuk M, Dogan H, Tutuk O, Cimen F, Bayirli M, Tumer C, Duran N. Behavioral and Cognitive Consequences of Obesity in Parents and Offspring in Female and Male Rats: Implications of Neuroinflammation and Neuromodulation. Mol Neurobiol 2022; 59:3947-3968. [PMID: 35438432 DOI: 10.1007/s12035-022-02831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Obesity is a rapidly growing public health concern that can create a family-wise burden. This study was aimed to investigate behavioral, cognitive, neuroinflammatory, and neuromodulatory consequences of the diet and parental obesity. Female and male Wistar albino rats were fed on either an obesogenic or standard diet for 12 weeks, beginning with weaning. Thereafter, the animals were matched and allowed to mate. Pups born to obese or normal parents received either the diet or standard chow to the same age. The obesogenic diet and/or parental obesity increased the locomotor activity in both females and males. The diet exhibited anxiolytic-like and antidepressant-like properties, and impaired short-term object memory as well as spatial memory. Interestingly, the obesogenic diet resulted in neuroinflammation only in naïve animals, but not in the ones with parental obesity. BDNF, SIRT1, and p53 expressions were decreased, whereas RelN expression was increased in the brain with the diet, regardless of parental obesity. Multi-factor analyses demonstrated that the obesogenic diet is the prominent influencer of cognitive, neuroinflammatory, and neuromodulatory results while parental obesity has an effect on spatial memory, neuroinflammation, and hippocampal RelN and p53 expressions. Here, we provided supporting evidence for detrimental cognitive and neuroinflammatory consequences of early life consumption of the obesogenic diet which accompanies alterations in neuromodulatory factors. Surprisingly, the diet was found beneficial against anxiety-like and depression-like behaviors, and additionally, parental obesity was demonstrated to impair some aspects of cognitive performance which appears unrelated to neuroinflammation.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040.
| | - Gulay Gulbol-Duran
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Meral Urhan-Kucuk
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hatice Dogan
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Okan Tutuk
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Funda Cimen
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mucella Bayirli
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cemil Tumer
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Nizami Duran
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
13
|
The BDNF-TrkB signaling pathway in the rostral anterior cingulate cortex is involved in the development of pain aversion in rats with bone cancer via NR2B and ERK-CREB signaling. Brain Res Bull 2022; 185:18-27. [DOI: 10.1016/j.brainresbull.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022]
|
14
|
Zhao XP, Li H, Dai RP. Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry 2022; 12:379-392. [PMID: 35433323 PMCID: PMC8968497 DOI: 10.5498/wjp.v12.i3.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/22/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Mood disorders are the most common mental disorders, affecting approximately 350 million people globally. Recent studies have shown that neuroimmune interaction regulates mood disorders. Brain-derived neurotrophic factor (BDNF) and its precursor pro-BDNF, are involved in the neuroimmune crosstalk during the development of mood disorders. BDNF is implicated in the pathophysiology of psychiatric and neurological disorders especially in antidepressant pharmacotherapy. In this review, we describe the functions of BDNF/pro-BDNF signaling in the central nervous system in the context of mood disorders. In addition, we summarize the developments for BDNF and pro-BDNF functions in mood disorders. This review aims to provide new insights into the impact of neuroimmune interaction on mood disorders and reveal a new basis for further development of diagnostic targets and mood disorders.
Collapse
Affiliation(s)
- Xiao-Pei Zhao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
15
|
Zhang W, Zhao S, Lu L, Fan Z, Ye S. Activation of neurotrophin signalling with light‑inducible receptor tyrosine kinases. Mol Med Rep 2022; 25:70. [PMID: 35014690 PMCID: PMC8767455 DOI: 10.3892/mmr.2022.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/17/2020] [Indexed: 11/05/2022] Open
Abstract
Optogenetics combined with protein engineering based on natural light-sensitive dimerizing proteins has evolved as a powerful strategy to study cellular functions. The present study focused on tropomyosin kinase receptors (Trks) that have been engineered to be light-sensitive. Trk belongs to the superfamily of receptor tyrosine kinases (RTKs), which are single-pass transmembrane receptors that are activated by natural ligands and serve crucial roles in cellular growth, differentiation, metabolism and motility. However, functional variations exist among receptors fused with light-sensitive proteins. The present study proposed a signal transduction model for light-induced receptor activation. This model is based on analysis of previous light-induced Trk receptors reported to date and comparisons to the activation mechanism of natural receptors. In this model, quantitative differences on the dimerization induced from either top-to-bottom or bottom-to-up may lead to the varying amplitude of intracellular signals. We hypothesize that the top-to-bottom propagation is more favourable for activation and yields better results compared with the bottom-to-top direction. The careful delineation of the dimerization mechanisms fine-tuning activation will guide future design for an optimum cellular output with the precision of light.
Collapse
Affiliation(s)
- Wei Zhang
- Anesthesiology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shu Zhao
- School of Life Science, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Linjie Lu
- Institute of Genetics, Molecular and Cellular Biology, University of Strasbourg, Illkirch 67400, France
| | - Zhimin Fan
- Anesthesiology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shixin Ye
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1195, Bicetre Hospital, Paris‑Saclay University, Le Kremlin-Bicêtre 94276, France
| |
Collapse
|
16
|
Girotra P, Behl T, Sehgal A, Singh S, Bungau S. Investigation of the Molecular Role of Brain-Derived Neurotrophic Factor in Alzheimer's Disease. J Mol Neurosci 2021; 72:173-186. [PMID: 34424488 DOI: 10.1007/s12031-021-01824-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), or abrineurin, is a member of the neurotrophin family of growth factors that acts on both the central and peripheral nervous systems. BDNF is also well known for its cardinal role in normal neural maturation. It binds to at least two receptors at the cell surface known as tyrosine kinase B (TrkB) and p75NTR. Additional neurotrophins that are anatomically linked with BDNF include neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and nerve growth factor (NGF). It is evident that BDNF levels in patients with Alzheimer's disease (AD) are altered. AD is a progressive disorder and a form of dementia, where the mental function of an elderly person is disrupted. It is associated with a progressive decline in cognitive function, which mainly targets the thinking, memory, and behavior of the person. The degeneration of neurons occurs in the cerebral cortex region of brain. The two major sources responsible for neuronal degeneration are protein fragment amyloid-beta (Aβ), which builds up in the spaces between the nerve cells, known as plaques, disrupting the neuron signaling pathway and leading to dementia, and neurofibrillary tangles (NFTs), which are the twisted fibers of proteins that build up inside the cells. AD is highly prevalent, with recent data indicating nearly 5.8 million Americans aged 65 and older with AD in 2020, and with 80% of patients 75 and older. AD is recognized as the sixth leading cause of death in the USA, and its prevalence is predicted to increase exponentially in the coming years. As AD worsens over time, it becomes increasingly important to understand the exact pathophysiology, biomarkers, and treatment. In this article, we focus primarily on the controversial aspect of BDNF in AD, including its influence on various other proteins and enzymes and the current treatments associated with BDNF, along with future perspectives.
