1
|
Norris MR, Becker LJ, Bilbily J, Chang YH, Borges G, Dunn SS, Madasu MK, Vazquez CR, Cariello SA, Al-Hasani R, Creed MC, McCall JG. Spared nerve injury decreases motivation in long-access homecage-based operant tasks in mice. Pain 2024; 165:1247-1265. [PMID: 38015628 PMCID: PMC11095834 DOI: 10.1097/j.pain.0000000000003123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
ABSTRACT Neuropathic pain causes both sensory and emotional maladaptation. Preclinical animal studies of neuropathic pain-induced negative affect could result in novel insights into the mechanisms of chronic pain. Modeling pain-induced negative affect, however, is variable across research groups and conditions. The same injury may or may not produce robust negative affective behavioral responses across different species, strains, and laboratories. Here, we sought to identify negative affective consequences of the spared nerve injury model on C57BL/6J male and female mice. We found no significant effect of spared nerve injury across a variety of approach-avoidance conflict, hedonic choice, and coping strategy assays. We hypothesized these inconsistencies may stem in part from the short test duration of these assays. To test this hypothesis, we used the homecage-based Feeding Experimentation Device version 3 to conduct 12-hour, overnight progressive ratio testing to determine whether mice with chronic spared nerve injury had decreased motivation to earn palatable food rewards. Our data demonstrate that despite equivalent task learning, spared nerve injury mice are less motivated to work for a sugar pellet than sham controls. Furthermore, when we normalized behavioral responses across all the behavioral assays we tested, we found that a combined normalized behavioral score is predictive of injury state and significantly correlates with mechanical thresholds. Together, these results suggest that homecage-based operant behaviors provide a useful platform for modeling nerve injury-induced negative affect and that valuable pain-related information can arise from agglomerative data analyses across behavioral assays-even when individual inferential statistics do not demonstrate significant mean differences.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - John Bilbily
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Hsuan Chang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Manish K. Madasu
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Chayla R. Vazquez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Solana A. Cariello
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Meaghan C. Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Li R, Yin S, Xie L, Li X, Jia J, Zhao L, He CY. Catalyst-free decarboxylative cross-coupling of N-hydroxyphthalimide esters with tert-butyl 2-(trifluoromethyl)acrylate and its application. Org Biomol Chem 2024; 22:2279-2283. [PMID: 38407278 DOI: 10.1039/d3ob02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Here, we demonstrate a practical method toward the facile synthesis of CF3-containing amino acids through visible light promoted decarboxylative cross-coupling of a redox-active ester with tert-butyl 2-(trifluoromethyl)acrylate. The reaction was driven by the photochemical activity of electron donor-acceptor (EDA) complexes that were formed by the non-covalent interaction between a Hantzsch ester and a redox-active ester. The advantages of this protocol are its synthetic simplicity, rich functional group tolerance, and a cost-effective reaction system.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Susu Yin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Lang Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| |
Collapse
|
3
|
Heraudeau M, Roux CM, Lahogue C, Largilliere S, Allouche S, Lelong-Boulouard V, Freret T. Micropipette-guided Drug Administration (MDA) as a non-invasive chronic oral administration method in male rats. J Neurosci Methods 2023; 398:109951. [PMID: 37634649 DOI: 10.1016/j.jneumeth.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND In preclinical studies resorting to rodents, the effects of prolonged oral intake of active substances are difficult to evaluate. Indeed, to get closer to clinical reality, oral gavage (OG) is frequently used but the repetition of administrations induces risks of lesions of the digestive tract, and stress for animals which can compromise the quality of the results. NEW METHOD This study describes the development of a non-invasive oral administration method in male Sprague Dawley rats, as a safe alternative of OG, more faithful to clinical reality and limiting biases in pharmacokinetics and/or pharmacodynamics interpretation. Micropipette-guided Drug Administration (MDA) is based on the administration by micropipette of a sufficiently palatable vehicle for the animals to voluntarily take its contents. RESULTS MDA was not demonstrated as less stressful than OG. A pharmacokinetics equivalence between MDA and OG was demonstrated for pregabalin administration but not for aripiprazole. Despite the use of a sweet vehicle, the MDA method does not result in weight gain or significant elevation of blood glucose and fructosamines level. Regarding the time needed to administrate the solution, the MDA method is significantly faster than OG. COMPARISON WITH EXISTING METHOD(S) Contrastingly to procedures using food or water, this method allows for a rigorous control of the time and dose administered and is delivered in discrete administration windows which is therefore closer to the clinical reality. This method appears particularly suitable for pharmacological evaluation of hydrophilic compounds. CONCLUSIONS The MDA procedure represents a respectful and adapted pharmacological administration method to study the effects of chronic oral administration in rats.
Collapse
Affiliation(s)
- Marie Heraudeau
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France; Department of Pharmacology, Caen University Hospital, Caen, France.
| | - Candice M Roux
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Stacy Largilliere
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | | | - Véronique Lelong-Boulouard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France; Department of Pharmacology, Caen University Hospital, Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| |
Collapse
|
4
|
Effects of NADPH Oxidase Isoform-2 (NOX2) Inhibition on Behavioral Responses and Neuroinflammation in a Mouse Model of Neuropathic Pain. Biomedicines 2023; 11:biomedicines11020416. [PMID: 36830952 PMCID: PMC9953009 DOI: 10.3390/biomedicines11020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
NADPH oxidase isoform-2 (NOX2) has been implicated in the pathophysiology of neuropathic pain (NP), mostly through the modulation of neuroinflammation. Since it is also accepted that some neuroimmune mechanisms underlying NP are sex-dependent, we aimed to evaluate the effects of early systemic treatment with the NOX2-selective inhibitor (NOX2i) GSK2795039 on behavioral responses and spinal neuroinflammation in spared nerve injury (SNI)-induced NP in male and female mice. Mechanical sensitivity was evaluated with the von Frey test, while general well-being and anxiety-like behavior were assessed with burrowing and light/dark box tests. Spinal microglial activation and cytokines IL-1β, IL-6, and IL-10, as well as macrophage colony-stimulating factor (M-CSF) were evaluated by immunofluorescence and multiplex immunoassay, respectively. NOX2i treatment reduced SNI-induced mechanical hypersensitivity and early SNI-induced microglial activation in both sexes. SNI-females, but not males, showed a transient reduction in burrowing activity. NOX2i treatment did not improve their burrowing activity, but tendentially reduced their anxiety-like behavior. NOX2i marginally decreased IL-6 in females, and increased M-CSF in males. Our findings suggest that NOX2-selective inhibition may be a potential therapeutic strategy for NP in both male and female individuals, with particular interest in females due to its apparent favorable impact in anxiety-like behavior.
Collapse
|
5
|
Aulehner K, Leenaars C, Buchecker V, Stirling H, Schönhoff K, King H, Häger C, Koska I, Jirkof P, Bleich A, Bankstahl M, Potschka H. Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats-A systematic review. Front Vet Sci 2022; 9:930005. [PMID: 36277074 PMCID: PMC9583882 DOI: 10.3389/fvets.2022.930005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022] Open
Abstract
Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.
