1
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
2
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
3
|
MORIYA Y, KASAHARA Y, ISHIHARA K, HALL FS, HAGINO Y, HEN R, IKEDA K, UHL GR, SORA I. Heterozygous and homozygous gene knockout of the 5-HT1B receptor have different effects on methamphetamine-induced behavioral sensitization. Behav Pharmacol 2023; 34:393-403. [PMID: 37668157 PMCID: PMC10527357 DOI: 10.1097/fbp.0000000000000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The psychostimulant drug methamphetamine (METH) causes euphoria in humans and locomotor hyperactivity in rodents by acting on the mesolimbic dopamine (DA) pathway and has severe abuse and addiction liability. Behavioral sensitization, an increased behavioral response to a drug with repeated administration, can persist for many months after the last administration. Research has shown that the serotonin 1B (5-HT1B) receptor plays a critical role in the development and maintenance of drug addiction, as well as other addictive behaviors. This study examined the role of 5-HT1B receptors in METH-induced locomotor sensitization using 5-HT1B knockout (KO) mice. To clarify the action of METH in 5-HT1B KO mice the effects of METH on extracellular levels of DA (DAec) and 5-HT (5-HTec) in the caudate putamen (CPu) and the nucleus accumbens (NAc) were examined. Locomotor sensitization and extracellular monoamine levels were determined in wild-type mice (5-HT1B +/+), heterozygous 5-HT1B receptor KO (5-HT1B +/-) mice and homozygous 5-HT1B receptor KO mice (5-HT1B -/-). Behavioral sensitization to METH was enhanced in 5-HT1B -/- mice compared to 5-HT1B +/+ mice but was attenuated in 5-HT1B +/- mice compared to 5-HT1B +/+ and 5-HT1B -/- mice. In vivo, microdialysis demonstrated that acute administration of METH increases DAec levels in the CPu and NAc of 5-HT1B KO mice compared to saline groups. In 5-HT1B +/- mice, METH increased 5-HTec levels in the CPu, and DAec levels in the NAc were higher than in others.5-HT1B receptors play an important role in regulating METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Yuki MORIYA
- Department of Biological Psychiatry, Graduate School of Medicine, Sendai, Tohoku University, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science (IRIDeS), Graduate School of Medicine, Tohoku University, Sendai, Japan
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiyuki KASAHARA
- Department of Biological Psychiatry, Graduate School of Medicine, Sendai, Tohoku University, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science (IRIDeS), Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate, School of Medicine, Sendai, Japan
- Department of Maternal and Child Healthcare Medical Science, Tohoku, University Graduate School of Medicine, Sendai, Japan
| | - Kana ISHIHARA
- Department of Biological Psychiatry, Graduate School of Medicine, Sendai, Tohoku University, Japan
| | - F. Scott HALL
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Yoko HAGINO
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - René HEN
- Department of Neuroscience and Pharmacology, Columbia University Medical Center, NY, USA
| | - Kazutaka IKEDA
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - George R. UHL
- Departments of Neurology and Pharmacology, University of Maryland School of Medicine, and VA Maryland Healthcare System, MD, USA
| | - Ichiro SORA
- Department of Biological Psychiatry, Graduate School of Medicine, Sendai, Tohoku University, Japan
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Vannan A, Dell’Orco M, Perrone-Bizzozero NI, Neisewander JL, Wilson MA. An approach for prioritizing candidate genes from RNA-seq using preclinical cocaine self-administration datasets as a test case. G3 (BETHESDA, MD.) 2023; 13:jkad143. [PMID: 37433118 PMCID: PMC10542560 DOI: 10.1093/g3journal/jkad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
RNA-sequencing (RNA-seq) technology has led to a surge of neuroscience research using animal models to probe the complex molecular mechanisms underlying brain function and behavior, including substance use disorders. However, findings from rodent studies often fail to be translated into clinical treatments. Here, we developed a novel pipeline for narrowing candidate genes from preclinical studies by translational potential and demonstrated its utility in 2 RNA-seq studies of rodent self-administration. This pipeline uses evolutionary conservation and preferential expression of genes across brain tissues to prioritize candidate genes, increasing the translational utility of RNA-seq in model organisms. Initially, we demonstrate the utility of our prioritization pipeline using an uncorrected P-value. However, we found no differentially expressed genes in either dataset after correcting for multiple testing with false discovery rate (FDR < 0.05 or <0.1). This is likely due to low statistical power that is common across rodent behavioral studies, and, therefore, we additionally illustrate the use of our pipeline on a third dataset with differentially expressed genes corrected for multiple testing (FDR < 0.05). We also advocate for improved RNA-seq data collection, statistical testing, and metadata reporting that will bolster the field's ability to identify reliable candidate genes and improve the translational value of bioinformatics in rodent research.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Michela Dell’Orco
- Department of Neurosciences, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
5
|
Namba MD, Phillips MN, Chen PJ, Blass BE, Olive MF, Neisewander JL. HIV gp120 impairs nucleus accumbens neuroimmune function and dopamine D3 receptor-mediated inhibition of cocaine seeking in male rats. ADDICTION NEUROSCIENCE 2023; 5:100062. [PMID: 36909738 PMCID: PMC9997483 DOI: 10.1016/j.addicn.2023.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 receptor (D3R), MC-25-41, attenuates cocaine-seeking behavior in male rats. Here, we sought to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the impact of gp120 exposure on MC-25-41-reduced cocaine seeking. After establishing a history of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25-41 treatment attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine abstinence- and gp120-induced impairments, and the expression of several immune factors within the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the need to consider comorbidities, such as immune status, when evaluating the efficacy of novel pharmacotherapeutics.
Collapse
Affiliation(s)
- Mark D Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Megan N Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
6
|
Di Martino RMC, Cavalli A, Bottegoni G. Dopamine D3 receptor ligands: a patent review (2014-2020). Expert Opin Ther Pat 2022; 32:605-627. [PMID: 35235753 DOI: 10.1080/13543776.2022.2049240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Compelling evidence identified D3 dopamine receptor (D3R) as a suitable target for therapeutic intervention on CNS-associated disorders, cancer and other conditions. Several efforts have been made toward developing potent and selective ligands for modulating signalling pathways operated by these GPCRs. The rational design of D3R ligands endowed with a pharmacologically relevant profile has traditionally not encountered much support from computational methods due to a very limited knowledge of the receptor structure and of its conformational dynamics. We believe that recent progress in structural biology will change this state of affairs in the next decade. AREAS COVERED This review provides an overview of the recent (2014-2020) patent literature on novel classes of D3R ligands developed within the framework of CNS-related diseases, cancer and additional conditions. When possible, an in-depth description of both in vitro and in vivo generated data is presented. New therapeutic applications of known molecules with activity at D3R are discussed. EXPERT OPINION Building on current knowledge, future D3R-focused drug discovery campaigns will be propelled by a combination of unprecedented availability of structural information with advanced computational and analytical methods. The design of D3R ligands with the sought activity, efficacy and selectivity profile will become increasingly more streamlined.