Collapse
Affiliation(s)
- Pragya Girotra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
17
|
Kostelnik C, Lucki I, Choi KH, Browne CA. Translational relevance of fear conditioning in rodent models of mild traumatic brain injury. Neurosci Biobehav Rev 2021; 127:365-376. [PMID: 33961927 DOI: 10.1016/j.neubiorev.2021.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 01/19/2023]
Abstract
Mild traumatic brain injury (mTBI) increases the risk of posttraumatic stress disorder (PTSD) in military populations. Utilizing translationally relevant animal models is imperative for establishing a platform to delineate neurobehavioral deficits common to clinical PTSD that emerge in the months to years following mTBI. Such platforms are required to facilitate preclinical development of novel therapeutics. First, this mini review provides an overview of the incidence of PTSD following mTBI in military service members. Secondly, the translational relevance of fear conditioning paradigms used in conjunction with mTBI in preclinical studies is evaluated. Next, this review addresses an important gap in the current preclinical literature; while incubation of fear has been studied in other areas of research, there are relatively few studies pertaining to the enhancement of cued and contextual fear memory over time following mTBI. Incubation of fear paradigms in conjunction with mTBI are proposed as a novel behavioral approach to advance this critical area of research. Lastly, this review discusses potential neurobiological substrates implicated in altered fear memory post mTBI.
Collapse
Affiliation(s)
- Claire Kostelnik
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States
| | - Irwin Lucki
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814, United States; Department of Psychiatry, Uniformed Services University, Bethesda MD 20814, United States
| | - Kwang H Choi
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Psychiatry, Uniformed Services University, Bethesda MD 20814, United States.
| | - Caroline A Browne
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814, United States.
| |
Collapse
|
18
|
Jahed FJ, Rahbarghazi R, Shafaei H, Rezabakhsh A, Karimipour M. Application of neurotrophic factor-secreting cells (astrocyte - Like cells) in the in-vitro Alzheimer's disease-like pathology on the human neuroblastoma cells. Brain Res Bull 2021; 172:180-189. [PMID: 33895268 DOI: 10.1016/j.brainresbull.2021.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
This study investigated physical proximity and paracrine activity of neurotrophic factor-secreting cells (NTF-SCs) on beta-amyloid treated cells. Mesenchymal stem cells (MSCs) - to-NTF-SCs (Astrocyte -like cells) trans-differentiation was confirmed using immunofluorescence staining of GFAP. BDNF and NGF levels were measured by ELISA. To mimic AD-like condition, SH-SY5Y cells were exposed to 10 μM Aβ1-42. SH-SY5Y cells were allocated into Control; and Aβ1-42-treated cells. Treated cells were further classified into three subgroups including Aβ1-42 cells, Aβ1-42 cells + NTF-SCs (CM) and Aβ1-42 cells + NTF-SCs co-culture. Cell viability was measured by MTT assay. Anti-inflammatory and anti-tau hyperphosphorylation effects of NTF-SCs were assessed via monitoring TNF-α and hyperphosphorylated Tau protein expression level respectively. To explore the impact of NTF-SCs on synaptogenesis and synaptic functionality, real-time PCR assay was performed to measure the expression of synapsine 1, homer 1 and ZIF268. The level of synaptophysin was monitored via immunofluorescence staining. Data showed MSCs potential in trans-differentiating toward NTF-SCs indicated with enhanced GFAP expression (p < 0.05). ELISA assay confirmed the superiority of NTF-SCs in releasing NGF and BDNF compared to the MSCs (p < 0.05). Aβ significantly induced SH-SY5Y cells death while juxtacrine and paracrine activity of NTF-SCs significantly blunted these conditions (p < 0.05). Trans-differentiated cells had potential to reduce Tau hyperphosphorylation and TNF-α level after treatment with Aβ through juxtacrine and paracrine mechanisms (p < 0.05). Moreover, NTF-SCs significantly increased the expression rate of synapsin 1, homer 1 and zif 268 genes in Aβ-treated cells compared to matched-control group coincided with induction of synaptophysin at the protein level(p < 0.05). NTF-SCs reversed AD-like neuropathological alterations in SH-SY5Y cells via paracrine and juxtacrine mechanisms.
Collapse
Affiliation(s)
- Fatemeh Jafari Jahed
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Lesniak A, Poznański P, Religa P, Nawrocka A, Bujalska-Zadrozny M, Sacharczuk M. Loss of Brain-Derived Neurotrophic Factor (BDNF) Resulting From Congenital- Or Mild Traumatic Brain Injury-Induced Blood-Brain Barrier Disruption Correlates With Depressive-Like Behaviour. Neuroscience 2021; 458:1-10. [PMID: 33465406 DOI: 10.1016/j.neuroscience.2021.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in processes associated with neuroplasticity and neuroprotection. Evidence suggests that decreased BDNF levels in the central nervous system (CNS) represent a mechanism underlying the development of mood disorders. We hypothesize that both congenital and traumatic brain injury (mTBI)-induced blood-brain barrier (BBB) breakdown are responsible for brain BDNF depletion that contributes to the development of depressive-like symptoms. We employed a mouse model of innate differences in BBB integrity with high (HA) and low (LA) permeability. Depressive-like behaviours were determined under chronic mild stress (CMS) conditions or following mTBI using the tail suspension test (TST). Microvascular leakage of the BBB was evaluated using the Evans Blue Dye (EBD) extravasation method. BDNF concentrations in the brain and plasma were measured using the ELISA. Control HA mice with congenitally high BBB permeability showed exacerbated depressive-like behaviours compared with LA mice. In LA mice, with normal BBB function, mTBI, but not CMS, facilitated depressive-like behaviours, which correlated with enhanced BDNF efflux from the brain. In addition, mTBI triggered upregulation of the Bdnf gene in LA mice to compensate for BDNF loss. No alterations in BDNF levels were observed in mTBI and CMS-exposed HA mice. Moreover, CMS did not induce BBB damage or affect depressive-like behaviours in HA mice despite downregulating Bdnf gene expression. To conclude, BDNF efflux through the mTBI-disrupted BBB is strongly linked to the development of depressive-like behaviours, while the depressive phenotype in mice with congenital BBB dysfunction is independent of BDNF leakage.