Collapse
Affiliation(s)
- Katharina Aulehner
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah King
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
6
|
Riedesel AK, Bach-Hagemann A, Abdulbaki A, Talbot SR, Tolba R, Schwabe K, Lindauer U. Burrowing behaviour of rats: Strain differences and applicability as well-being parameter after intracranial surgery. Lab Anim 2022; 56:356-369. [PMID: 35144494 DOI: 10.1177/00236772211072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mice, burrowing is considered a species-typical parameter for assessing well-being, while this is less clear in rats. This exploratory study evaluated burrowing behaviour in three rat strains during training and in the direct postoperative phase after complex intracranial surgery in different neuroscience rat models established at Hannover Medical School or Aachen University Hospital. Male Crl:CD (SD; n = 18), BDIX/UlmHanZtm (BDIX; n = 8) and RjHan:WI (Wistar; n = 35) rats were individually trained to burrow gravel out of a tube on four consecutive days. Thereafter, BDIX rats were subjected to intracranial injection of BT4Ca cells and tumour resection (rat glioma model), SD rats to injection of 6-hydroxydopamine (6-OHDA) or vehicle (rat Parkinson's disease model) and Wistar rats to endovascular perforation or sham surgery (rat subarachnoid haemorrhage (SAH) model). Burrowing was retested on the day after surgery. During training, BDIX rats burrowed large amounts (mean of 2370 g on the fourth day), while SD and Wistar rats burrowed less gravel (means of 846 and 520 g, respectively). Burrowing increased significantly during training only in Wistar rats. Complex surgery, that is, tumour resection (BDIX), 6-OHDA injection (SD) and endovascular perforation or sham surgery for SAH (Wistar) significantly reduced burrowing and body weight, while simple stereotactic injection of tumour cells or vehicle did not affect burrowing. Despite the training, burrowing differed between the strains. In the direct postoperative phase, burrowing was reduced after complex surgery, indicating reduced well-being. Reduced burrowing was accompanied with postoperative weight loss, a validated and recognised quantitative measure for severity assessment.
Collapse
Affiliation(s)
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| | - Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - René Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| |
Collapse
|
7
|
Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain. J Neurosci 2021; 41:8991-9007. [PMID: 34446571 DOI: 10.1523/jneurosci.0547-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Different peripheral nerve injuries cause neuropathic pain through distinct mechanisms. Even the site of injury may impact underlying mechanisms, as indicated by the clinical finding that the antiseizure drug carbamazepine (CBZ) relieves pain because of compression injuries of trigeminal but not somatic nerves. We leveraged this observation in the present study hypothesizing that because CBZ blocks voltage-gated sodium channels (VGSCs), its therapeutic selectivity reflects differences between trigeminal and somatic nerves with respect to injury-induced changes in VGSCs. CBZ diminished ongoing and evoked pain behavior in rats with chronic constriction injury (CCI) to the infraorbital nerve (ION) but had minimal effect in rats with sciatic nerve CCI. This difference in behavior was associated with a selective increase in the potency of CBZ-induced inhibition of compound action potentials in the ION, an effect mirrored in human trigeminal versus somatic nerves. The increase in potency was associated with a selective increase in the efficacy of the NaV1.1 channel blocker ICA-121431 and NaV1.1 protein in the ION, but no change in NaV1.1 mRNA in trigeminal ganglia. Importantly, local ICA-121431 administration reversed ION CCI-induced hypersensitivity. Our results suggest a novel therapeutic target for the treatment of trigeminal neuropathic pain.SIGNIFICANCE STATEMENT This study is based on evidence of differences in pain and its treatment depending on whether the pain is above (trigeminal) or below (somatic) the neck, as well as evidence that voltage-gated sodium channels (VGSCs) may contribute to these differences. The focus of the present study was on channels underlying action potential propagation in peripheral nerves. There were differences between somatic and trigeminal nerves in VGSC subtypes underlying action potential propagation both in the absence and presence of injury. Importantly, because the local block of NaV1.1 in the trigeminal nerve reverses nerve injury-induced mechanical hypersensitivity, the selective upregulation of NaV1.1 in trigeminal nerves suggests a novel therapeutic target for the treatment of pain associated with trigeminal nerve injury.
Collapse
|
8
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
9
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
10
|
The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury. Sci Rep 2020; 10:20981. [PMID: 33262364 PMCID: PMC7708988 DOI: 10.1038/s41598-020-77640-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Back-translating the clinical manifestations of human disease burden into animal models is increasingly recognized as an important facet of preclinical drug discovery. We hypothesized that inbred rat strains possessing stress hyper-reactive-, depressive- or anxiety-like phenotypes may possess more translational value than common outbred strains for modeling neuropathic pain. Rats (inbred: LEW, WKY, F344/ICO and F344/DU, outbred: Crl:SD) were exposed to Spared Nerve Injury (SNI) and evaluated routinely for 6 months on behaviours related to pain (von Frey stimulation and CatWalk-gait analysis), anxiety (elevated plus maze, EPM) and depression (sucrose preference test, SPT). Markers of stress reactivity together with spinal/brain opioid receptor expression were also measured. All strains variously developed mechanical allodynia after SNI with the exception of stress-hyporesponsive LEW rats, despite all strains displaying similar functional gait-deficits after injury. However, affective changes reflective of anxiety- and depressive-like behaviour were only observed for F344/DU in the EPM, and for Crl:SD in SPT. Although differences in stress reactivity and opioid receptor expression occurred, overall they were relatively unaffected by SNI. Thus, anxio-depressive behaviours did not develop in all strains after nerve injury, and correlated only modestly with degree of pain sensitivity or with genetic predisposition to stress and/or affective disturbances.
Collapse
|
11
|
González-Cano R, Montilla-García Á, Ruiz-Cantero MC, Bravo-Caparrós I, Tejada MÁ, Nieto FR, Cobos EJ. The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going? Neurosci Biobehav Rev 2020; 113:238-261. [PMID: 32147529 DOI: 10.1016/j.neubiorev.2020.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
12
|
Turner PV, Pang DS, Lofgren JL. A Review of Pain Assessment Methods in Laboratory Rodents. Comp Med 2019; 69:451-467. [PMID: 31896391 PMCID: PMC6935698 DOI: 10.30802/aalas-cm-19-000042] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Ensuring that laboratory rodent pain is well managed underpins the ethical acceptability of working with these animals in research. Appropriate treatment of pain in laboratory rodents requires accurate assessments of the presence or absence of pain to the extent possible. This can be challenging some situations because laboratory rodents are prey species that may show subtle signs of pain. Although a number of standard algesiometry assays have been used to assess evoked pain responses in rodents for many decades, these methods likely represent an oversimplification of pain assessment and many require animal handling during testing, which can result in stress-induced analgesia. More recent pain assessment methods, such as the use of ethograms, facial grimace scoring, burrowing, and nest-building, focus on evaluating changes in spontaneous behaviors or activities of rodents in their home environments. Many of these assessment methods are time-consuming to conduct. While many of these newer tests show promise for providing a more accurate assessment of pain, most require more study to determine their reliability and sensitivity across a broad range of experimental conditions, as well as between species and strains of animals. Regular observation of laboratory rodents before and after painful procedures with consistent use of 2 or more assessment methods is likely to improve pain detection and lead to improved treatment and care-a primary goal for improving overall animal welfare.