Collapse
Affiliation(s)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Bologna University, via Belmeloro 6, 40126, Bologna, Italy
| | - Giovanni Bottegoni
- Department of Biomolecular Sciences, Urbino University "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy.,Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
7
|
Kohno M, Dennis LE, McCready H, Hoffman WF. Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment. Mol Psychiatry 2022; 27:220-229. [PMID: 34117366 PMCID: PMC8664889 DOI: 10.1038/s41380-021-01180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Dopamine system deficiencies and associated behavioral phenotypes may be a critical barrier to success in treating stimulant use disorders. Similarities in dopamine dysfunction between cocaine and methamphetamine use disorder but also key differences may impact treatment efficacy and outcome. This review will first compare the epidemiology of cocaine and methamphetamine use disorder. A detailed account of the pharmacokinetic and pharmacodynamic properties associated with each drug will then be discussed, with an emphasis on effects on the dopamine system and associated signaling pathways. Lastly, treatment results from pharmacological clinical trials will be summarized along with a more comprehensive review of the involvement of the trace amine-associated receptor on dopamine signaling dysfunction among stimulants and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA. .,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA. .,Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA. .,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| | - Laura E. Dennis
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Holly McCready
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - William F. Hoffman
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Mental Health Division, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
8
|
Scott SN, Garcia R, Powell GL, Doyle SM, Ruscitti B, Le T, Esquer A, Blattner KM, Blass BE, Neisewander JL. 5-HT 1B receptor agonist attenuates cocaine self-administration after protracted abstinence and relapse in rats. J Psychopharmacol 2021; 35:1216-1225. [PMID: 34049460 DOI: 10.1177/02698811211019279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The 5-HT1B receptor (5-HT1BR) agonist, CP94253, enhances cocaine intake during maintenance of self-administration (SA) but attenuates intake after 21 days of forced abstinence in male rats. AIMS We examined whether CP94253 attenuates cocaine intake in female rats after a period of abstinence, and if these attenuating effects persist or revert to enhancing cocaine intake during resumption (i.e. relapse) of daily cocaine SA. METHODS Male and female rats trained to lever press on a fixed ratio 5 schedule of cocaine reinforcement underwent ⩾21 days of forced abstinence. They were then tested for the effects of CP94253 (5.6 mg/kg, SC) or vehicle on cocaine SA. During the test session, rats had 1-h access to the training dose of cocaine (0.75 mg/kg, IV) followed by 1-h access to a lower cocaine dose (0.075 mg/kg, IV). Rats then resumed cocaine SA for 15 days to mimic relapse and were retested as done previously. Subsequently, rats underwent abstinence again (21-60 days) and were tested for CP94253 effects on locomotion and cue reactivity (i.e. responding for light/tone cues previously paired with cocaine infusions). RESULTS Regardless of sex, CP94253 decreased cocaine intake after abstinence and during resumption of SA and decreased cue reactivity while having no effect on locomotion. CONCLUSIONS CP94253 decreases cocaine intake and cocaine seeking in both males and females even after resumption of cocaine SA. These findings suggest that the inhibitory effects of CP94253 observed after abstinence are long-lasting, and therefore, 5-HT1BR agonists may have clinical efficacy as anti-relapse medications for cocaine use disorders.
Collapse
Affiliation(s)
- Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Raul Garcia
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Sophia M Doyle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Brielle Ruscitti
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Tien Le
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,School of Biological Systems and Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Aracely Esquer
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kevin M Blattner
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | | |
Collapse
|
9
|
Lee B, Taylor M, Griffin SA, McInnis T, Sumien N, Mach RH, Luedtke RR. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules 2021; 26:molecules26113182. [PMID: 34073405 PMCID: PMC8198181 DOI: 10.3390/molecules26113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
N-phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted N-phenylpiperazine analogs were evaluated. Compound 6a was found to bind at the human D3 receptor with nanomolar affinity with substantial D3 vs. D2 binding selectivity (approximately 500-fold). Compound 6a was also tested for activity in two in-vivo assays: (1) a hallucinogenic-dependent head twitch response inhibition assay using DBA/2J mice and (2) an L-dopa-dependent abnormal involuntary movement (AIM) inhibition assay using unilateral 6-hydroxydopamine lesioned (hemiparkinsonian) rats. Compound 6a was found to be active in both assays. This compound could lead to a better understanding of how a bitopic D3 dopamine receptor selective ligand might lead to the development of pharmacotherapeutics for the treatment of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Tamara McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
- Correspondence:
| |
Collapse
|
10
|
Shifts in the neurobiological mechanisms motivating cocaine use with the development of an addiction-like phenotype in male rats. Psychopharmacology (Berl) 2021; 238:811-823. [PMID: 33241478 PMCID: PMC8290931 DOI: 10.1007/s00213-020-05732-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE The development of addiction is accompanied by a shift in the mechanisms motivating cocaine use from nucleus accumbens (NAc) dopamine D1 receptor (D1R) signaling to glutamate AMPA-kainate receptor (AMPA-R) signaling. OBJECTIVE Here, we determined whether similar shifts occur for NAc-D2R signaling and following systemic manipulation of D1R, D2R, and AMPA-R signaling. METHODS Male rats were given short-access (20 infusions/day) or extended-access to cocaine (24 h/day, 96 infusions/day, 10 days). Motivation for cocaine was assessed following 14 days of abstinence using a progressive-ratio schedule. Once responding stabilized, the effects of NAc-D2R antagonism (eticlopride; 0-10.0 μg/side) and systemic D1R (SCH-23390; 0-1.0 mg/kg), D2R (eticlopride; 0-0.1 mg/kg), and AMPA-R (CNQX; 0-1.5 mg/kg) antagonism, and NAc-dopamine-R gene expression (Drd1/2/3) were examined. RESULTS Motivation for cocaine was markedly higher in the extended- versus short-access group confirming the development of an addiction-like phenotype in the extended-access group. NAc-infused eticlopride decreased motivation for cocaine in both the short- and extended-access groups although low doses (0.1-0.3 μg) were more effective in the short-access group and high doses (3-10 μg/side) tended to be more effective in the extended-access group. Systemic administration of eticlopride (0.1 mg/kg) was more effective in the extended-access group, and systemic administration of CNQX was effective in the extended- but not short-access group. NAc-Drd2 expression was decreased in both the short- and extended-access groups. CONCLUSION These findings indicate that in contrast to NAc-D1R, D2R remain critical for motivating cocaine use with the development of an addiction-like phenotype. These findings also indicate that shifts in the mechanisms motivating cocaine use impact the response to both site-specific and systemic pharmacological treatment.