Collapse
Affiliation(s)
- Anna Lesniak
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Piotr Religa
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Magdalena Bujalska-Zadrozny
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland
| | - Mariusz Sacharczuk
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland; Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
20
|
Are serum brain-derived neurotrophic factor concentrations related to brain structure and psychopathology in late childhood and early adolescence? CNS Spectr 2020; 25:790-796. [PMID: 31845634 DOI: 10.1017/s1092852919001688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Mental disorders can have a major impact on brain development. Peripheral blood concentrations of brain-derived neurotrophic factor (BDNF) are lower in adult psychiatric disorders. Serum BDNF concentrations and BDNF genotype have been associated with cortical maturation in children and adolescents. In 2 large independent samples, this study tests associations between serum BDNF concentrations, brain structure, and psychopathology, and the effects of BDNF genotype on BDNF serum concentrations in late childhood and early adolescence. METHODS Children and adolescents (7-14 years old) from 2 cities (n = 267 in Porto Alegre; n = 273 in São Paulo) were evaluated as part of the Brazilian high-risk cohort (HRC) study. Serum BDNF concentrations were quantified by sandwich ELISA. Genotyping was conducted from blood or saliva samples using the SNParray Infinium HumanCore Array BeadChip. Subcortical volumes and cortical thickness were quantified using FreeSurfer. The Development and Well-Being Behavior Assessment was used to identify the presence of a psychiatric disorder. RESULTS Serum BDNF concentrations were not associated with subcortical volumes or with cortical thickness. Serum BDNF concentration did not differ between participants with and without mental disorders, or between Val homozygotes and Met carriers. CONCLUSIONS No evidence was found to support serum BDNF concentrations as a useful marker of developmental differences in brain and behavior in early life. Negative findings were replicated in 2 of the largest independent samples investigated to date.
Collapse
|
21
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
22
|
Sweeten BLW, Sutton AM, Wellman LL, Sanford LD. Predicting stress resilience and vulnerability: brain-derived neurotrophic factor and rapid eye movement sleep as potential biomarkers of individual stress responses. Sleep 2020; 43:5574449. [PMID: 31556950 DOI: 10.1093/sleep/zsz199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
STUDY OBJECTIVES To examine the rapid eye movement sleep (REM) response to mild stress as a predictor of the REM response to intense stress and brain-derived neurotrophic factor (BDNF) as a potential biomarker of stress resilience and vulnerability. METHODS Outbred Wistar rats were surgically implanted with electrodes for recording electroencephalography (EEG) and electromyogram (EMG) and intraperitoneal Data loggers to record body temperature. Blood was also obtained to measure circulating BDNF. After recovery, rats were exposed to mild stress (novel chamber, NC) and later intense stress (shock training, ST), followed by sleep recording. Subsequently, rats were separated into resilient (Res; n=27) or vulnerable (Vul; n = 15) based on whether or not there was a 50% or greater decrease in REM after ST compared to baseline. We then compared sleep, freezing, and the stress response (stress-induced hyperthermia, SIH) across groups to determine the effects of mild and intense stress to determine if BDNF was predictive of the REM response. RESULTS REM totals in the first 4 hours of sleep after exposure to NC predicted REM responses following ST with resilient animals having higher REM and vulnerable animals having lower REM. Resilient rats had significantly higher baseline peripheral BDNF compared to vulnerable rats. CONCLUSIONS These results show that outbred rats display significant differences in post-stress sleep and peripheral BDNF identifying these factors as potential markers of resilience and vulnerability prior to traumatic stress.
Collapse
Affiliation(s)
- Brook L W Sweeten
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Amy M Sutton
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | | |
Collapse
|
23
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
24
|
RasGRF1 participates in the protective effect of tanshinone IIA on depressive like behaviors of a chronic unpredictable mild stress induced mouse model. Gene 2020; 754:144817. [PMID: 32473965 DOI: 10.1016/j.gene.2020.144817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Tanshinone IIA (Tan IIA) is reported to have neuroprotective effects to suppress cell apoptosis of cortical neurons induced by Aβ25-35 through inhibiting oxidative stress. Nevertheless, few studies have investigated the effects of Tan IIA on depressive disorder. Here, we aimed to measure the effects of Tan IIA on chronic unpredictable mild stress (CUMS) induced mouse model and its underlying mechanism. For 28 days, mice were subjected to CUMS while Tan IIA was administered once daily at doses of 0, 1, 2.5, 5, or 10 mg/kg. CUMS exposure increased depressive-like behaviors, as indicated by increased immobility time in the forced swim and tail suspension tests, decreased sucrose preference in the sucrose preference test, and reduced exploratory behavior in the open field test. All of these behaviors were reversed dose-dependently by Tan IIA treatment. Oxidative stress was determined by measuring malondialdehyde, glutathione peroxidase, and superoxide dismutase activity and total antioxidant capacity. Levels of pro-inflammatory factors IL-1β and IL-18, cAMP response element binding protein and brain derived neurotrophic factor were detected by ELISA and western blot assay, respectively. The results showed that CUMS increased oxidative stress and pro-inflammatory factors and decreased levels of cAMP response element binding protein and brain-derived neurotrophic factor. Tan IIA treatment again reversed these effects. Importantly, RasGRF1 expression increased in CUMS-exposed mice but decreased after Tan IIA administration. Using RasGRF1-/- mice to determine the role of RasGRF1 in mice exposed to CUMS, we found that knockdown of RasGRF1 reversed the effects of CUMS on mice, just like Tan IIA. These results indicate that Tan IIA may reverse depressive-like behaviors in CUMS-exposed mice by regulating RasGRF1.
Collapse
|
25
|
Li H, Xue X, Li Z, Pan B, Hao Y, Niu Q. Aluminium-induced synaptic plasticity injury via the PHF8-H3K9me2-BDNF signalling pathway. CHEMOSPHERE 2020; 244:125445. [PMID: 31835052 DOI: 10.1016/j.chemosphere.2019.125445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Aluminium is an environmental neurotoxin that comes extensively in contact with human being. The molecular mechanism of aluminium toxicity remains unclear. A number of studies have indicated that exposure to aluminium can impair learning and memory function. The purpose of this study was to investigate the mechanism of long-term potentiation(LTP) injury and the related signalling pathway activated by aluminium exposure. The results showed that aluminium treatment produced dose-dependent inhibition of LTP and reduced the activity of Histone H3K9 demethylation (H3K9me2) demethylase and the expression of the PHD (plant homeodomain) finger protein 8 (PHF8). Interestingly, there was no statistically significant difference in the expression of the PHF8 gene, suggesting that aluminium exposure only affects the translation process. Decrease in brain-derived neurotrophic factor (BDNF) expression may be related to the effect of aluminium. With correlation analysis between the hippocampal standardised field excitatory postsynaptic potential (fEPSP) amplitude and the expression of various proteins in the aluminium-exposed rat, the hippocampal standardised fEPSP amplitude was positively correlated with the expression of hippocampal PHF8 and BDNF proteins, and negatively correlated with the expression of hippocampal H3K9me2 protein. The correlation between H3K9me2 and BDNF was also considered negative. The results suggest that changes in synaptic plasticity might be related to changes in these proteins, which were induced by aluminium exposure. In conclusion, chronic aluminium exposure may inhibit PHF8 and prevent it from functioning as a demethylase. This may block H3K9me2 demethylation, decrease BDNF protein expression, and lead to LTP impairment.