Collapse
Affiliation(s)
- Patricia V Turner
- Charles River, Wilmington , Massachusetts Dept of Pathobiology, University of Guelph, Guelph, Canada;,
| | - Daniel Sj Pang
- Dept of Clinical Sciences, Université de Montréal, Quebec, J2S 2M2, Veterinary Clinical and Diagnostic Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
13
|
Watanabe K, Moriyama K, Tokumine J, Yorozu T. Effect of hangebyakujutsutemmato on pregabalin‐induced dizziness in a rat model of neuropathic pain. TRADITIONAL & KAMPO MEDICINE 2019; 6:88-95. [DOI: 10.1002/tkm2.1218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/08/2019] [Indexed: 08/26/2024]
Abstract
ABSTRACTAimThis study investigated the efficacy of hangebyakujutsutemmato (HBT) in alleviating disturbances of equilibrium using a rat pregabalin model of neuropathic pain with dizziness. Pregabalin is effective for treating neuropathic pain, but some patients cannot tolerate continued treatment owing to dizziness resulting from pregabalin, especially shortly after beginning treatment. HBT is a Japanese kampo medicine that is used to treat dizziness.MethodsRats with chronic constriction injury of the sciatic nerve (Bennett and Xie model) underwent the beam balance test to evaluate their sense of equilibrium. The animals were divided into four groups, as follows: pregabalin (50 mg/kg) + HBT (1 g/kg; PH), n = 8; pregabalin (50 mg/kg; P), n = 8; HBT (1 g/kg; H), n = 8; and water (N), n = 8. Pregabalin and HBT treatments were initiated 9 days following injury.ResultsOn postoperative day 10 (POD10), the day after starting drug treatment, there was a significant difference in the crossing time between PH and P (P < 0.01). The crossing time in group P recovered to a level similar to the other groups on POD16.ConclusionHBT alleviated the disturbance of equilibrium resulting from pregabalin in a rat model of neuropathic pain. This suggests that HBT may also alleviate dizziness and/or accelerate recovery from dizziness due to pregabalin treatment in humans.
Collapse
Affiliation(s)
- Kunitaro Watanabe
- Department of Anesthesiology Kyorin University, Faculty of Medicine Tokyo Japan
| | - Kumi Moriyama
- Department of Anesthesiology Kyorin University, Faculty of Medicine Tokyo Japan
| | - Joho Tokumine
- Department of Anesthesiology Kyorin University, Faculty of Medicine Tokyo Japan
| | - Tomoko Yorozu
- Department of Anesthesiology Kyorin University, Faculty of Medicine Tokyo Japan
| |
Collapse
|
14
|
Pregabalin for the treatment of syringomyelia-associated neuropathic pain in dogs: A randomised, placebo-controlled, double-masked clinical trial. Vet J 2019; 250:55-62. [PMID: 31383420 DOI: 10.1016/j.tvjl.2019.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 11/22/2022]
Abstract
Pregabalin is the first-line treatment for neuropathic pain (NeP) in humans. Dogs with Chiari-like malformation and syringomyelia (CM/SM) associated with NeP could benefit from pregabalin. The aim of this study was to evaluate the efficacy of pregabalin for NeP in dogs with CM/SM. Eight dogs with symptomatic CM/SM were included in a double-masked, randomised, crossover placebo-controlled clinical trial. All dogs received anti-inflammatory drugs as base-line treatment during placebo or pregabalin phase of 14±4 days each. Analgesic efficacy was assessed with a daily numerical rating scale (NRS) recorded by dog owners (0-10, 10=worst pain) and quantitative sensory testing at baseline, placebo and pregabalin phases. Blood samples were collected to report pregabalin exposure and to assess renal function. Daily NRS scores recorded by dog owners in the pregabalin group were lower than in the placebo group (P=0.006). Mechanical thresholds were higher with pregabalin compared to baseline or placebo (P=0.037, P<0.001). Cold latency at 15°C was prolonged on the neck and humeri with pregabalin compared to baseline (P<0.001 for both) or placebo (P=0.02, P=0.0001). Cold latency at 0°C was longer on pregabalin compared to baseline and placebo (P=0.001, P=0.004). There was no pregabalin accumulation between first and last dose. This study demonstrates the efficacy of pregabalin for the treatment of NeP due to CM/SM on daily pain scores recorded by dog owners. Pregabalin significantly reduced mechanical hyperalgesia, cold hyperalgesia (0°C) and allodynia (15°C) compared to placebo. Pregabalin was non-cumulative and well tolerated with occasional mild sedation.
Collapse
|
15
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|
16
|
Xu Y, Tian NX, Bai QY, Chen Q, Sun XH, Wang Y. Gait Assessment of Pain and Analgesics: Comparison of the DigiGait™ and CatWalk™ Gait Imaging Systems. Neurosci Bull 2019; 35:401-418. [PMID: 30659524 PMCID: PMC6527535 DOI: 10.1007/s12264-018-00331-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Investigation of pain requires measurements of nociceptive sensitivity and other pain-related behaviors. Recent studies have indicated the superiority of gait analysis over traditional evaluations (e.g., skin sensitivity and sciatic function index [SFI]) in detecting subtle improvements and deteriorations in animal models. Here, pain-related gait parameters, whose criteria include (1) alteration in pain models, (2) correlation with nociceptive threshold, and (3) normalization by analgesics, were identified in representative models of neuropathic pain (spared nerve injury: coordination data) and inflammatory pain (intraplantar complete Freund’s adjuvant: both coordination and intensity data) in the DigiGait™ and CatWalk™ systems. DigiGait™ had advantages in fixed speed (controlled by treadmill) and dynamic SFI, while CatWalk™ excelled in intrinsic velocity, intensity data, and high-quality 3D images. Insights into the applicability of each system may provide guidance for selecting the appropriate gait imaging system for different animal models and optimization for future pain research.
Collapse
Affiliation(s)
- Yu Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Qing-Yang Bai
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Qi Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Xiao-Hong Sun
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Patel R, Kucharczyk M, Montagut‐Bordas C, Lockwood S, Dickenson AH. Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: A back-translational study of oxcarbazepine. Eur J Pain 2019; 23:183-197. [PMID: 30091265 PMCID: PMC6396087 DOI: 10.1002/ejp.1300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The term 'irritable nociceptor' was coined to describe neuropathic patients characterized by evoked hypersensitivity and preservation of primary afferent fibres. Oxcarbazepine is largely ineffectual in an overall patient population, but has clear efficacy in a subgroup with the irritable nociceptor profile. We examine whether neuropathy in rats induced by spinal nerve injury shares overlapping pharmacological sensitivity with the irritable nociceptor phenotype using drugs that target sodium channels. METHODS In vivo electrophysiology was performed in anaesthetized spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range (WDR) neurones in the ventral posterolateral thalamus (VPL) and dorsal horn. RESULTS In neuropathic rats, spontaneous activity in the VPL was substantially attenuated by spinal lidocaine, an effect that was absent in sham rats. The former measure was in part dependent on ongoing peripheral activity as intraplantar lidocaine also reduced aberrant spontaneous thalamic firing. Systemic oxcarbazepine had no effect on wind-up of dorsal horn neurones in sham and SNL rats. However, in SNL rats, oxcarbazepine markedly inhibited punctate mechanical-, dynamic brush- and cold-evoked neuronal responses in the VPL and dorsal horn, with minimal effects on heat-evoked responses. In addition, oxcarbazepine inhibited spontaneous activity in the VPL. Intraplantar injection of the active metabolite licarbazepine replicated the effects of systemic oxcarbazepine, supporting a peripheral locus of action. CONCLUSIONS We provide evidence that ongoing activity in primary afferent fibres drives spontaneous thalamic firing after spinal nerve injury and that oxcarbazepine through a peripheral mechanism exhibits modality-selective inhibitory effects on sensory neuronal processing. SIGNIFICANCE The inhibitory effects of lidocaine and oxcarbazepine in this rat model of neuropathy resemble the clinical observations in the irritable nociceptor patient subgroup and support a mechanism-based rationale for bench-to-bedside translation when screening novel drugs.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Mateusz Kucharczyk
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | | | - Stevie Lockwood
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
18
|
Koyama S, LeBlanc BW, Smith KA, Roach C, Levitt J, Edhi MM, Michishita M, Komatsu T, Mashita O, Tanikawa A, Yoshikawa S, Saab CY. An Electroencephalography Bioassay for Preclinical Testing of Analgesic Efficacy. Sci Rep 2018; 8:16402. [PMID: 30401974 PMCID: PMC6219560 DOI: 10.1038/s41598-018-34594-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
We present a multimodal method combining quantitative electroencephalography (EEG), behavior and pharmacology for pre-clinical screening of analgesic efficacy in vivo. The method consists of an objective and non-invasive approach for realtime assessment of spontaneous nociceptive states based on EEG recordings of theta power over primary somatosensory cortex in awake rats. Three drugs were chosen: (1) pregabalin, a CNS-acting calcium channel inhibitor; (2) EMA 401, a PNS-acting angiotensin II type 2 receptor inhibitor; and (3) minocycline, a CNS-acting glial inhibitor. Optimal doses were determined based on pharmacokinetic studies and/or published data. The effects of these drugs at single or multiple doses were tested on the attenuation of theta power and paw withdrawal latency (PWL) in a rat model of neuropathic pain. We report mostly parallel trends in the reversal of theta power and PWL in response to administration of pregabalin and EMA 401, but not minocycline. We also note divergent trends at non-optimal doses and following prolonged drug administration, suggesting that EEG theta power can be used to detect false positive and false negative outcomes of the withdrawal reflex behavior, and yielding novel insights into the analgesic effects of these drugs on spontaneous nociceptive states in rats.