Collapse
|
11
|
Meneses-Gaya CD, Crippa JA, Hallak JE, Miguel AQ, Laranjeira R, Bressan RA, Zuardi AW, Lacerda AL. Cannabidiol for the treatment of crack-cocaine craving: an exploratory double-blind study. BRAZILIAN JOURNAL OF PSYCHIATRY 2020; 43:467-476. [PMID: 33146345 PMCID: PMC8555645 DOI: 10.1590/1516-4446-2020-1416] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Objective: To assess the efficacy of cannabidiol (CBD) in the management of crack-cocaine craving and the treatment of frequent withdrawal symptoms. Methods: Thirty-one men with a diagnosis of crack-cocaine dependence were enrolled in a randomized, double-blind, placebo-controlled trial. We applied neuropsychological tests and assessed craving intensity, anxiety and depression symptoms, and substance use patterns at baseline and at the end of the trial. The participants were treated with CBD 300 mg/day or placebo for 10 days. During this period, we used a technique to induce craving and assessed the intensity of symptoms before and after the induction procedure. Results: Craving levels reduced significantly over the 10 days of the trial, although no differences were found between the CBD and placebo groups. Craving induction was successful in both groups, with no significant differences between them. Indicators of anxiety, depression, and sleep alterations before and after treatment also did not differ across groups. Conclusion: Under the conditions of this trial, CBD was unable to interfere with symptoms of crack-cocaine withdrawal. Further studies with larger outpatient samples involving different doses and treatment periods would be desirable and timely to elucidate the potential of CBD to induce reductions in crack-cocaine self-administration.
Collapse
Affiliation(s)
- Carolina de Meneses-Gaya
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - José A. Crippa
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Jaime E. Hallak
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - André Q. Miguel
- Instituto Nacional de Políticas Públicas do Álcool e Drogas (INPAD), UNIFESP, Brazil
| | - Ronaldo Laranjeira
- Instituto Nacional de Políticas Públicas do Álcool e Drogas (INPAD), UNIFESP, Brazil
| | - Rodrigo A. Bressan
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Antonio W. Zuardi
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Acioly L. Lacerda
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| |
Collapse
|
12
|
Preclinical support for the therapeutic potential of zolmitriptan as a treatment for cocaine use disorders. Transl Psychiatry 2020; 10:266. [PMID: 32747623 PMCID: PMC7398918 DOI: 10.1038/s41398-020-00956-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 01/19/2023] Open
Abstract
Serotonin 1B receptor (5-HT1BR) agonists enhance cocaine intake in rats during daily self-administration but attenuate cocaine intake after prolonged abstinence. Here we investigated whether the less selective but clinically available 5-HT1D/1BR agonist, zolmitriptan, produces similar effects. Male and free-cycling female Sprague-Dawley rats were trained to lever press for cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg pellet) reinforcement until performance rates stabilized. Rats then received zolmitriptan (3.0, 5.6, and 10 mg/kg, s.c.) prior to testing for its effects on response and reinforcement rates. Under cocaine testing conditions, rats had access to the training dose for the first hour followed by a lower cocaine dose (0.075 mg/kg, i.v.) for the second hour. Zolmitriptan decreased cocaine intake at both cocaine doses and in both sexes even without a period of abstinence and without altering sucrose intake. A separate group of rats underwent identical training procedures and were tested for effects of the selective 5-HT1B and 5-HT1D receptor antagonists, SB224289 (3.2, 5.6, and 10 mg/kg, s.c.) and BRL15572 (0.3, 1.0, and 3.0 mg/kg, i.p.), respectively, alone or in combination with zolmitriptan (5.6 mg/kg, s.c.) under identical cocaine testing procedures as above. The zolmitriptan-induced decrease in cocaine intake was reversed by SB224289 and to a lesser extent by BRL15572, suggesting that the effects of zolmitriptan involve both 5-HT1B and 5-HT1D receptors. Neither zolmitriptan, SB224289, or BRL15572 altered locomotor activity at the doses effective for modulating cocaine intake. These findings suggest that zolmitriptan has potential for repurposing as a treatment for cocaine use disorders.
Collapse
|
13
|
Powell GL, Namba MD, Vannan A, Bonadonna JP, Carlson A, Mendoza R, Chen PJ, Luetdke RR, Blass BE, Neisewander JL. The Long-Acting D3 Partial Agonist MC-25-41 Attenuates Motivation for Cocaine in Sprague-Dawley Rats. Biomolecules 2020; 10:biom10071076. [PMID: 32708461 PMCID: PMC7408535 DOI: 10.3390/biom10071076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
The dopamine D3 receptor is a prime target for developing treatments for cocaine use disorders (CUDs). In this study, we conducted a pre-clinical investigation of the therapeutic potential of a long-acting, D3 receptor partial agonist, MC-25-41. Male rats were pre-treated with MC-25-41 (vehicle, 1.0, 3.0, 5.6, or 10 mg/kg, intraperitoneal (IP)) five minutes prior to tests of cocaine or sucrose intake on either a progressive ratio schedule of reinforcement or a variable interval 60 s multiple schedule consisting of 4, 15-min components with sucrose or cocaine available in alternating components. A separate cohort of rats was tested on a within-session, dose-reduction procedure to determine the effects of MC-25-41 on demand for cocaine using a behavioral economics analysis. Finally, rats were tested for effects of MC-25-41 on spontaneous and cocaine-induced locomotion. MC-25-41 failed to alter locomotion, but reduced reinforcement rates for both cocaine and sucrose on the low-effort, multiple schedule. However, on the higher-effort, progressive ratio schedule of cocaine reinforcement, MC-25-41 reduced infusions, and active lever presses at doses that did not alter sucrose intake. The behavioral economics analysis showed that MC-25-41 also increased cocaine demand elasticity compared to vehicle, indicating a reduction in consumption as price increases. Together, these results suggest that similar to other D3-selective antagonists and partial agonists, MC-25-41 reduces motivation for cocaine under conditions of high cost but has the added advantage of a long half-life (>10 h). These findings suggest that MC-25-41 may be a suitable pre-clinical lead compound for development of medications to treat CUDs.