Collapse
Affiliation(s)
- Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Zhaoyang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yanxia Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
26
|
Hassanpoor H, Saidi M. An investigation into the effective role of astrocyte in the hippocampus pattern separation process: A computational modeling study. J Theor Biol 2020; 487:110114. [PMID: 31836505 DOI: 10.1016/j.jtbi.2019.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/15/2019] [Accepted: 12/09/2019] [Indexed: 11/29/2022]
Abstract
A physiologically realistic three layer neuron-astrocyte network model is used to evaluate the biological mechanism in pattern separation. The innovative feature of the model is the use of a combination of three elements: neuron, interneuron and astrocyte. In the input layer, a pyramidal neuron receives input patterns from stimulus current, while in the middle layer there are two pyramidal neurons coupled with two inhibitory interneurons and an astrocyte. Finally, in the third layer, a pyramidal neuron produces the output of the model by integrating the output of two neurons from the middle layer resulting from inhibitory and excitatory connections among neurons, interneurons and the astrocyte. Results of computer simulations show that the neuron-astrocyte network within the hippocampal dentate gyrus can generate diverse, complex and different output patterns to given inputs. It is concluded that astrocytes within the dentate gyrus play an important role in the pattern separation process.
Collapse
Affiliation(s)
- Hossein Hassanpoor
- Department of Cognitive Science, Dade Pardazi, Shenakht Mehvar, Atynegar (DSA) Institute, Tehran, Iran.
| | - Maryam Saidi
- Department of Cognitive Science, Dade Pardazi, Shenakht Mehvar, Atynegar (DSA) Institute, Tehran, Iran
| |
Collapse
|
27
|
Tantipongpiradet A, Monthakantirat O, Vipatpakpaiboon O, Khampukdee C, Umehara K, Noguchi H, Fujiwara H, Matsumoto K, Sekeroglu N, Kijjoa A, Chulikhit Y. Effects of Puerarin on the Ovariectomy-Induced Depressive-Like Behavior in ICR Mice and Its Possible Mechanism of Action. Molecules 2019; 24:molecules24244569. [PMID: 31847138 PMCID: PMC6943479 DOI: 10.3390/molecules24244569] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Daily treatment of ovariectomized (OVX) ICR mice with puerarin, a glycosyl isoflavone isolated from the root bark of Pueraria candollei var. mirifica, and 17β-estradiol attenuated ovariectomy-induced depression-like behavior, as indicated by a decrease in immobility times in the tail suspension test (TST) and the forced swimming test (FST), an increase in the uterine weight and volume, a decrease in serum corticosterone levels, and dose-dependently normalized the downregulated transcription of the brain-derived neurotrophic factor (BDNF) and estrogen receptor (Erβ and Erα) mRNAs. Like 17β-estradiol, puerarin also inhibited ovariectomy-induced suppression of neurogenesis in the dentate gyrus of the hippocampus (increased the number of doublecortin (DCX)-immunosuppressive cells). These results suggest that puerarin exerts antidepressant-like effects in OVX animals, possibly by attenuating the OVX-induced hyperactivation of the HPA axis and/or normalizing the downregulated transcription of BDNF and ER mRNA in the brain.
Collapse
Affiliation(s)
- Ariyawan Tantipongpiradet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Onchuma Vipatpakpaiboon
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Charinya Khampukdee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Kaoru Umehara
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan; (K.U.); (H.N.)
| | - Hiroshi Noguchi
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan; (K.U.); (H.N.)
| | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (H.F.); (K.M.)
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (H.F.); (K.M.)
| | - Nazim Sekeroglu
- Department of Horticulture, Faculty of Agriculture, Killis 7 Aralik University, Killis 79000, Turkey;
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (Y.C.); Tel.: +351-220428331 (A.K.)
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
- Correspondence: (A.K.); (Y.C.); Tel.: +351-220428331 (A.K.)
| |
Collapse
|
28
|
Kumar A, Kumar P, Pareek V, Faiq MA, Narayan RK, Raza K, Prasoon P, Sharma VK. Neurotrophin mediated HPA axis dysregulation in stress induced genesis of psychiatric disorders: Orchestration by epigenetic modifications. J Chem Neuroanat 2019; 102:101688. [PMID: 31568825 DOI: 10.1016/j.jchemneu.2019.101688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Apart from their established role in embryonic development, neurotrophins (NTs) have diverse functions in the nervous system. Their role in the integration of physiological and biochemical aspects of the nervous system is currently attracting much attention. Based on a systematic analysis of the literature, we here propose a new paradigm that, by exploiting a novel role of NTs, may help explain the genesis of stress-related psychiatric disorders, opening new avenues for better management of the same. We hypothesize that NTs as an integrated network play a crucial role in maintaining an indivdual's psychological wellbeing. Given the evidence that stress can induce chronic disruption of the hypothalamic-pituitary-adrenal (HPA) axis which, in turn, is causally linked to several psychiatric disorders, this function may be mediated through the homeostatic mechanisms governing regulation of this axis. In fact, NTs, such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are known to participate in neuroendocrine regulation. Recent studies suggest epigenetic modification of NT-HPA axis interplay in the precipitation of psychiatric disorders. Our article highlights why this new knowledge regarding NTs should be considered in the etiogenesis and treatment of stress-induced psychopathology.
Collapse
|
29
|
Scotton E, Colombo R, Reis JC, Possebon GMP, Hizo GH, Valiati FE, Géa LP, Bristot G, Salvador M, Silva TM, Guerra AE, Lopes TF, Rosa AR, Kunz M. BDNF prevents central oxidative damage in a chronic unpredictable mild stress model: The possible role of PRDX-1 in anhedonic behavior. Behav Brain Res 2019; 378:112245. [PMID: 31539575 DOI: 10.1016/j.bbr.2019.112245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis and sustained increase of glucocorticoids have been evidenced in major depression and are related to changes involving neurotrophins and markers of oxidative stress in response to inflammation. This study aimed to evaluate central measures of brain-derived neurotrophic factor (BDNF), oxidative damage and total antioxidant capacity in rats submitted to chronic unpredictable mild stress (CUMS), as well as to investigate the relationship between BDNF levels and differentially processes. For this purpose, male Wistar rats were submitted to CUMS for six weeks. Based on a sucrose preference test (SPT), the animals were divided into anhedonic or non-anhedonic clusters. Afterwards, forced swim test (FST) and open field test (OFT) were performed, and the animals were euthanized. Brain tissue was collected, followed by quantification of oxidative damage, total antioxidant capacity and BDNF levels. Anhedonic behavior was evidenced in stress-susceptible animals through decreased sucrose preference. No differences were found in FST or OFT results. We observed increased BDNF levels in the hippocampus (HPC) of animals exposed to the CUMS protocol, accompanied by decreased total antioxidant capacity, despite the absence of oxidative damage to lipids and proteins. Moreover, we used a bioinformatics approach to identify proteins involved in oxidative stress and inflammation pathways, which were differentially expressed in anhedonic animals from other studies with similar experimental protocol. expressed proteins (DEP) involved in oxidative stress and inflammatory biological Anhedonic behavior was associated with peroxiredoxin-1 (PRDX-1) up-regulation and down-regulation of proteins involved with apoptotic and inflammation signaling (RELA, ASK-1 and TAK-1) in the HPC. Taken together, these data suggest that BDNF and PRDX-1 might be involved in initial stress response, playing a compensatory role by preventing oxidative damage to lipids and proteins through the modulation of antioxidant defense after CUMS in anhedonic animals.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| | - Jéssica C Reis
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Gabriela M P Possebon
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Gabriel H Hizo
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Fernanda E Valiati
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil.