Collapse
Affiliation(s)
- Suguru Koyama
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Brian W LeBlanc
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Kelsey A Smith
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Catherine Roach
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Joshua Levitt
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Muhammad M Edhi
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Mai Michishita
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Takayuki Komatsu
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Okishi Mashita
- Laboratory for Safety Assessment & ADME, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Aki Tanikawa
- Laboratory for Safety Assessment & ADME, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Satoru Yoshikawa
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Carl Y Saab
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA. .,Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
19
|
Shi C, Das V, Li X, Kc R, Qiu S, O-Sullivan I, Ripper RL, Kroin JS, Mwale F, Wallace AA, Zhu B, Zhao L, van Wijnen AJ, Ji M, Lu J, Votta-Velis G, Yuan W, Im HJ. Development of an in vivo mouse model of discogenic low back pain. J Cell Physiol 2018; 233:6589-6602. [PMID: 29150945 DOI: 10.1002/jcp.26280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/14/2017] [Indexed: 11/09/2022]
Abstract
Discogenic low back pain (DLBP) is extremely common and costly. Effective treatments are lacking due to DLBP's unknown pathogenesis. Currently, there are no in vivo mouse models of DLBP, which restricts research in this field. The aim of this study was to establish a reliable DLBP model in mouse that captures the pathological changes in the disc and allows longitudinal pain testing. The model was generated by puncturing the mouse lumbar discs (L4/5, L5/6, and L6/S1) and removing the nucleus pulposus using a microscalpel under the microscope. Histology, molecular pathways, and pain-related behaviors were examined. Over 12 weeks post-surgery, animals displayed the mechanical, heat, and cold hyperalgesia along with decreased burrowing and rearing. Histology showed progressive disc degeneration with loss of disc height, nucleus pulposus reduction, proteoglycan depletion, and annular fibrotic disorganization. Immunohistochemistry revealed a substantial increase in inflammatory mediators at 2 and 4 weeks. Nerve growth factor was upregulated from 2 weeks to the end of the experiment. Nerve fiber ingrowth was induced in the injured discs after 4 weeks. Disc-puncture also produced an upregulation of neuropeptides in dorsal root ganglia neurons and an activation of glial cells in the spinal cord dorsal horn. These findings indicate that the cellular and structural changes in discs, as well as peripheral and central nervous system plasticity, paralleled persistent, and robust behavioral pain responses. Therefore, this mouse DLBP model could be used to investigate mechanisms underlying discogenic pain, thereby facilitating effective drug screening and development of treatments for DLBP.
Collapse
Affiliation(s)
- Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Vaskar Das
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Sujun Qiu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
- Department of Orthopedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - InSug O-Sullivan
- Department of Internal Medicine, The University of Illinois at Chicago (UIC), Chicago, Illinois
| | - Richard L Ripper
- Department of Anesthesiology, The University of Illinois at Chicago (UIC), Chicago, Illinois
| | - Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois
| | - Fackson Mwale
- Department of Surgery, McGill University and Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Atiyayein A Wallace
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Bingqian Zhu
- Department of Biobehavioral Health Science, The University of Illinois at Chicago (UIC), Chicago, Illinois
| | - Lan Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | | | - Mingliang Ji
- Department of Orthopaedic Surgery, Southeast University Zhongda Hospital, Nanjing, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Southeast University Zhongda Hospital, Nanjing, China
| | - Gina Votta-Velis
- Department of Anesthesiology, The University of Illinois at Chicago (UIC), Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois
| | - Wen Yuan
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois
- Department of Bioengineering, The University of Illinois at Chicago (UIC), Chicago, Illinois
| |
Collapse
|
20
|
Standard analgesics reverse burrowing deficits in a rat CCI model of neuropathic pain, but not in models of type 1 and type 2 diabetes-induced neuropathic pain. Behav Brain Res 2018; 350:129-138. [DOI: 10.1016/j.bbr.2018.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022]
|
21
|
Shepherd AJ, Cloud ME, Cao YQ, Mohapatra DP. Deficits in Burrowing Behaviors Are Associated With Mouse Models of Neuropathic but Not Inflammatory Pain or Migraine. Front Behav Neurosci 2018; 12:124. [PMID: 30002622 PMCID: PMC6031738 DOI: 10.3389/fnbeh.2018.00124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/06/2018] [Indexed: 01/21/2023] Open
Abstract
Burrowing, or the removal of material from an enclosed tube, is emerging as a prominent means of testing changes in a voluntary behavior in rodent models of various pain states. Here, we report no significant differences between male and female mice in terms of burrowing performance, in a substantially shorter time frame than previous reports. We found that the color of the burrow tube affects the variability of burrowing performance when tested in a lit room, suggesting that light aversion is at least a partial driver of this behavior. Spared nerve injury (SNI; as a model of neuropathy) impairs burrowing performance and correlates with enhanced mechanical sensitivity as assessed by von Frey filaments, as well as being pharmacologically reversed by an analgesic, gabapentin. Loss of the SNI-induced burrowing deficit was observed with daily testing post-surgery, but not when the testing interval was increased to 5 days, suggesting a confounding effect of daily repeat testing in this paradigm. Intraplantar complete Freund’s adjuvant (as a model of inflammatory pain) and systemic nitroglycerin (as a model of migraine-like symptoms) administration did not induce any burrowing deficit, indicating that assessment of burrowing behavior may not be universally suitable for the detection of behavioral changes across all rodent pain models.
Collapse
Affiliation(s)
- Andrew J Shepherd
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Megan E Cloud
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yu-Qing Cao
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Durga P Mohapatra
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
22
|
Griffiths LA, Duggett NA, Pitcher AL, Flatters SJL. Evoked and Ongoing Pain-Like Behaviours in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy. Pain Res Manag 2018; 2018:8217613. [PMID: 29973969 PMCID: PMC6008701 DOI: 10.1155/2018/8217613] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/03/2018] [Indexed: 01/24/2023]
Abstract
Paclitaxel-induced neuropathic pain is a major dose-limiting side effect of paclitaxel therapy. This study characterises a variety of rat behavioural responses induced by intermittent administration of clinically formulated paclitaxel. 2 mg/kg paclitaxel or equivalent vehicle was administered intraperitoneally on days 0, 2, 4, and 6 to adult male Sprague-Dawley rats. Evoked pain-like behaviours were assessed with von Frey filaments, acetone, or radiant heat application to plantar hind paws to ascertain mechanical, cold, or heat sensitivity, respectively. Motor coordination was evaluated using an accelerating RotaRod apparatus. Ongoing pain-like behaviour was assessed via spontaneous burrowing and nocturnal wheel running. Mechanical and cold hypersensitivity developed after a delayed onset, peaked approximately on day 28, and persisted for several months. Heat sensitivity and motor coordination were unaltered in paclitaxel-treated rats. Spontaneous burrowing behaviour and nocturnal wheel running were significantly impaired on day 28, but not on day 7, indicating ongoing pain-like behaviour, rather than acute drug toxicity. This study comprehensively characterises a rat model of paclitaxel-induced peripheral neuropathy, providing the first evidence for ongoing pain-like behaviour, which occurs in parallel with maximal mechanical/cold hypersensitivity. We hope that this new data improve the face validity of rat models to better reflect patient-reported pain symptoms, aiding translation of new treatments to the clinic.