Collapse
Affiliation(s)
- Gregory L. Powell
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Mark D. Namba
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Annika Vannan
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - John Paul Bonadonna
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Andrew Carlson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Rachel Mendoza
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Robert R. Luetdke
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Benjamin E. Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
- Correspondence:
| |
Collapse
|
14
|
Der-Ghazarian TS, Charmchi D, Noudali SN, Scott SN, Holter MC, Newbern JM, Neisewander JL. Neural Circuits Associated with 5-HT 1B Receptor Agonist Inhibition of Methamphetamine Seeking in the Conditioned Place Preference Model. ACS Chem Neurosci 2019; 10:3271-3283. [PMID: 31042352 DOI: 10.1021/acschemneuro.8b00709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
5-HT1B receptors (5-HT1BRs) modulate psychostimulant reward and incentive motivation in rodents. Here we investigated the effects of the 5-HT1BR agonist CP94253 (10 mg/kg, IP) on the acquisition and expression of methamphetamine (Meth) conditioned place preference (CPP) in C57BL/6 male mice. We subsequently examined the potential brain regions involved in CP94253 effects using FOS as a marker of neural activity. In the acquisition experiment, mice received the agonist 30 min before each of the Meth injections given during conditioning. In the expression experiment, mice that had acquired Meth-CPP were given either saline or CP94253 and were tested for CPP 30 min later. We found that CP94253 attenuated the expression of Meth-CPP, but had no effect on acquisition. Mice expressing Meth-CPP had elevated numbers of FOS+ cells in the ventral tegmental area (VTA) and basolateral amygdala (BlA) and reduced FOS+ cells in the central amygdala (CeA) compared to saline controls. CP94253 given before the expression test, but not acutely in drug-naive mice, enhanced FOS+ cells in the VTA, the nucleus accumbens (NAc) shell and core, and the dorsomedial striatum and reversed the Meth-conditioned changes in FOS in the BlA and CeA. Approximately 50-70% of FOS+ cells in the NAc and VTA were GABAergic regardless of group. By contrast, we did not observe FOS-labeling in dopamine neurons in the VTA. The findings suggest that CP94253 attenuates the motivational effects of the Meth-associated environment and highlight the amygdala, VTA, NAc, and dorsomedial striatum as potential regions involved in this effect.
Collapse
Affiliation(s)
| | - Delaram Charmchi
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sean N. Noudali
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Samantha N. Scott
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael C. Holter
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
15
|
Hayatshahi HS, Xu K, Griffin SA, Taylor M, Mach RH, Liu J, Luedtke RR. Analogues of Arylamide Phenylpiperazine Ligands To Investigate the Factors Influencing D3 Dopamine Receptor Bitropic Binding and Receptor Subtype Selectivity. ACS Chem Neurosci 2018; 9:2972-2983. [PMID: 30010318 DOI: 10.1021/acschemneuro.8b00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously reported on the ability of arylamide phenylpiperazines to bind selectively to the D3 versus the D2 dopamine receptor subtype. For these studies, we used LS-3-134 as the prototypic arylamide phenylpiperazine ligand because it binds with high affinity at D3 dopamine receptor (0.17 nM) and exhibits >150-fold D3 vs D2 receptor binding selectivity. Our goal was to investigate how the composition and size of the nonaromatic ring structure at the piperazine position of substituted phenylpiperazine analogues might influence binding affinity at the human D2 and D3 dopamine receptors. Two factors were identified as being important for determining the binding affinity of bitropic arylamide phenylpiperazines at the dopamine D3 receptor subtype. One factor was the strength of the salt bridge between the highly conserved residue Asp3.32 with the protonated nitrogen of the nonaromatic ring at the piperazine position. The second factor was the configuration of the unbound ligand in an aqueous solution. These two factors were found to be related to the logarithm of the affinities using a simple correlation model, which could be useful when designing high affinity subtype selective bitropic ligands. While this model is based upon the interaction of arylamide phenylpiperazines with the D2 and D3 D2-like dopamine receptor subtypes, it provides insights into the complexity of the factors that define a bitropic mode of the binding at GPCRs.
Collapse
Affiliation(s)
- Hamed S. Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
16
|
Shabani S, Schmidt B, Ghimire B, Houlton SK, Hellmuth L, Mojica E, Phillips TJ. Depression-like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake. GENES BRAIN AND BEHAVIOR 2018; 18:e12533. [PMID: 30375183 DOI: 10.1111/gbb.12533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022]
Abstract
Binge methamphetamine (MA) users have higher MA consumption, relapse rates and depression-like symptoms during early periods of withdrawal, compared with non-binge users. The impact of varying durations of MA abstinence on depression-like symptoms and on subsequent MA intake was examined in mice genetically prone to binge-level MA consumption. Binge-level MA intake was induced using a multiple-bottle choice procedure in which mice were offered one water drinking tube and three tubes containing increasing concentrations of MA in water, or four water tubes (control group). In two studies, depression-like symptoms were measured using a tail-suspension test and a subsequent forced-swim test, after forced abstinence of 6 and 30 hours from a 28-day course of chronic MA intake. An additional study measured the same depression-like symptoms, as well as MA intake, after prolonged abstinence of 1 and 2 weeks. MA high drinking mice and one of their progenitor strains DBA/2J escalated their MA intake with increasing MA concentration; however, MA high drinking mice consumed almost twice as much MA as DBA/2J mice. Depression-like symptoms were significantly higher early after MA access was withdrawn, compared to levels in drug-naïve controls, with more robust effects of MA withdrawal observed in MA high drinking than DBA/2J mice. When depression-like symptoms were examined after 1 or 2 weeks of forced abstinence in MA high drinking mice, depression-like symptoms dissipated, and subsequent MA intake was high. The MA high drinking genetic mouse model has strong face validity for human binge MA use and behavioral sequelae associated with abstinence.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Grand Valley State University, Biomedical Sciences, Allendale, Michigan, USA.,Minot State University, Department of Biology, Minot, North Dakota, USA
| | - Bryan Schmidt
- Minot State University, Department of Biology, Minot, North Dakota, USA
| | - Bikalpa Ghimire
- Minot State University, Department of Biology, Minot, North Dakota, USA
| | - Sydney K Houlton
- Minot State University, Department of Biology, Minot, North Dakota, USA
| | - Laura Hellmuth
- Minot State University, Department of Biology, Minot, North Dakota, USA
| | - Erika Mojica
- Minot State University, Department of Biology, Minot, North Dakota, USA
| | - Tamara J Phillips
- Oregon Health and Science University, Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Portland, Oregon, USA.,VA Portland Health Care System, Research Division, Portland, Oregon, USA
| |
Collapse
|
17
|
Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 175:123-129. [PMID: 30308214 DOI: 10.1016/j.pbb.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
|
18
|
Vannan A, Powell GL, Scott SN, Pagni BA, Neisewander JL. Animal Models of the Impact of Social Stress on Cocaine Use Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:131-169. [PMID: 30193703 DOI: 10.1016/bs.irn.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine use disorders are strongly influenced by the social conditions prior, during, and after exposure to cocaine. In this chapter, we discuss how social factors such as early life stress, social rank stress, and environmental stress impact vulnerability and resilience to cocaine. The discussion of each animal model begins with a brief review of examples from the human literature, which provide the psychosocial background these models attempt to capture. We then discuss preclinical findings from use of each model, with emphasis on how social factors influence cocaine-related behaviors and how sex and age influence the behaviors and neurobiology. Models discussed include (1) early life social stress, such as maternal separation and neonatal isolation, (2) social defeat stress, (3) social hierarchies, and (4) social isolation and environmental enrichment. The cocaine-related behaviors reviewed for each of these animal models include cocaine-induced conditioned place preference, behavioral sensitization, and self-administration. Together, our review suggests that the degree of psychosocial stress experienced yields robust effects on cocaine-related behaviors and neurobiology, and these preclinical findings have translational impact for the future of cocaine use disorder treatment.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Broc A Pagni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
19
|
Powell GL, Bonadonna JP, Vannan A, Xu K, Mach RH, Luedtke RR, Neisewander JL. Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 171:46-53. [PMID: 29807065 DOI: 10.1016/j.pbb.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but at 5.6 mg/kg, it reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
Affiliation(s)
- Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kuiying Xu
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert R Luedtke
- University of North Texas Health Science Center, the Department of Pharmacology and Neuroscience, Fort Worth, TX, United States
| | | |
Collapse
|
20
|
The 5-HT 1B receptor - a potential target for antidepressant treatment. Psychopharmacology (Berl) 2018; 235:1317-1334. [PMID: 29546551 PMCID: PMC5919989 DOI: 10.1007/s00213-018-4872-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/26/2018] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. The serotonin hypothesis may be the model of MDD pathophysiology with the most support. The majority of antidepressants enhance synaptic serotonin levels quickly, while it usually takes weeks to discern MDD treatment effect. It has been hypothesized that the time lag between serotonin increase and reduction of MDD symptoms is due to downregulation of inhibitory receptors such as the serotonin 1B receptor (5-HT1BR). The research on 5-HT1BR has previously been hampered by a lack of selective ligands for the receptor. The last extensive review of 5-HT1BR in the pathophysiology of depression was published 2009, and based mainly on findings from animal studies. Since then, selective radioligands for in vivo quantification of brain 5-HT1BR binding with positron emission tomography has been developed, providing new knowledge on the role of 5-HT1BR in MDD and its treatment. The main focus of this review is the role of 5-HT1BR in relation to MDD and its treatment, although studies of 5-HT1BR in obsessive-compulsive disorder, alcohol dependence, and cocaine dependence are also reviewed. The evidence outlined range from animal models of disease, effects of 5-HT1B receptor agonists and antagonists, case-control studies of 5-HT1B receptor binding postmortem and in vivo, with positron emission tomography, to clinical studies of 5-HT1B receptor effects of established treatments for MDD. Low 5-HT1BR binding in limbic regions has been found in MDD patients. When 5-HT1BR ligands are administered to animals, 5-HT1BR agonists most consistently display antidepressant-like properties, though it is not yet clear how 5-HT1BR is best approached for optimal MDD treatment.
Collapse
|
21
|
Der-Ghazarian TS, Call T, Scott SN, Dai K, Brunwasser SJ, Noudali SN, Pentkowski NS, Neisewander JL. Effects of a 5-HT 1B Receptor Agonist on Locomotion and Reinstatement of Cocaine-Conditioned Place Preference after Abstinence from Repeated Injections in Mice. Front Syst Neurosci 2017; 11:73. [PMID: 29066957 PMCID: PMC5641409 DOI: 10.3389/fnsys.2017.00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
5-HT1B receptors (5-HT1BRs) modulate behavioral effects of cocaine. Here we examined the effects of the 5-HT1BR agonist 5-propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine (CP94253) on spontaneous and cocaine-induced locomotion and on cocaine-primed reinstatement of conditioned place preference (CPP) in male mice given daily repeated injections of either saline or cocaine (15 mg/kg, IP) for 20 days. In the locomotor activity experiment, testing occurred both 1 and 20 days after the final injection. In the CPP experiment, mice underwent conditioning procedures while receiving the last of their daily injections, which were given either during or ≥2 h after CPP procedures. The CPP procedural timeline consisted of baseline preference testing (days 12–13 of the chronic regimen), conditioning (days 14–19, 2 daily 30-min sessions separated by 5 h), CPP test (day 21), extinction (days 22–34; no injections), CPP extinction test (day 35), and reinstatement test (day 36). Mice that had not extinguished received additional extinction sessions prior to reinstatement testing on day 42. On test days, mice were pretreated with either saline or CP94253 (10 mg/kg, IP). Testing began 30 min later, immediately after mice were primed with either saline or cocaine (5 mg/kg for locomotion; 15 mg/kg for reinstatement). We found that CP94253 increased spontaneous locomotion in mice receiving repeated injections of either saline or cocaine when tested 1 day after the last injection, but had no effect on spontaneous locomotion after 20 days abstinence from repeated injections. Surprisingly, cocaine-induced locomotion was sensitized regardless of whether the mice had received repeated saline or cocaine. CP94253 attenuated expression of the sensitized locomotion after 20 days abstinence. A control experiment in noninjected, drug-naïve mice showed that CP94253 had no effect on spontaneous or cocaine-induced locomotion. Mice reinstated cocaine-CPP when given a cocaine prime, and CP94253 pretreatment attenuated cocaine reinstatement.The findings suggest that stress from repeated saline injections and/or co-housing with cocaine-injected mice may cross-sensitize with cocaine effects on locomotion and that CP94253 attenuates these effects, as well as reinstatement of cocaine-CPP. This study supports the idea that 5-HT1BR agonists may be useful anti-cocaine medications.
Collapse
Affiliation(s)
| | - Tanessa Call
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kael Dai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Sean N Noudali
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | | |
Collapse
|
22
|
Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making. J Neurosci 2017; 36:6732-41. [PMID: 27335404 DOI: 10.1523/jneurosci.3253-15.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. SIGNIFICANCE STATEMENT Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes.