| | - Luiza P Géa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil.
| | - Giovana Bristot
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil.
| | - Mirian Salvador
- Laboratório de estresse oxidativo e antioxidantes, Instituto de Biotecnologia, UCS, Caxias do Sul, RS, Brazil.
| | - Tuani M Silva
- Laboratório de estresse oxidativo e antioxidantes, Instituto de Biotecnologia, UCS, Caxias do Sul, RS, Brazil.
| | - Alessandra E Guerra
- Easy Search Assessoria em Pesquisa, Grupo Diagnose, Caxias do Sul, RS, Brazil.
| | - Tiago F Lopes
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Adriane R Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil.
| | - Maurício Kunz
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Mallei A, Ieraci A, Popoli M. Chronic social defeat stress differentially regulates the expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice. World J Biol Psychiatry 2019; 20:555-566. [PMID: 30058429 DOI: 10.1080/15622975.2018.1500029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: Although stress is considered a primary risk factor for neuropsychiatric disorders, a majority of individuals are resilient to the effects of stress exposure and successfully adapt to adverse life events, while others, the so-called susceptible individuals, may have problems to properly adapt to environmental changes. However, the mechanisms underlying these different responses to stress exposure are poorly understood.Methods: Adult male C57BL/6J mice were exposed to chronic social defeat stress protocol and levels of brain derived neurotrophic factor (BDNF) transcripts and epigenetic modifying enzymes were analysed by real-time PCR in the hippocampus (HPC) and prefrontal cortex (PFC) of susceptible and resilient mice.Results: We found a selective reduction of BDNF-6 transcript in the HPC and an increase of BDNF-4 transcript in the PFC of susceptible mice. Moreover, susceptible mice showed a selective reduction of the g9a mRNA levels in the HPC, while HDAC-5 and DNMT3a mRNA levels were specifically reduced in the PFC.Conclusions: Overall, our results, showing a different expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice, suggest that stress resilience is not simply a lack of activation of stress-related pathways, but is related to the activation of additional different specific mechanisms.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| |
Collapse
|
31
|
Teleanu RI, Gherasim O, Gherasim TG, Grumezescu V, Grumezescu AM, Teleanu DM. Nanomaterial-Based Approaches for Neural Regeneration. Pharmaceutics 2019; 11:E266. [PMID: 31181719 PMCID: PMC6630326 DOI: 10.3390/pharmaceutics11060266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanical, thermal, chemical, or ischemic injury of the central or peripheral nervous system results in neuron loss, neurite damage, and/or neuronal dysfunction, almost always accompanied by sensorimotor impairment which alters the patient's life quality. The regenerative strategies for the injured nervous system are currently limited and mainly allow partial functional recovery, so it is necessary to develop new and effective approaches for nervous tissue regenerative therapy. Nanomaterials based on inorganic or organic and composite or hybrid compounds with tunable physicochemical properties and functionality proved beneficial for the transport and delivery/release of various neuroregenerative-relevant biomolecules or cells. Within the following paragraphs, we will emphasize that nanomaterial-based strategies (including nanosized and nanostructured biomaterials) represent a promising alternative towards repairing and regenerating the injured nervous system.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Tudor George Gherasim
- National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania.
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
32
|
Solomon MG, Griffin WC, Lopez MF, Becker HC. Brain Regional and Temporal Changes in BDNF mRNA and microRNA-206 Expression in Mice Exposed to Repeated Cycles of Chronic Intermittent Ethanol and Forced Swim Stress. Neuroscience 2019; 406:617-625. [PMID: 30790666 DOI: 10.1016/j.neuroscience.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) expression and signaling activity in brain are influenced by chronic ethanol and stress. We previously demonstrated reduced Bdnf mRNA levels in the medial prefrontal cortex (mPFC) following chronic ethanol treatment and forced swim stress (FSS) enhanced escalated drinking associated with chronic ethanol exposure. The present study examined the effects of chronic ethanol and FSS exposure, alone and in combination, on Bdnf mRNA expression in different brain regions, including mPFC, central amygdala (CeA), and hippocampus (HPC). Additionally, since microRNA-206 has been shown to negatively regulate BDNF expression, the effects of chronic ethanol and FSS on its expression in the target brain regions were examined. Mice received four weekly cycles of chronic intermittent ethanol (CIE) vapor or air exposure and then starting 72-h later, the mice received either a single or 5 daily 10-min FSS sessions (or left undisturbed). Brain tissue samples were collected 4-h following final FSS testing and Bdnf mRNA and miR-206 levels were determined by qPCR assay. Results indicated dynamic brain regional and time-dependent changes in Bdnf mRNA and miR-206 expression. In general, CIE and FSS exposure reduced Bdnf mRNA expression while miR-206 levels were increased in the mPFC, CeA, and HPC. Further, in many instances, these effects were more robust in mice that experienced both CIE and FSS treatments. These results have important implications for the potential link between BDNF signaling in the brain and ethanol consumption related to stress interactions with chronic ethanol experience.
Collapse
Affiliation(s)
- Matthew G Solomon
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 20401, USA.