Collapse
Affiliation(s)
- Lisa A. Griffiths
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ann L. Pitcher
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sarah J. L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
23
|
Jirkof P, Arras M, Cesarovic N. Tramadol:Paracetamol in drinking water for treatment of post-surgical pain in laboratory mice. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Whittaker AL, Zhu Y, Howarth GS, Loung CS, Bastian SEP, Wirthensohn MG. Effects of commercially produced almond by-products on chemotherapy-induced mucositis in rats. World J Gastrointest Pathophysiol 2017; 8:176-187. [PMID: 29184703 PMCID: PMC5696615 DOI: 10.4291/wjgp.v8.i4.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/20/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To determine if almond extracts reduce the severity of chemotherapy-induced mucositis as determined through biochemical, histological and behavioural markers.
METHODS Intestinal mucositis is a debilitating condition characterized by inflammation and ulceration of the gastrointestinal mucosa experienced by cancer patients undergoing chemotherapy. Certain bioactive plant products have shown promise in accelerating mucosal repair and alleviating clinical symptoms. This study evaluated almond extracts for their potential to reduce the severity of chemotherapy-induced mucositis in Dark Agouti rats. Female Dark Agouti rats were gavaged (days 3-11) with either PBS, almond hull or almond blanched water extract at two doses, and were injected intraperitoneally with 5-fluorouracil (5-FU-150 mg/kg) or saline on day 9 to induce mucositis. Burrowing behavior, histological parameters and myeloperoxidase activity were assessed.
RESULTS Bodyweight was significantly reduced in rats that received 5-FU compared to saline-treated controls (P < 0.05). Rats administered 5-FU significantly increased jejunal and ileal MPO levels (1048%; P < 0.001 and 409%; P < 0.001), compared to healthy controls. Almond hull extract caused a pro-inflammatory response in rats with mucositis as evidenced by increased myeloperoxidase activity in the jejunum when compared to 5-FU alone (rise 50%, 1088 ± 96 U/g vs 723 ± 135 U/g, P = 0.02). Other extract-related effects on inflammatory activity were minimal. 5-FU significantly increased histological severity score compared to healthy controls confirming the presence of mucositis (median of 9.75 vs 0; P < 0.001). The extracts had no ameliorating effect on histological severity score in the jejunum or ileum. Burrowing behavior was significantly reduced in all chemotherapy-treated groups (P = 0.001). The extracts failed to normalize burrowing activity to baseline levels.
CONCLUSION Almond extracts at these dosages offer little beneficial effect on mucositis severity. Burrowing provides a novel measure of affective state in studies of chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Ying Zhu
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Chi S Loung
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Susan E P Bastian
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Michelle G Wirthensohn
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
25
|
Abstract
Pain modulates rhythmic neuronal activity recorded by Electroencephalography (EEG) in humans. Our laboratory previously showed that rat models of acute and neuropathic pain manifest increased power in primary somatosensory cortex (S1) recorded by electrocorticography (ECoG). In this study, we hypothesized that pain increases EEG power and corticocortical coherence in different rat models of pain, whereas treatments with clinically effective analgesics reverse these changes. Our results show increased cortical power over S1 and prefrontal cortex (PFC) in awake, freely behaving rat models of acute, inflammatory and neuropathic pain. Coherence between PFC and S1 is increased at a late, but not early, time point during the development of neuropathic pain. Electroencephalography power is not affected by ibuprofen in the acute pain model. However, pregabalin and mexiletine reverse the changes in power and S1-PFC coherence in the inflammatory and neuropathic pain models. These data suggest that quantitative EEG might be a valuable predictor of pain and analgesia in rodents.
Collapse
|
26
|
Gambeta E, Kopruszinski CM, dos Reis RC, Zanoveli JM, Chichorro JG. Facial pain and anxiety-like behavior are reduced by pregabalin in a model of facial carcinoma in rats. Neuropharmacology 2017; 125:263-271. [DOI: 10.1016/j.neuropharm.2017.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
27
|
Sheahan TD, Siuda ER, Bruchas MR, Shepherd AJ, Mohapatra DP, Gereau RW, Golden JP. Inflammation and nerve injury minimally affect mouse voluntary behaviors proposed as indicators of pain. NEUROBIOLOGY OF PAIN 2017; 2:1-12. [PMID: 29075674 PMCID: PMC5653321 DOI: 10.1016/j.ynpai.2017.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammation suppressed wheel running and locomotion, and impaired gait in mice. Nerve injury gave rise to gait deficits that are likely motor-, not pain-related. Changes in wheel running or gait were unrelated to the degree of hypersensitivity. Neither inflammation nor nerve injury altered social interactions or anxiety-like behavior.
It has been suggested that the lack of rodent behavioral assays that represent the complexities of human pain contributes to the poor translational record of basic pain research findings. Clinically, chronic pain interferes with patient mobility and physical/social activities, and increases anxiety symptoms, in turn negatively impacting quality of life. To determine whether these behaviors are similarly influenced by putative pain manipulations in rodents, we systematically evaluated wheel running, locomotion, gait, social interaction, and anxiety-like behavior in models of inflammation and nerve injury in adult C57BL6/J male mice. We demonstrate that inflammation and nerve injury differentially affect voluntary behaviors while mice are hypersensitive to mechanical stimuli. Bilateral Complete Freund’s Adjuvant (CFA)-induced inflammation transiently suppressed wheel running and locomotion and also induced gait deficits. In contrast, spared nerve injury (SNI) altered gait and impaired gross motor coordination. SNI-induced gait changes were not reversed by the analgesic PD123319, an angiotensin II type 2 receptor antagonist, and are therefore likely to be motor-related rather than pain-related. Neither CFA nor SNI significantly altered social interaction or elicited general anxiety-like behavior. Our findings suggest that in contrast to humans, mobility and physical/social activities are minimally altered, if at all, in mice following inflammation or nerve injury.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Edward R Siuda
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael R Bruchas
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew J Shepherd
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Durga P Mohapatra
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
28
|
Wang J, Casals-Diaz L, Zurawski T, Meng J, Moriarty O, Nealon J, Edupuganti OP, Dolly O. A novel therapeutic with two SNAP-25 inactivating proteases shows long-lasting anti-hyperalgesic activity in a rat model of neuropathic pain. Neuropharmacology 2017; 118:223-232. [PMID: 28347837 DOI: 10.1016/j.neuropharm.2017.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/08/2023]
Abstract
A pressing need exists for long-acting, non-addictive medicines to treat chronic pain, a major societal burden. Botulinum neurotoxin type A (BoNT/A) complex - a potent, specific and prolonged inhibitor of neuro-exocytosis - gives some relief in several pain disorders, but not for all patients. Our study objective was to modify BoNT/A to overcome its inability to block transmitter release elicited by high [Ca2+]i and increase its limited analgesic effects. This was achieved by fusing a BoNT/A gene to that for the light chain (LC) of type/E. The resultant purified protein, LC/E-BoNT/A, entered cultured sensory neurons and, unlike BoNT/A, inhibited release of calcitonin gene-related peptide evoked by capsaicin. Western blotting revealed that this improvement could be due to a more extensive truncation by LC/E of synaptosomal-associated protein of Mr = 25 k, essential for neuro-exocytosis. When tested in a rat spared nerve injury (SNI) model, a single intra-plantar (IPL) injection of LC/E-BoNT/A alleviated for ∼2 weeks mechanical and cold hyper-sensitivities, in a dose-dependent manner. The highest non-paralytic dose (75 U/Kg, IPL) proved significantly more efficacious than BoNT/A (15 U/Kg, IPL) or repeated systemic pregabalin (10 mg/Kg, intraperitoneal), a clinically-used pain modulator. Effects of repeated or delayed injections of this fusion protein highlighted its analgesic potential. Attenuation of mechanical hyperalgesia was extended by a second administration when the effect of the first had diminished. When injected 5 weeks after injury, LC/E-BoNT/A also reversed fully-established mechanical and cold hyper-sensitivity. Thus, combining advantageous features of BoNT/E and/A yields an efficacious, locally-applied and long-acting anti-hyperalgesic.