Collapse
|
23
|
Garcia R, Cotter AR, Leslie K, Olive MF, Neisewander JL. Preclinical Evidence That 5-HT1B Receptor Agonists Show Promise as Medications for Psychostimulant Use Disorders. Int J Neuropsychopharmacol 2017; 20:644-653. [PMID: 28444326 PMCID: PMC5570061 DOI: 10.1093/ijnp/pyx025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/18/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND 5-HT1B receptor agonists enhance cocaine intake during daily self-administration sessions but decrease cocaine intake when tested after prolonged abstinence. We examined if 5-HT1B receptor agonists produce similar abstinence-dependent effects on methamphetamine intake. METHODS Male rats were trained to self-administer methamphetamine (0.1 mg/kg, i.v.) on low (fixed ratio 5 and variable ratio 5) and high (progressive ratio) effort schedules of reinforcement until intake was stable. Rats were then tested for the effects of the selective 5-HT1B receptor agonist, CP 94,253 (5.6 or 10 mg/kg), or the less selective but clinically available 5-HT1B/1D receptor agonist, zolmitriptan (10 mg/kg), on methamphetamine self-administration both before and after a 21-day forced abstinence period during which the rats remained in their home cages. RESULTS The inverted U-shaped, methamphetamine dose-response function for intake on the fixed ratio 5 schedule was shifted downward by CP 94,253 both before and after abstinence. The CP 94,253-induced decrease in methamphetamine intake was replicated in rats tested on a variable ratio 5 schedule, and the 5-HT1B receptor antagonist SB 224,289 (10 mg/kg) reversed this effect. CP 94,253 also attenuated methamphetamine intake on a progressive ratio schedule both pre- and postabstinence. Similarly, zolmitriptan attenuated methamphetamine intake on a variable ratio 5 schedule both pre- and postabstinence, and the latter effect was sustained after each of 2 more treatments given every 2 to 3 days prior to daily sessions. CONCLUSIONS Unlike the abstinence-dependent effect of 5-HT1B receptor agonists on cocaine intake reported previously, both CP 94,253 and zolmitriptan decreased methamphetamine intake regardless of abstinence. These findings suggest that 5-HT1B receptor agonists may have clinical efficacy for psychostimulant use disorders.
Collapse
Affiliation(s)
- Raul Garcia
- School of Life Sciences (Mr Garcia, Mr Cotter, Mr Leslie, and Dr Neisewander), and Psychology Department (Dr Olive), Arizona State University, Tempe, Arizona
| | - Austin R Cotter
- School of Life Sciences (Mr Garcia, Mr Cotter, Mr Leslie, and Dr Neisewander), and Psychology Department (Dr Olive), Arizona State University, Tempe, Arizona
| | - Kenneth Leslie
- School of Life Sciences (Mr Garcia, Mr Cotter, Mr Leslie, and Dr Neisewander), and Psychology Department (Dr Olive), Arizona State University, Tempe, Arizona
| | - M Foster Olive
- School of Life Sciences (Mr Garcia, Mr Cotter, Mr Leslie, and Dr Neisewander), and Psychology Department (Dr Olive), Arizona State University, Tempe, Arizona
| | - Janet L Neisewander
- School of Life Sciences (Mr Garcia, Mr Cotter, Mr Leslie, and Dr Neisewander), and Psychology Department (Dr Olive), Arizona State University, Tempe, Arizona
| |
Collapse
|
24
|
Tanaka T, Ago Y, Umehara C, Imoto E, Hasebe S, Hashimoto H, Takuma K, Matsuda T. Role of Prefrontal Serotonergic and Dopaminergic Systems in Encounter-Induced Hyperactivity in Methamphetamine-Sensitized Mice. Int J Neuropsychopharmacol 2016; 20:410-421. [PMID: 28034961 PMCID: PMC5417057 DOI: 10.1093/ijnp/pyw115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Isolation-reared mice show social encounter-induced hyperactivity with activation of prefrontal serotonergic and dopaminergic systems, but it is not known whether this stress response is observed in other pathological conditions. Here we examined whether the social encounter stimulation induces abnormal behavior during withdrawal in chronic methamphetamine-treated mice. METHODS To induce methamphetamine-induced behavioral sensitization, male mice were injected with methamphetamine (1 mg/kg) once daily for 7 days. RESULTS The encounter with an intruder elicited hyperactivity 24 h after the last injection of methamphetamine in methamphetamine-sensitized mice. This response was observed even as long as 2 weeks after withdrawal of methamphetamine. The encounter increased c-Fos expression in the prefrontal cortex, dorsal raphe nucleus and ventral tegmental area in methamphetamine-sensitized mice, while it did not in control mice. Furthermore, the encounter increased extracellular serotonin (5-HT) and dopamine, but not noradrenaline, levels in the prefrontal cortex in methamphetamine-sensitized mice. Local injection of 5,7-dihydroxytryptamine and 6-hydroxydopamine into the prefrontal cortex attenuated encounter-induced hyperactivity in methamphetamine-sensitized mice and it markedly decreased prefrontal 5-HT and dopamine levels, respectively. Pharmacological analysis showed that the encounter-induced hyperactivity is mediated by dopamine D1 receptors and 5-HT2A receptors and attenuated by anxiolytics and antidepressants such as diazepam, osemozotan and selective 5-HT reuptake inhibitors. The effect of paroxetine was blocked by the 5-HT3 receptor antagonist azasetron. CONCLUSIONS The present study shows that psychological stress elicits hyperactivity with activation of prefrontal 5-HT and dopamine systems in methamphetamine-dependent mice and suggests that the abnormal behavior is associated with anxiety and depression.
Collapse
Affiliation(s)
- Tatsunori Tanaka
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Chiaki Umehara
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Emina Imoto
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Shigeru Hasebe
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Kazuhiro Takuma
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Toshio Matsuda
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Kasper JM, McCue DL, Milton AJ, Szwed A, Sampson CM, Huang M, Carlton S, Meltzer HY, Cunningham KA, Hommel JD. Gamma-Aminobutyric Acidergic Projections From the Dorsal Raphe to the Nucleus Accumbens Are Regulated by Neuromedin U. Biol Psychiatry 2016; 80:878-887. [PMID: 27105831 PMCID: PMC5016225 DOI: 10.1016/j.biopsych.2016.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuromedin U (NMU) is a neuropeptide enriched in the nucleus accumbens shell (NAcSh), a brain region associated with reward. While NMU and its receptor, NMU receptor 2 (NMUR2), have been studied for the ability to regulate food reward, NMU has not been studied in the context of drugs of abuse (e.g., cocaine). Furthermore, the neuroanatomical pathways that express NMUR2 and its ultrastructural localization are unknown. METHODS Immunohistochemistry was used to determine the synaptic localization of NMUR2 in the NAcSh and characterize which neurons express this receptor (n = 17). The functional outcome of NMU on NMUR2 was examined using microdialysis (n = 16). The behavioral effects of NMU microinjection directly to the NAcSh were investigated using cocaine-evoked locomotion (n = 93). The specific effects of NMUR2 knockdown on cocaine-evoked locomotion were evaluated using viral-mediated RNA interference (n = 40). RESULTS NMUR2 is localized to presynaptic gamma-aminobutyric acidergic nerve terminals in the NAcSh originating from the dorsal raphe nucleus. Furthermore, NMU microinjection to the NAcSh decreased local gamma-aminobutyric acid concentrations. Next, we evaluated the effects of NMU microinjection on behavioral sensitization to cocaine. When repeatedly administered throughout the sensitization regimen, NMU attenuated cocaine-evoked hyperactivity. Additionally, small hairpin RNA-mediated knockdown of presynaptic NMUR2 in the NAcSh using a retrograde viral vector potentiated cocaine sensitization. CONCLUSIONS Together, these data reveal that NMUR2 modulates a novel gamma-aminobutyric acidergic pathway from the dorsal raphe nucleus to the NAcSh to influence behavioral responses to cocaine.