| |
Collapse
|
33
|
Shen J, Li Y, Qu C, Xu L, Sun H, Zhang J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. J Affect Disord 2019; 248:81-90. [PMID: 30716615 DOI: 10.1016/j.jad.2019.01.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/08/2019] [Accepted: 01/19/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chronic unpredictable mild stress (CUMS) is an important risk factor for depression and cognitive deficits in humans. Enriched environment (EE) showed a beneficial effect on depression and cognition by enhancing brain derived neurotrophic factor (BDNF) expression and synaptic plasticity. However, it is still not clearly understood whether an epigenetic mechanism is involved in the BDNF modulation and synaptic plasticity that occurs after EE treatment for the depressive-like behaviors and cognitive deficits elicited by CUMS. In this study, we investigated the possible mechanism of the neuroprotective effect of EE. METHODS All rats were exposed to the 5-week CUMS procedure except the control group. After CUMS procedure, some rats were stereotaxically injected with SIRT1 pharmacologic inhibitor EX527 or SIRT1 knocking down lentivirus (sh-SIRT1) in the hippocampus followed by EE treatment for 3 weeks. Other rats were directly subjected to EE treatment without stereotaxic injection. Behavioral tests were used to appraise depression and cognition after EE treatment. Then epigenetic molecules, synaptic proteins, dendritic spine density and branches, and synaptic morphology of the dorsal hippocampus were determined. RESULTS We found that CUMS induced depressive-like behaviors including decreased sucrose preference ratio, prolonged immobility and reduced locomotor and exploratory activity; cognitive deficits including spatial learning and memory impairment; reduced dendritic spine density and number of branches; thinned postsynaptic density; downregulated SIRT1/microRNA-134 pathway, decreased BDNF and synaptic proteins including synaptophysin (SYN) and postsynaptic density protein 95 (PSD95) expression in the hippocampus. However, the CUMS-induced depressive-like behaviors, cognitive deficits, dendritic spine density and branch number reduction, postsynaptic density thinning, SIRT1/microRNA-134 pathway downregulation, BDNF and synaptic proteins reduction, including synaptophysin (SYN) and postsynaptic density protein 95 (PSD95), were reversed by EE treatment. However, depressive-like behaviors and cognitive deficits were observed again in rats subjected to stereotaxic injection with EX527 or sh-SIRT1. Furthermore, this study also found that SIRT1/microRNA-134 regulates the downstream molecules BDNF, and the synaptic proteins SYN and PSD95 in primary cultured hippocampal neurons. CONCLUSIONS This study provides evidence for the neuroprotective role of EE on depression and cognitive deficits by activating the SIRT1/microRNA-134 pathway, which accounts for the regulation of synaptic proteins, including BDNF, PSD95 and SYN, dendritic remodeling and ultrastructure changes of synapses in the hippocampus.
Collapse
Affiliation(s)
- Jun Shen
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China
| | - Yaqing Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China
| | - Chujie Qu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China
| | - Linling Xu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China
| | - Huimin Sun
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
34
|
Harrington MO, Klaus K, Vaht M, Harro J, Pennington K, Durrant SJ. Overnight retention of emotional memories is influenced by BDNF Val66Met but not 5-HTTLPR. Behav Brain Res 2019; 359:17-27. [DOI: 10.1016/j.bbr.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
35
|
Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr Res 2019; 85:225-233. [PMID: 30341412 DOI: 10.1038/s41390-018-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events. A key mediator of plasticity-related molecular processes is the brain-derived neurotrophic factor (BDNF), which has also been implicated in various psychiatric disorders related to childhood social adversities. Preclinical and clinical data suggest early-life social adversities (ELSA) might be associated with accelerated maturation of social network circuitry, a possible ontogenic adaptation to the adverse environment. Neural plasticity decreases by adulthood, lessening the efficacy of treatment in ELSA-related psychiatric disorders. However, literature data suggest that by increasing BDNF/TrkB signalling through antidepressant treatment a juvenile-like plasticity state can be induced, which allows for reorganization of the social circuitry when guided by psychotherapy and surrounded by a safe and positive environment.
Collapse
|
36
|
The BDNF Val66Met Polymorphism Promotes Changes in the Neuronal Integrity and Alters the Time Perception. J Mol Neurosci 2018; 67:82-88. [DOI: 10.1007/s12031-018-1212-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
|
37
|
Wei CW, Luo T, Zou SS, Wu AS. The Role of Long Noncoding RNAs in Central Nervous System and Neurodegenerative Diseases. Front Behav Neurosci 2018; 12:175. [PMID: 30323747 PMCID: PMC6172704 DOI: 10.3389/fnbeh.2018.00175] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a group of noncoding RNAs (ncRNAs) that has a transcript of more than 200 nucleotides in length in eukaryotic cells. The lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels by multiple action modes. In this review, we describe the diverse roles reported for lncRNAs, and discuss how they could mechanistically be involved in the development of central nervous system (CNS) and neurodegenerative diseases. Further studies on the function of lncRNAs and their mechanism will help deepen our understanding of the development, function, and diseases of the CNS, and provide new ideas for the design and development of some therapeutic drugs.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Deletion of asparagine endopeptidase reduces anxiety- and depressive-like behaviors and improves abilities of spatial cognition in mice. Brain Res Bull 2018; 142:147-155. [DOI: 10.1016/j.brainresbull.2018.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
|
39
|
Abd-El-Basset EM, Rao MS. Dibutyryl Cyclic Adenosine Monophosphate Rescues the Neurons From Degeneration in Stab Wound and Excitotoxic Injury Models. Front Neurosci 2018; 12:546. [PMID: 30135639 PMCID: PMC6092510 DOI: 10.3389/fnins.2018.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/19/2018] [Indexed: 01/25/2023] Open
Abstract
Dibutyryl cyclic adenosine monophosphate (dBcAMP), a cell-permeable synthetic analog of cAMP, has been shown to induce astrogliosis in culture. However, the exact mechanism underlying how dBcAMP exerts its function in situ is not clear. The objective of this study was to examine the effects of dBcAMP on astrogliosis and survival of neurons in stab wound and kainic acid models of brain injury. Stab wound was done in cerebral cortex of BALB/c male mice. Kainic acid lesion was induced in hippocampus by injecting 1μl kainic acid into the lateral ventricle. Animals in both models of injury were divided into L+dBcAMP and L+PBS groups and treated with dBcAMP or PBS for 3, 5, and 7 days respectively. The brain sections were stained for Cresyl violet and Fluro jade-B to assess the degenerating neurons. Immunostaining for GFAP and Iba-1 was done for assessing the astrogliosis and microglial response respectively. Expression of GFAP and BDNF levels in the tissue were estimated by Western blotting and ELISA respectively. The results showed a gradual increase in the number of both astrocytes and microglia in both injuries with a significant increase in dBcAMP-treated groups. The number of degenerating neurons significantly decreased in dBcAMP treated groups. In addition, it was found that dBcAMP stimulated the expression of GFAP and BDNF in both stab wound and kainic acid injuries. Treatment with BDNF receptor inhibitor AZ-23, showed an increase in the degenerating neurons suggesting the role of BDNF in neuroprotection. This study indicates that dBcAMP protects neurons from degeneration by enhancing the production of BDNF and may be considered for use as therapeutic agent for treatment of brain injuries.
Collapse
Affiliation(s)
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
40
|
Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology 2018; 140:35-42. [PMID: 30056122 DOI: 10.1016/j.neuropharm.2018.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/05/2018] [Accepted: 07/26/2018] [Indexed: 01/18/2023]
Abstract
The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) has been implicated in a number of neuropsychiatric disorders, including alcohol use disorder. Studies have shown that BDNF activity in cortical regions, such as the medial prefrontal cortex (mPFC) mediates various ethanol-related behaviors. We previously reported a significant down-regulation in Bdnf mRNA in mPFC following chronic ethanol exposure compared to control mice. The present study was conducted to extend these findings by examining whether chronic ethanol treatment reduces BDNF protein expression in mPFC and whether reversing this deficit via direct injection of BDNF or viral-mediated overexpression of BDNF in mPFC alters voluntary ethanol consumption in dependent and nondependent mice. Repeated cycles of chronic intermittent ethanol (CIE) exposure was employed to model ethanol dependence, which produces robust escalation of ethanol intake. Results indicated that CIE treatment significantly increased ethanol intake and this was accompanied by a significant decrease in BDNF protein in mPFC that lasted at least 72 h after CIE exposure. In a separate study, once dependence-related increased drinking was established, bilateral infusion of BDNF (0, 0.25, 0.50 μg) into mPFC significantly decreased ethanol intake in a dose-related manner in dependent mice but did not affect moderate drinking in nondependent mice. In a third study, viral-mediated overexpression of BDNF in mPFC prevented escalation of drinking in dependent mice but did not alter intake in nondependent mice. Collectively, these results provide evidence that adaptations in cortical (mPFC) BDNF activity resulting from chronic ethanol exposure play a role in mediating excessive ethanol drinking associated with dependence.