Collapse
Affiliation(s)
- Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Laura Casals-Diaz
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Tomas Zurawski
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jianghui Meng
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Orla Moriarty
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - John Nealon
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Om Prakash Edupuganti
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
29
|
Wodarski R, Delaney A, Ultenius C, Morland R, Andrews N, Baastrup C, Bryden LA, Caspani O, Christoph T, Gardiner NJ, Huang W, Kennedy JD, Koyama S, Li D, Ligocki M, Lindsten A, Machin I, Pekcec A, Robens A, Rotariu SM, Voß S, Segerdahl M, Stenfors C, Svensson CI, Treede RD, Uto K, Yamamoto K, Rutten K, Rice AS. Cross-centre replication of suppressed burrowing behaviour as an ethologically relevant pain outcome measure in the rat: a prospective multicentre study. Pain 2016; 157:2350-65. [PMID: 27643836 PMCID: PMC5028161 DOI: 10.1097/j.pain.0000000000000657] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
Burrowing, an ethologically relevant rodent behaviour, has been proposed as a novel outcome measure to assess the global impact of pain in rats. In a prospective multicentre study using male rats (Wistar, Sprague-Dawley), replication of suppressed burrowing behaviour in the complete Freund adjuvant (CFA)-induced model of inflammatory pain (unilateral, 1 mg/mL in 100 µL) was evaluated in 11 studies across 8 centres. Following a standard protocol, data from participating centres were collected centrally and analysed with a restricted maximum likelihood-based mixed model for repeated measures. The total population (TP-all animals allocated to treatment; n = 249) and a selected population (SP-TP animals burrowing over 500 g at baseline; n = 200) were analysed separately, assessing the effect of excluding "poor" burrowers. Mean baseline burrowing across studies was 1113 g (95% confidence interval: 1041-1185 g) for TP and 1329 g (1271-1387 g) for SP. Burrowing was significantly suppressed in the majority of studies 24 hours (7 studies/population) and 48 hours (7 TP, 6 SP) after CFA injections. Across all centres, significantly suppressed burrowing peaked 24 hours after CFA injections, with a burrowing deficit of -374 g (-479 to -269 g) for TP and -498 g (-609 to -386 g) for SP. This unique multicentre approach first provided high-quality evidence evaluating suppressed burrowing as robust and reproducible, supporting its use as tool to infer the global effect of pain on rodents. Second, our approach provided important informative value for the use of multicentre studies in the future.
Collapse
Affiliation(s)
- Rachel Wodarski
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
- Eli Lilly and Company, Erl Wood Manor, Windlesham, United Kingdom
| | - Ada Delaney
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Camilla Ultenius
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | - Rosie Morland
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Nick Andrews
- Department of Neurobiology, Boston Children's Hospital, MA, USA
| | - Catherine Baastrup
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark
| | - Luke A. Bryden
- CNS Disease Division Research Germany, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach an der Riss, Germany
| | - Ombretta Caspani
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Thomas Christoph
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Natalie J. Gardiner
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Wenlong Huang
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | - Suguru Koyama
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Dominic Li
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Marcin Ligocki
- Eli Lilly and Company, Erl Wood Manor, Windlesham, United Kingdom
| | | | - Ian Machin
- Deal, Kent, United Kingdom. L. A. Bryden is now with the Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom. W. Huang is now with the Institute of Medical Sciences, University of Aberdeen, United Kingdom. C. Stenfors is now with the R&D CNS Research, Orion Corporation, Orion Pharma, Espoo, Finland
| | - Anton Pekcec
- CNS Disease Division Research Germany, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach an der Riss, Germany
| | - Angela Robens
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Sanziana M. Rotariu
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sabrina Voß
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Marta Segerdahl
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
- H. Lundbeck A/S, Valby, Denmark
| | - Carina Stenfors
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Katsuhiro Uto
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kazumi Yamamoto
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kris Rutten
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Andrew S.C. Rice
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
30
|
McDonald T, Liang HA, Sanoja R, Gotter AL, Kuduk SD, Coleman PJ, Smith KM, Winrow CJ, Renger JJ. Pharmacological evaluation of orexin receptor antagonists in preclinical animal models of pain. J Neurogenet 2016; 30:32-41. [DOI: 10.3109/01677063.2016.1171862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Muralidharan A, Kuo A, Jacob M, Lourdesamy JS, Carvalho LMSPD, Nicholson JR, Corradini L, Smith MT. Comparison of Burrowing and Stimuli-Evoked Pain Behaviors as End-Points in Rat Models of Inflammatory Pain and Peripheral Neuropathic Pain. Front Behav Neurosci 2016; 10:88. [PMID: 27242458 PMCID: PMC4862327 DOI: 10.3389/fnbeh.2016.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 01/30/2023] Open
Abstract
Establishment and validation of ethologically-relevant, non-evoked behavioral end-points as surrogate measures of spontaneous pain in rodent pain models has been proposed as a means to improve preclinical to clinical research translation in the pain field. Here, we compared the utility of burrowing behavior with hypersensitivity to applied mechanical stimuli for pain assessment in rat models of chronic inflammatory and peripheral neuropathic pain. Briefly, groups of male Sprague-Dawley rats were habituated to the burrowing environment and trained over a 5-day period. Rats that burrowed ≤ 450 g of gravel on any 2 days of the individual training phase were excluded from the study. The remaining rats received either a unilateral intraplantar injection of Freund's complete adjuvant (FCA) or saline, or underwent unilateral chronic constriction injury (CCI) of the sciatic nerve- or sham-surgery. Baseline burrowing behavior and evoked pain behaviors were assessed prior to model induction, and twice-weekly until study completion on day 14. For FCA- and CCI-rats, but not the corresponding groups of sham-rats, evoked mechanical hypersensitivity developed in a temporal manner in the ipsilateral hindpaws. Although burrowing behavior also decreased in a temporal manner for both FCA-and CCI- rats, there was considerable inter-animal variability. By contrast, mechanical hyperalgesia and mechanical allodynia in the ipsilateral hindpaws of FCA- and CCI-rats respectively, exhibited minimal inter-animal variability. Our data collectively show that burrowing behavior is altered in rodent models of chronic inflammatory pain and peripheral neuropathic pain. However, large group sizes are needed to ensure studies are adequately powered due to considerable inter-animal variability.