Collapse
Affiliation(s)
- James M. Kasper
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - David L. McCue
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Adrianna J. Milton
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Angelia Szwed
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Catherine M. Sampson
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Susan Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Herbert Y. Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Kathryn A. Cunningham
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Jonathan D. Hommel
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA,Correspondence: , Jonathan D. Hommel, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0615
| |
Collapse
|
26
|
The Effect of Co-occurring Substance Use on Gamma-hydroxybutyric Acid Withdrawal Syndrome. J Addict Med 2016; 10:229-35. [DOI: 10.1097/adm.0000000000000214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Abstract
Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction.
Collapse
Affiliation(s)
- Marina E Wolf
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| |
Collapse
|
28
|
Thanos PK, Malave L, Delis F, Mangine P, Kane K, Grunseich A, Vitale M, Greengard P, Volkow ND. Knockout ofp11attenuates the acquisition and reinstatement of cocaine conditioned place preference in male but not in female mice. Synapse 2016; 70:293-301. [DOI: 10.1002/syn.21904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Lauren Malave
- Department of Biology; City College of New York; New York New York
| | - Foteini Delis
- Department of Pharmacology, School of Medicine; University of Ioannina; Ioannina Greece
| | - Paul Mangine
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Katie Kane
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Adam Grunseich
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Melissa Vitale
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience; the Rockefeller University; New York New York
| | - Nora D. Volkow
- Laboratory of Neuroimaging; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health; Bethesda Maryland
| |
Collapse
|
29
|
Aronsen D, Bukholt N, Schenk S. Repeated administration of the 5-HT₁B/₁A agonist, RU 24969, facilitates the acquisition of MDMA self-administration: role of 5-HT₁A and 5-HT₁B receptor mechanisms. Psychopharmacology (Berl) 2016; 233:1339-47. [PMID: 26856853 DOI: 10.1007/s00213-016-4225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/27/2016] [Indexed: 01/17/2023]
Abstract
RATIONALE 3,4 Methylenedioxymethamphetamine (MDMA) preferentially stimulates the release of serotonin (5-HT) that subsequently produces behavioral responses by activation of post-synaptic receptor mechanisms. The 5-HT1A and 5-HT1B receptors are both well localized to regulate dopamine (DA) release, and have been implicated in modulating the reinforcing effects of many drugs of abuse, but a role in acquisition of self-administration has not been determined. OBJECTIVES This study was designed to determine the effect of pharmacological manipulation of 5-HT1A and 5-HT1B receptor mechanisms on the acquisition of MDMA self-administration. METHODS The 5-HT1B/1A receptor agonist, RU 24969 (0.0 or 3.0 mg/kg, bid), was administered for 3 days in order to down-regulate both 5-HT1A and 5-HT1B receptors. Following the pretreatment phase, latency to acquisition of MDMA self-administration was measured. RESULTS Repeated administration of RU 24969 significantly decreased the latency to acquisition and increased the proportion of animals that acquired MDMA self-administration. Dose-effect curves for the 5-HT1A-mediated hyperactivity produced by the 5-HT1A agonist, 8-OH-DPAT, and the 5-HT1B-mediated adipsic response produced by RU 24969 were shifted rightward, suggesting a desensitization of 5-HT1A and 5-HT1B receptor mechanisms. CONCLUSIONS These data suggest that the initial reinforcing effects of MDMA are modulated by 5-HT1A and/or 5-HT1B receptor mechanisms. The potential impact of these changes on the DAergic response relevant to self-administration and a possible role in conditioned reinforcement pertaining to acquisition of self-administration are discussed.
Collapse
Affiliation(s)
- Dane Aronsen
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Natasha Bukholt
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
30
|
Nebel N, Maschauer S, Hocke C, Hübner H, Gmeiner P, Prante O. Optimization and synthesis of an (18) F-labeled dopamine D3 receptor ligand using [(18) F]fluorophenylazocarboxylic tert-butylester. J Labelled Comp Radiopharm 2015; 59:48-53. [PMID: 26707848 DOI: 10.1002/jlcr.3361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022]
Abstract
There is still no efficient fluorine-18-labeled dopamine D3 subtype selective receptor ligand for studies with positron emission tomography. We aim at improving the D3 selectivity and hydrophilicity of a candidate ligand by changing the substitution pattern to a 2,3-dichlorophenylpiperazine and hydroxylation of the butyl chain. The compound [(18) F]3 exhibited D3 affinity of Ki = 3.6 nM, increased subtype selectivity (Ki (D2 /D3 ) = 60), and low affinity to 5-HT1A and α1 receptors (Ki (5-HT1A /D3 ) = 34; Ki (α1 /D3 ) = 100). The two-step radiosynthesis was optimized for analog [(18) F]4 by reducing the necessary concentration of the precursor amine (57 mM), which reacted with [(18) F]fluorophenylazocarboxylic tert-butylester under basic conditions. The optimization of the base (Cs 2 CO3 , 23 mM) and the adjustment of reaction temperature led to the radiochemical yield of 63% after 5 min at 35°C. The optimized reaction conditions were transferred on to the synthesis of [(18) F]3 with an overall non-decay corrected yield of 8-12% in a specific activity of 32-102 GBq/µmol after a total synthesis time of 30-35 min. This provides a D 3 radioligand candidate with improved attributes concerning selectivity and radiosynthesis for further preclinical studies.
Collapse
Affiliation(s)
- Natascha Nebel
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Carsten Hocke
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schuhstrasse 19, D-91052, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schuhstrasse 19, D-91052, Erlangen, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| |
Collapse
|
31
|
Van Waes V, Ehrlich S, Beverley JA, Steiner H. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: potential role for 5-HT1B receptor. Neuropharmacology 2015; 89:77-86. [PMID: 25218038 PMCID: PMC4250300 DOI: 10.1016/j.neuropharm.2014.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
Abstract
Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling.