Collapse
|
41
|
Kubo KY, Kotachi M, Suzuki A, Iinuma M, Azuma K. Chewing during prenatal stress prevents prenatal stress-induced suppression of neurogenesis, anxiety-like behavior and learning deficits in mouse offspring. Int J Med Sci 2018; 15:849-858. [PMID: 30008596 PMCID: PMC6036092 DOI: 10.7150/ijms.25281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Prenatal stress (PS) induces learning deficits and anxiety-like behavior in mouse pups by increasing corticosterone levels in the dam. We examined the effects of maternal chewing during PS on arginine vasopressin (AVP) mRNA expression in the dams and on neurogenesis, brain-derived neurotrophic factor (BDNF) mRNA expression, learning deficits and anxiety-like behavior in the offspring. Mice were divided into control, stress and stress/chewing groups. Pregnant mice were exposed to restraint stress beginning on day 12 of pregnancy and continuing until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint stress. PS significantly increased AVP mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus in the dams. PS also impaired learning ability, suppressed neurogenesis and BDNF mRNA expression in the hippocampus, and induced anxiety-like behavior in the offspring. Chewing during PS prevented the PS-induced increase in AVP mRNA expression of the PVN in the dams. Chewing during PS significantly attenuated the PS-induced learning deficits, anxiety-like behavior, and suppression of neurogenesis and BDNF mRNA expression in the hippocampus of the offspring. Chewing during PS prevented the increase in plasma corticosterone in the dam by inhibiting the hypothalamic-pituitary-adrenal axis activity, and attenuated the attenuated the PS-induced suppression of neurogenesis and BDNF expression in the hippocampus of the pups, thereby ameliorating the PS-induced learning deficits and anxiety-like behavior. Chewing during PS is an effective stress-coping method for the dam to prevent PS-induced deficits in learning ability and anxiety-like behavior in the offspring.
Collapse
Affiliation(s)
- Kin-ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8610, Japan
| | - Mika Kotachi
- Departments of 2 Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Ayumi Suzuki
- Departments of 2 Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Mitsuo Iinuma
- Departments of 2 Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu, 807-8555, Japan
| |
Collapse
|
42
|
Li X, Wu T, Yu Z, Li T, Zhang J, Zhang Z, Cai M, Zhang W, Xiang J, Cai D. Apocynum venetum leaf extract reverses depressive-like behaviors in chronically stressed rats by inhibiting oxidative stress and apoptosis. Biomed Pharmacother 2018; 100:394-406. [DOI: 10.1016/j.biopha.2018.01.137] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/07/2018] [Accepted: 01/28/2018] [Indexed: 01/20/2023] Open
|
43
|
Muñoz FV, Larkey L. THE CREATIVE PSYCHOSOCIAL GENOMIC HEALING EXPERIENCE (CPGHE) AND GENE EXPRESSION IN BREAST CANCER PATIENTS: A FEASIBILITY STUDY. ADVANCES IN INTEGRATIVE MEDICINE 2018; 5:9-14. [PMID: 30271706 PMCID: PMC6157740 DOI: 10.1016/j.aimed.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Biomarkers associated with inflammation and immune function are increasingly being used to examine mechanisms of the effects of mind-body therapies. Less researched are biomarkers associated with cognitive and executive functioning in the study of mind-body therapy mechanisms and effects. This study explored the feasibility of recruiting breast cancer patients (BCPs) and implementation fidelity of participation in a research project utilizing the 4-stage Creative Psychosocial Genomic Healing Experience (CPGHE), a mind-body protocol that is theorized to create epigenetic effects via targeted psychological change in emotional triggers in coping with cancer. METHODS Eight BCPs were identified as eligible (stages I, II, III, early phases of treatment) and five consented to one of two intervention groups (allocated to a single session or two sessions of CPGHE). Blood draws were examined pre- and post- intervention for a stress/inflammation gene expression marker, Nuclear Factor kappa-B (NF-kB), and three markers associated with synaptic plasticity undergirding cognitive and executive functioning: Early Growth Response 1 (EGR1), activity-regulated cytoskeleton-associated protein (Arc), and brain-derived neurotrophic factor (BDNF). RESULTS One consented BCP dropped out due to illness. The remaining four adhered to the 4-stage CPGHE protocol and found the CPGHE experience beneficial. Blood samples for the gene expression results were collected and processed according to planned protocol without incident. CONCLUSION Implementing the CPGHE and achieving good adherence among a sample of BCPs is feasible. Processing of blood samples collected from BCPs for gene expression data is also feasible.
Collapse
Affiliation(s)
- Francisco V Muñoz
- Arizona State University, College of Nursing and Health, Innovation Pomona Valley Hospital Medical Center, Lewis Family, Cancer Care Center
| | - Linda Larkey
- Arizona State University, College of Nursing and Health Innovation
| |
Collapse
|
44
|
de Araujo CM, Zugman A, Swardfager W, Belangero SIN, Ota VK, Spindola LM, Hakonarson H, Pellegrino R, Gadelha A, Salum GA, Pan PM, de Moura LM, Del Aquilla M, Picon FA, Amaro E, Sato JR, Brietzke E, Grassi-Oliveira R, Rohde LAP, Miguel EC, Bressan RA, Jackowski AP. Effects of the brain-derived neurotropic factor variant Val66Met on cortical structure in late childhood and early adolescence. J Psychiatr Res 2018; 98:51-58. [PMID: 29288952 DOI: 10.1016/j.jpsychires.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/18/2017] [Accepted: 12/14/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) has been associated with several neuropsychiatric disorders and regional structural brain changes in adults, but little is known about Val66Met's effect on brain morphology during typical or atypical neurodevelopment. Windows of vulnerability to psychopathology may be associated with the different alleles of the Val66Met polymorphism during childhood and adolescence. METHODOLOGY We investigated the effect of Val66Met on cortical thickness in MRI scans of 718 children and adolescents (6-12 years old) with typical development, and in those meeting DSM criteria for a psychiatric disorder. RESULTS Val66Met had a significant effect on cortical thickness. Considering the typically developing group, Met-carriers presented thicker parietal and occipital lobes and prefrontal cortices compared to Val homozygotes. Met-carriers with psychiatric disorders presented thicker medial and lateral temporal cortices than Val homozygotes. Furthermore, a significant genotype × psychiatric diagnosis interaction was found: Met-carriers with a psychiatric diagnosis presented thinner bilateral prefrontal cortices than Val homozygotes. CONCLUSION This study provides evidence that Val66Met is associated with cortical maturation in children and adolescents with and without psychiatric disorders.