Collapse
Affiliation(s)
- Arjun Muralidharan
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Meera Jacob
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Jacintha S Lourdesamy
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | | | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach, Germany
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of Queensland, St Lucia CampusBrisbane, QLD, Australia
| |
Collapse
|
32
|
Kawano T, Eguchi S, Iwata H, Yamanaka D, Tateiwa H, Locatelli FM, Yokoyama M. Pregabalin can prevent, but not treat, cognitive dysfunction following abdominal surgery in aged rats. Life Sci 2016; 148:211-9. [DOI: 10.1016/j.lfs.2016.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 11/29/2022]
|
33
|
Whiteside GT, Pomonis JD, Kennedy JD. Preclinical Pharmacological Approaches in Drug Discovery for Chronic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:303-23. [PMID: 26920017 DOI: 10.1016/bs.apha.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, animal behavioral models, particularly those used in pain research, have been increasingly scrutinized and criticized for their role in the poor translation of novel pharmacotherapies for chronic pain. This chapter addresses the use of animal models of pain used in drug discovery research. It highlights how, when, and why animal models of pain are used as one of the many experimental tools used to gain better understanding of target mechanisms and rank-order compounds in the iterative process of establishing structure-activity relationship. Together, these models help create an "analgesic signature" for a compound and inform the indications most likely to yield success in clinical trials. In addition, the authors discuss some often underappreciated aspects of currently used (traditional) animal models of pain, including simply applying basic pharmacological principles to study design and data interpretation as well as consideration of efficacy alongside side effect measures as part of the overall conclusion of efficacy. This is provided to add perspective regarding current efforts to develop new models and endpoints both in rodents and in larger animal species as well as assess cognitive and/or affective aspects of pain. Finally, the authors suggest ways in which efficacy evaluation in animal models of pain, whether traditional or new, might better align with clinical standards of analysis, citing examples where applying effect size and number needed to treat estimations to animal model data suggest that the efficacy bar often may be set too low preclinically to allow successful translation to the clinical setting.
Collapse
Affiliation(s)
| | - James D Pomonis
- American Preclinical Services, LLC, Minneapolis, Minnesota, USA
| | | |
Collapse
|
34
|
Pharmacological characterization of intraplantar Complete Freund's Adjuvant-induced burrowing deficits. Behav Brain Res 2015; 301:142-51. [PMID: 26704218 DOI: 10.1016/j.bbr.2015.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND It has recently been suggested that non-reflex behavioral readouts, such as burrowing, may be used to evaluate the efficacy of analgesics in rodent models of pain. OBJECTIVE To confirm whether intraplantar Complete Freund's Adjuvant (CFA)-induced pain reliably results in burrowing deficits which can be ameliorated by clinically efficacious analgesics as previously suggested. METHODS Uni- or bilateral intraplantar CFA injections were performed in male Wistar Han rats. The time- and concentration-response of burrowing deficits and the ability of various analgesics to reinstate burrowing performance were studied. An anxiolytic was also tested to evaluate the motivational cue that drives this behavior. RESULTS Burrowing deficits were dependent on the concentration of CFA injected, most pronounced 24h after CFA injections and even more pronounced after bilateral compared with unilateral injections. Celecoxib and ibuprofen reversed CFA-induced burrowing deficits whereas indomethacin failed to significantly reinstate burrowing performance. Morphine and tramadol failed to reinstate burrowing performance, but sedation was observed in control rats at doses thought to be efficacious. An antibody directed against the nerve growth factor significantly improved CFA-induced burrowing deficits. Neither gabapentin nor the anxiolytic diazepam reinstated burrowing performance and the opportunity to find shelter did not modify burrowing performance. CONCLUSION Burrowing is an innate behavior reliably exhibited by rats. It is suppressed in a model of inflammatory pain and differently reinstated by clinically efficacious analgesics that lack motor impairing side effects, but not an anxiolytic, suggesting that this assay is suitable for the assessment of analgesic efficacy of novel drugs.
Collapse
|
35
|
M'Dahoma S, Barthélemy S, Tromilin C, Jeanson T, Viguier F, Michot B, Pezet S, Hamon M, Bourgoin S. Respective pharmacological features of neuropathic-like pain evoked by intrathecal BDNF versus sciatic nerve ligation in rats. Eur Neuropsychopharmacol 2015; 25:2118-30. [PMID: 26343858 DOI: 10.1016/j.euroneuro.2015.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022]
Abstract
Numerous reported data support the idea that Brain Derived Neurotrophic Factor (BDNF) is critically involved in both depression and comorbid pain. The possible direct effect of BDNF on pain mechanisms was assessed here and compared with behavioral/neurobiological features of neuropathic pain caused by chronic constriction injury to the sciatic nerve (CCI-SN). Sprague-Dawley male rats were either injected intrathecally with BDNF (3.0 ng i.t.) or subjected to unilateral CCI-SN. Their respective responses to anti-hyperalgesic drugs were assessed using the Randall-Selitto test and both immunohistochemical and RT-qPCR approaches were used to investigate molecular/cellular mechanisms underlying hyperalgesia in both models. Long lasting hyperalgesia and allodynia were induced by i.t. BDNF in intact healthy rats like those found after CCI-SN. Acute treatment with the BDNF-TrkB receptor antagonist cyclotraxin B completely prevented i.t. BDNF-induced hyperalgesia and partially reversed this symptom in both BDNF-pretreated and CCI-SN lesioned rats. Acute administration of the anticonvulsant pregabalin, the NMDA receptor antagonist ketamine, the opioid analgesics morphine and tapentadol or the antidepressant agomelatine also transiently reversed hyperalgesia in both i.t. BDNF injected- and CCI-SN lesioned-rats. Marked induction of microglia activation markers (OX42, Iba1, P-p38), proinflammatory cytokine IL-6, NMDA receptor subunit NR2B and BDNF was found in spinal cord and/or dorsal root ganglia of CCI-SN rats. A long lasting spinal BDNF overexpression was also observed in BDNF i.t. rats, indicating an autocrine self-induction, with downstream long lasting TrkB-mediated neuropathic-like pain. Accordingly, TrkB blockade appeared as a relevant approach to alleviate not only i.t. BDNF- but also nerve lesion-evoked neuropathic pain.
Collapse
Affiliation(s)
- Saïd M'Dahoma
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris F-75014, France; Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Sandrine Barthélemy
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris F-75014, France; Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Claire Tromilin
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris F-75014, France; Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Tiffany Jeanson
- Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France; Theranexus, 91400 Orsay, France
| | - Florent Viguier
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris F-75014, France; Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Benoit Michot
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris F-75014, France; Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Sophie Pezet
- UMR 8249 CNRS - Brain Plasticity Unit, ESCPI-ParisTech, Paris F-75005, France
| | - Michel Hamon
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris F-75014, France; Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Sylvie Bourgoin
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris F-75014, France; Université Pierre et Marie Curie - Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris F-75013, France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France.
| |
Collapse
|
36
|
Deficits in spontaneous burrowing behavior in the rat bilateral monosodium iodoacetate model of osteoarthritis: an objective measure of pain-related behavior and analgesic efficacy. Osteoarthritis Cartilage 2015; 23:1605-12. [PMID: 25966657 DOI: 10.1016/j.joca.2015.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/30/2015] [Accepted: 05/01/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize deficits in burrowing behavior - an ethologically-relevant rodent behavior - in the monosodium iodoacetate (MIA) rat model of osteoarthritis (OA), and the sensitivity of these deficits to reversal by analgesic drugs of both prototypical and novel mechanisms of action. A second objective was to compare the burrowing assay to a spontaneous locomotor activity (sLA) assay. METHOD Male Wistar Han rats (200-220 g) received intrarticular (i.a.) injections of MIA or saline for sham animals. A deficit in the amount of sand burrowed from steel tubes filled with 2.5 kg of sand was used as a measure of pain-related behavior, and sensitivity to reversal of these deficits by analgesic drugs was assessed in bilaterally MIA-injected rats. RESULTS Bilateral MIA injections induced a significant impairment of burrowing behavior, which was concentration-dependent. The temporal pattern of the deficits was biphasic: a large deficit at 3 days post-injection, resolving by day 14 and returning at the 21 and 28 day time points. At the 3 day time point ibuprofen, celecoxib and an anti-nerve growth factor (NGF) monoclonal antibody (mAb) were able to significantly reinstate burrowing behavior, whereas the fatty acid amide hydrolase (FAAH) inhibitor PF-04457845 and morphine displayed no reversal effect. Morphine impaired burrowing behavior at 3 mg/kg in sham animals. Deficits in rearing frequency in the locomotor activity assay proved irreversible by analgesics. CONCLUSION Burrowing behavior provides an objective, non-reflexive read-out for pain-related behavior in the MIA model that has predictive validity in detecting analgesic efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) and an anti-NGF mAb.