Collapse
Affiliation(s)
- Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Sarah Ehrlich
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joel A Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
32
|
Matuskey D, Bhagwagar Z, Planeta B, Pittman B, Gallezot JD, Chen J, Wanyiri J, Najafzadeh S, Ropchan J, Geha P, Huang Y, Potenza MN, Neumeister A, Carson RE, Malison RT. Reductions in brain 5-HT1B receptor availability in primarily cocaine-dependent humans. Biol Psychiatry 2014; 76:816-22. [PMID: 24433854 PMCID: PMC4037398 DOI: 10.1016/j.biopsych.2013.11.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/30/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Preclinical evidence implicates the serotonin receptor 5-hydroxytryptamine 1B (5-HT1B) in the effects of cocaine. This study explores 5-HT1B in humans by examining receptor availability in vivo in subjects whose primary addiction is cocaine dependence (CD) using positron emission tomography. METHODS Study participants included 14 medically healthy subjects with CD (mean age = 41 ± 6 years) who were compared with 14 age-matched healthy control subjects (mean age = 41 ± 8 years) with no past or current history of cocaine or other illicit substance abuse. Participants underwent magnetic resonance imaging followed by positron emission tomography with the highly selective 5-HT1B tracer, [(11)C]P943, for purposes of quantifying regional binding potential. Voxel-based morphometry and gray matter masking also were employed to control for potential partial volume effects. RESULTS The [(11)C]P943 positron emission tomography imaging data in nine candidate regions (amygdala, anterior cingulate cortex, caudate, frontal cortex, hypothalamus, pallidum, putamen, thalamus, and ventral striatum) showed significant or nearly significant reductions of regional binding potential in subjects with CD in three regions: anterior cingulate (-16%, p < .01), hypothalamus (-16%, p = .03), and frontal cortex (-7%, p = .08). Voxel-based morphometry showed significant gray matter reductions in the frontal cortex of subjects with CD. After gray matter masking, statistically significant reductions in the [(11)C]P943 regional binding potential were either retained (anterior cingulate, -14%, p = .01; hypothalamus, -20%, p < .01) or achieved (frontal cortex, -14%, p < .01). Whole-brain voxel-wise parameter estimation confirmed these results. Secondary analyses were also significant in some regions for years of cocaine and daily tobacco use. CONCLUSIONS The reductions found in this study suggest that 5-HT1B receptors may contribute to the etiology or expression of CD and potentially represent a target for medication development.
Collapse
Affiliation(s)
- David Matuskey
- Departments of Psychiatry (DM, ZB, BPi, JC, JW, PG, MNP, RTM); Diagnostic Radiology (DM, BPl, J-DG, SN, JR, YH, REC), Yale University, New Haven.
| | - Zubin Bhagwagar
- Department of Psychiatry, Yale University,Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | | | | | | | - Jason Chen
- Department of Psychiatry, Yale University
| | | | | | - Jim Ropchan
- Department of Diagnostic Radiology, Yale University
| | - Paul Geha
- Department of Psychiatry, Yale University
| | - Yiyun Huang
- Department of Diagnostic Radiology, Yale University
| | | | - Alexander Neumeister
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
33
|
Aronsen D, Webster J, Schenk S. RU 24969-produced adipsia and hyperlocomotion: Differential role of 5HT1A and 5HT1B receptor mechanisms. Pharmacol Biochem Behav 2014; 124:1-4. [DOI: 10.1016/j.pbb.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 05/11/2014] [Indexed: 12/01/2022]
|
34
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
35
|
Amchova P, Kucerova J, Giugliano V, Babinska Z, Zanda MT, Scherma M, Dusek L, Fadda P, Micale V, Sulcova A, Fratta W, Fattore L. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms. Front Pharmacol 2014; 5:44. [PMID: 24688470 PMCID: PMC3960502 DOI: 10.3389/fphar.2014.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/25/2014] [Indexed: 11/13/2022] Open
Abstract
Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.
Collapse
Affiliation(s)
- Petra Amchova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Jana Kucerova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Valentina Giugliano
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Zuzana Babinska
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Mary T Zanda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Maria Scherma
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Ladislav Dusek
- Institute of Biostatistics and Analyses of Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Paola Fadda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy ; Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; National Institute of Neuroscience (INN), University of Cagliari Monserrato, Italy
| | - Vincenzo Micale
- Central European Institute of Technology, Masaryk University Brno, Czech Republic
| | - Alexandra Sulcova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy ; Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; National Institute of Neuroscience (INN), University of Cagliari Monserrato, Italy
| | - Liana Fattore
- Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; CNR Institute of Neuroscience-Cagliari, National Research Council-Italy Monserrato, Italy
| |
Collapse
|
36
|
Pentkowski NS, Harder BG, Brunwasser SJ, Bastle RM, Peartree NA, Yanamandra K, Adams MD, Der-Ghazarian T, Neisewander JL. Pharmacological evidence for an abstinence-induced switch in 5-HT1B receptor modulation of cocaine self-administration and cocaine-seeking behavior. ACS Chem Neurosci 2014; 5:168-76. [PMID: 24369697 PMCID: PMC3986226 DOI: 10.1021/cn400155t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
![]()
Studies examining
serotonin-1B (5-HT1B) receptor manipulations on cocaine
self-administration and cocaine-seeking behavior initially seemed
discrepant. However, we recently suggested based on viral-mediated
5-HT1B-receptor gene transfer that the discrepancies are
likely due to differences in the length of abstinence from cocaine
prior to testing. To further validate our findings pharmacologically,
we examined the effects of the selective 5-HT1B receptor
agonist CP 94,253 (5.6 mg/kg, s.c.) on cocaine self-administration
during maintenance and after a period of protracted abstinence with
or without daily extinction training. We also examined agonist effects
on cocaine-seeking behavior at different time points during abstinence.
During maintenance, CP 94,253 shifted the cocaine self-administration
dose–effect function on an FR5 schedule of reinforcement to
the left, whereas following 21 days of abstinence CP 94,253 downshifted
the function and also decreased responding on a progressive ratio
schedule of reinforcement regardless of extinction history. CP 94,253
also attenuated cue-elicited and cocaine-primed drug-seeking behavior
following 5 days, but not 1 day, of forced abstinence. The attenuating
effects of CP 94,253 on the descending limb of the cocaine dose–effect
function were blocked by the selective 5-HT1B receptor
antagonist SB 224289 (5 mg/kg, i.p.) at both time points, indicating
5-HT1B receptor mediation. The results support a switch
in 5-HT1B receptor modulation of cocaine reinforcement
from facilitatory during self-administration maintenance to inhibitory
during protracted abstinence. These findings suggest that the 5-HT1B receptor may be a novel target for developing medication
for treating cocaine dependence.
Collapse
Affiliation(s)
- Nathan S. Pentkowski
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Bryan G. Harder
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Samuel J. Brunwasser
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Ryan M. Bastle
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Natalie A. Peartree
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Krishna Yanamandra
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Matt D. Adams
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Taleen Der-Ghazarian
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, Box 874501, Tempe, Arizona 85287, United States
| |
Collapse
|
37
|
Sponsor's foreword: NIDA at forty. Neuropharmacology 2014; 76 Pt B:195-7. [DOI: 10.1016/j.neuropharm.2013.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Indexed: 11/19/2022]
|