Collapse
Affiliation(s)
- Celia Maria de Araujo
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil.
| | - Andre Zugman
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Sintia Iole Nogueira Belangero
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Department of Psychiatry, Universidade Federal de São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leticia Maria Spindola
- Department of Psychiatry, Universidade Federal de São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Renata Pellegrino
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ary Gadelha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | | | - Marco Del Aquilla
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Felipe Almeida Picon
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Edson Amaro
- Institute of Radiology (INRAD), Universidade de São Paulo, São Paulo, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Mathematics & Statistics Institute, Universidade Federal do ABC, Santo André, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Laboratory (DCNL), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto P Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department & Institute of Psychiatry (IPq), Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo A Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Andrea Parolin Jackowski
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
45
|
Zhang B, Huo X, Xu L, Cheng Z, Cong X, Lu X, Xu X. Elevated lead levels from e-waste exposure are linked to decreased olfactory memory in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1112-1121. [PMID: 28802781 DOI: 10.1016/j.envpol.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023]
Abstract
Lead (Pb) is a developmental neurotoxicant and can cause abnormal development of the nervous system in children. Hence, the aim of this study was to investigate the effect of Pb exposure on child olfactory memory by correlating the blood Pb levels of children in Guiyu with olfactory memory tests. We recruited 61 preschool children, 4- to 7-years of age, from Guiyu and 57 children from Haojiang. The mean blood Pb level of Guiyu children was 9.40 μg/dL, significantly higher than the 5.04 μg/dL mean blood Pb level of Haojiang children. In addition, approximately 23% of Guiyu children had blood Pb levels exceeding 10.00 μg/dL. The correlation analysis showed that blood Pb levels in children highly correlated with e-waste contact (rs = 0.393). Moreover, the mean concentration of serum BDNF in Guiyu children (35.91 ng/ml) was higher than for Haojiang (28.10 ng/ml) and was positively correlated with blood Pb levels. Both item and source olfactory memory tests at 15 min, 5 h and 24 h after odor exposure showed that scores were lower in Guiyu children indicative of reduced olfactory memory in Guiyu children. Olfactory memory tests scores negatively correlated with blood Pb and serum BDNF levels, but were positively associated with parental education levels. At the same time, scores of both tests on children in the high blood Pb level group (blood Pb levels > 5.00 μg/dL) were lower than those in the low blood Pb level group (blood Pb levels ≤ 5.00 μg/dL), implying that Pb exposure decreases olfactory memory in children. Our findings suggest that Pb exposure in e-waste recycling and dismantling areas could result in an increase in serum BDNF level and a decrease in child olfactory memory, in addition, BDNF might be involved in olfactory memory impairment.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
46
|
Callaghan CK, Rouine J, O'Mara SM. Exercise prevents IFN-α-induced mood and cognitive dysfunction and increases BDNF expression in the rat. Physiol Behav 2017; 179:377-383. [DOI: 10.1016/j.physbeh.2017.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
|
47
|
Lim WC, Kim H, Kim YJ, Park SH, Song JH, Lee KH, Lee IH, Lee YK, So KA, Choi KC, Ko H. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells. Bioorg Med Chem Lett 2017; 27:5337-5343. [PMID: 29122484 DOI: 10.1016/j.bmcl.2017.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation.
Collapse
Affiliation(s)
- Won-Chul Lim
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Hyunhee Kim
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Young-Joo Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea
| | - Seung-Ho Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki Heon Lee
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - In Ho Lee
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Yoo-Kyung Lee
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea.
| |
Collapse
|
48
|
Boltaev U, Meyer Y, Tolibzoda F, Jacques T, Gassaway M, Xu Q, Wagner F, Zhang YL, Palmer M, Holson E, Sames D. Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Sci Signal 2017; 10:10/493/eaal1670. [PMID: 28831019 DOI: 10.1126/scisignal.aal1670] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), have emerged as key regulators of brain plasticity and represent disease-modifying targets for several brain disorders, including Alzheimer's disease and major depressive disorder. Because of poor pharmacokinetic properties of BDNF, the interest in small-molecule TrkB agonists and modulators is high. Several compounds have been reported to act as TrkB agonists, and their increasing use in various nervous system disorder models creates the perception that these are reliable probes. To examine key pharmacological parameters of these compounds in detail, we have developed and optimized a series of complementary quantitative assays that measure TrkB receptor activation, TrkB-dependent downstream signaling, and gene expression in different cellular contexts. Although BDNF and other neurotrophic factors elicited robust and dose-dependent receptor activation and downstream signaling, we were unable to reproduce these activities using the reported small-molecule TrkB agonists. Our findings indicate that experimental results obtained with these compounds must be carefully interpreted and highlight the challenge of developing reliable pharmacological activators of this key molecular target.
Collapse
Affiliation(s)
- Umed Boltaev
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Yves Meyer
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Farangis Tolibzoda
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Teresa Jacques
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Madalee Gassaway
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Qihong Xu
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Florence Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle Palmer
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Edward Holson
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA. .,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| |
Collapse
|
49
|
Wang N, Ma H, Li Z, Gao Y, Cao X, Jiang Y, Zhou Y, Liu S. Chronic unpredictable stress exacerbates surgery-induced sickness behavior and neuroinflammatory responses via glucocorticoids secretion in adult rats. PLoS One 2017; 12:e0183077. [PMID: 28806788 PMCID: PMC5555668 DOI: 10.1371/journal.pone.0183077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022] Open
Abstract
Accumulated evidence indicates that stress sensitizes neuroinflammatory responses to a subsequent peripheral immune challenge. The present study investigated whether chronic unpredictable stress (CUS) aggravated surgery-induced sickness behavior and neuroinflammatory processes via glucocorticoids secretion in the adult brain.
Collapse
Affiliation(s)
- Na Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yalei Gao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuezhao Cao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| | - Yanhua Jiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Sidan Liu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
50
|
Fortes PM, Albrechet-Souza L, Vasconcelos M, Ascoli BM, Menegolla AP, de Almeida RMM. Social instigation and repeated aggressive confrontations in male Swiss mice: analysis of plasma corticosterone, CRF and BDNF levels in limbic brain areas. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2017; 39:98-105. [PMID: 28614436 DOI: 10.1590/2237-6089-2016-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
Introduction: Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. Objectives: To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Methods: Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Results: Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Conclusion: Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.
Collapse
Affiliation(s)
- Paula Madeira Fortes
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lucas Albrechet-Souza
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Mailton Vasconcelos
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | | | - Ana Paula Menegolla
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rosa Maria M de Almeida
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|