Collapse
|
37
|
Salgado-Puga K, Prado-Alcalá RA, Peña-Ortega F. Amyloid β Enhances Typical Rodent Behavior While It Impairs Contextual Memory Consolidation. Behav Neurol 2015; 2015:526912. [PMID: 26229236 PMCID: PMC4502279 DOI: 10.1155/2015/526912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is associated with an early hippocampal dysfunction, which is likely induced by an increase in soluble amyloid beta peptide (Aβ). This hippocampal failure contributes to the initial memory deficits observed both in patients and in AD animal models and possibly to the deterioration in activities of daily living (ADL). One typical rodent behavior that has been proposed as a hippocampus-dependent assessment model of ADL in mice and rats is burrowing. Despite the fact that AD transgenic mice show some evidence of reduced burrowing, it has not been yet determined whether or not Aβ can affect this typical rodent behavior and whether this alteration correlates with the well-known Aβ-induced memory impairment. Thus, the purpose of this study was to test whether or not Aβ affects burrowing while inducing hippocampus-dependent memory impairment. Surprisingly, our results show that intrahippocampal application of Aβ increases burrowing while inducing memory impairment. We consider that this Aβ-induced increase in burrowing might be associated with a mild anxiety state, which was revealed by increased freezing behavior in the open field, and conclude that Aβ-induced hippocampal dysfunction is reflected in the impairment of ADL and memory, through mechanisms yet to be determined.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| |
Collapse
|
38
|
Higgins GA, Silenieks LB, Van Niekerk A, Desnoyer J, Patrick A, Lau W, Thevarkunnel S. Enduring attentional deficits in rats treated with a peripheral nerve injury. Behav Brain Res 2015; 286:347-55. [DOI: 10.1016/j.bbr.2015.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/01/2022]
|
39
|
Barrett JE. The pain of pain: challenges of animal behavior models. Eur J Pharmacol 2015; 753:183-90. [PMID: 25583180 DOI: 10.1016/j.ejphar.2014.11.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/07/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Berend Olivier has had a long-standing interest in the utility of animal models for a wide variety of therapeutic indications. His work has spanned multiple types of models, blending ethological, or species typical and naturalistic behaviors, along with methodologies based on learned behavior. He has consistently done so, from an analytical as well as predictive perspective, and has made multiple contributions while working in both the pharmaceutical industry and within an academic institution. Although focused primarily on psychiatric disorders, Berend has conducted research in the area of pain in humans and in animals, demonstrating an expansive appreciation for the breadth, scope and significance of the science and applications of the discipline of pharmacology to these diverse areas. This review focuses on the use of animal models in pain research from the perspective of the long-standing deficiencies in the development of therapeutics in this area and from a preclinical perspective where the translational weaknesses have been quite problematic. The challenges confronting animal models of pain, however, are not unique to this area of research, as they cut across several therapeutic areas. Despite the deficiencies, failures and concerns, existing animal models of pain continue to be of widespread use and are essential to progress in pain research as well as in other areas. Although not focusing on specific animal models of pain, this paper seeks to examine general issues facing the use of these models. It does so by exploring alternative approaches which capture recent developments, which build upon principles and concepts we have learned from Berend's contributions, and which provide the prospect of helping to address the absence of novel therapeutics in this area.
Collapse
Affiliation(s)
- James E Barrett
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19103, United States.
| |
Collapse
|
40
|
Preclinical assessment of pain: improving models in discovery research. Curr Top Behav Neurosci 2014; 20:101-20. [PMID: 25012511 DOI: 10.1007/7854_2014_330] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To date, animal models have not sufficiently "filtered" targets for new analgesics, increasing the failure rate and cost of drug development. Preclinical assessment of "pain" has historically relied on measures of evoked behavioral responses to sensory stimuli in animals. Such measures can often be observed in decerebrated animals and therefore may not sufficiently capture affective and motivational aspects of pain, potentially diminishing translation from preclinical studies to the clinical setting. Further, evidence indicates that there are important mechanistic differences between evoked behavioral responses of hypersensitivity and ongoing pain, limiting evaluation of mechanisms that could mediate aspects of clinically relevant pain. The mechanisms underlying ongoing pain in preclinical models are currently being explored and may serve to inform decisions towards the transition from drug discovery to drug development for a given target.
Collapse
|
41
|
Tappe-Theodor A, Kuner R. Studying ongoing and spontaneous pain in rodents - challenges and opportunities. Eur J Neurosci 2014; 39:1881-90. [DOI: 10.1111/ejn.12643] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Anke Tappe-Theodor
- Institute of Pharmacology; Heidelberg University; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| | - Rohini Kuner
- Institute of Pharmacology; Heidelberg University; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| |
Collapse
|
42
|
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods 2014; 234:139-46. [PMID: 24525328 DOI: 10.1016/j.jneumeth.2014.02.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/26/2022]
Abstract
The assessment of pain, distress and suffering, as well as evaluation of the efficacy of stress-reduction strategies, is crucial in animal experimentation but can be challenging in laboratory mice. Nest building and burrowing performance, observed in the home cage, have proved to be valuable and easy-to-use tools to assess brain damage or malfunction as well as neurodegenerative diseases. Both behaviors are used as parameters in models of psychiatric disorders or to monitor sickness behavior following infection. Their use has been proposed in more realistic and clinically relevant preclinical models of disease, and reduction of these behaviors seems to be especially useful as an early sign of dysfunction and to monitor disease progression. Finally, both behaviors are reduced by pain and stress. Therefore, in combination with specific disease markers, changes in nest building and burrowing performance may help provide a global picture of a mouse's state, and thus aid monitoring to ensure well-being in animal experimentation.
Collapse
Affiliation(s)
- Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Sternwartstr. 6, CH-8091 Zurich, Switzerland.
| |
Collapse
|
43
|
Abstract
Behavioral methods are extensively used in pain research. Rodent modeling tends to rely on evoked responses but there is a growing interest in behavioral readouts that may capture elements of ongoing pain and disability, reflecting the major clinical signs and symptoms. Clinically, analgesics show greater efficacy in acute pain after standard surgery than in chronic conditions but are never completely effective on a population basis. In contrast, experimental pharmacological studies in rodents often demonstrate full efficacy, but there is variability in sensitivity between models and readouts. Full efficacy is rarely seen when more complex or multiple readouts are used to quantify behavior, especially after acute surgery or in studies of clinical pain in animals. Models with excellent sensitivity for a particular drug class exist and are suitable for screening mechanistically similar drugs. However, if used to compare drugs with different modes of action or to predict magnitude of clinical efficacy, these models will be misleading. Effective use of behavioral pharmacology in pain research is thus dependent on selection and validation of the best models for the purpose.
Collapse
|