1
|
Wang P, Hu J, Chen C, Jiang Z, Zhang Y, Lin K, Liao L, Wang X. The immune regulatory mechanism of ketamine-induced psychiatric disorders: A new perspective on drug-induced psychiatric symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111194. [PMID: 39542202 DOI: 10.1016/j.pnpbp.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Ketamine, a psychoactive substance strictly regulated by international drug conventions, is classified as a "new type drug" due to its excitatory, hallucinogenic, or inhibitory effects. The etiology of ketamine-induced psychiatric symptoms is multifaceted, with the immune regulatory mechanism being the most prominent among several explanatory theories. In recent years, the interaction between the immune system and nervous system have garnered significant attention in neuropsychiatric disorder research. Notably, the infiltration of peripheral lymphocytes into the central nervous system has emerged as an early hallmark of certain neuropsychiatric disorders. However, a notable gap exists in the current literature, regarding the immune regulatory mechanisms, specifically the peripheral immune alterations, associated with ketamine-induced psychiatric symptoms. To address this void, this article endeavors to provide a comprehensive overview of the pathophysiological processes implicated in psychiatric disorders or symptoms, encompassing those elicited by ketamine. This analysis delves into aspects such as nerve damage, alterations within the central immune system, and the regulation of the peripheral immune system. By emphasizing the intricate crosstalk between the peripheral immune system and the central nervous system, this study sheds light on their collaborative role in the onset and progression of psychiatric diseases or symptoms. This insight offers fresh perspectives on the underlying mechanisms, diagnosis and therapeutic strategies for mental disorders stemming from drug abuse.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihan Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Kexin Lin
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
King C, Plakke B. Maternal choline supplementation in neurodevelopmental disorders: mechanistic insights from animal models and future directions. Nutr Neurosci 2024:1-20. [PMID: 39046330 DOI: 10.1080/1028415x.2024.2377084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To synthesize evidence from animal models of neurodevelopmental disorders (NDD) using maternal choline supplementation, to characterize current knowledge on the mechanisms of choline's protective effects against NDD, and to identify gaps in knowledge for future study. METHODS A literature review was conducted in PubMed to identify studies using prenatal choline supplementation interventions in rodent models of neurodevelopmental disorders. 24 studies were identified, and behavioral and biological findings were extracted from each. Studies examining both genetic and environmental risk factors were included. RESULTS Maternal choline supplementation during gestation is protective against both genetic and environmental NDD risk factors. Maternal choline supplementation improves both cognitive and affective outcomes throughout the lifespan in NDD models. Prenatal choline improved these outcomes through its participation in processes like neurogenesis, epigenetic regulation, and anti-inflammatory signaling. DISCUSSION Maternal choline supplementation improves behavioral and neurobiological outcomes in animal models of NDD, paralleling findings in humans. Animal models provide a unique opportunity to study the mechanisms by which gestational choline improves neurodevelopmental outcomes. This is especially important since nearly 90% of pregnant people in the United States are deficient in choline intake. However, much is still unknown about the mechanisms through which choline and its derivatives act. Further research into this topic, especially mechanistic studies in animal models, is critical to modernize maternal choline intake guidelines and to develop interventions to increase maternal choline intake in vulnerable populations.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
3
|
Yang C, Meng Y, Wang X, Li X, Yu T, Liao W, Xie W, Jiang Q, Wang H, Shi C, Jiao W, Bian X, Hu F, Wang X, Liu Y, Zhang L, Wang K, Sun Q. Allosteric Activation of α7 Nicotinic Acetylcholine Receptors by Novel 2-Arylamino-thiazole-5-carboxylic Acid Amide Derivatives for the Improvement of Cognitive Deficits in Mice. J Med Chem 2024; 67:6344-6364. [PMID: 38393821 DOI: 10.1021/acs.jmedchem.3c02323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Enhancing α7 nAChR function serves as a therapeutic strategy for cognitive disorders. Here, we report the synthesis and evaluation of 2-arylamino-thiazole-5-carboxylic acid amide derivatives 6-9 that as positive allosteric modulators (PAMs) activate human α7 nAChR current expressed in Xenopus ooctyes. Among the 4-amino derivatives, a representative atypical type I PAM 6p exhibits potent activation of α7 current with an EC50 of 1.3 μM and the maximum activation effect on the current over 48-fold in the presence of acetylcholine (100 μM). The structure-activity relationship (SAR) analysis reveals that the 4-amino group is crucial for the allosteric activation of α7 currents by compound 6p as the substitution of 4-methyl group results in its conversion to compound 7b (EC50 = 2.1 μM; max effect: 58-fold) characterized as a typical type I PAM. Furthermore, both 6p and 7b are able to rescue auditory gating deficits in mouse schizophrenia-like model of acoustic startle prepulse inhibition.
Collapse
Affiliation(s)
- Chenxia Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Ying Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xintong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weiming Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenjun Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qianchen Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Han Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenxuan Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiling Bian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Xiaowei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, 38 Dengzhou Road, Qingdao University, Qingdao 266021, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, 38 Dengzhou Road, Qingdao University, Qingdao 266021, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Esaki H, Deyama S, Izumi S, Katsura A, Nishikawa K, Nishitani N, Kaneda K. Varenicline enhances recognition memory via α7 nicotinic acetylcholine receptors in the medial prefrontal cortex in male mice. Neuropharmacology 2023; 239:109672. [PMID: 37506875 DOI: 10.1016/j.neuropharm.2023.109672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4β2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4β2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ayano Katsura
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Brems BM, Sullivan EE, Connolly JG, Zhang J, Chang A, Ortiz R, Cantwell L, Kulkarni P, Thakur GA, Ferris CF. Dose-dependent effects of GAT107, a novel allosteric agonist-positive allosteric modulator (ago-PAM) for the α7 nicotinic cholinergic receptor: a BOLD phMRI and connectivity study on awake rats. Front Neurosci 2023; 17:1196786. [PMID: 37424993 PMCID: PMC10326388 DOI: 10.3389/fnins.2023.1196786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception. Methods The present study used pharmacological magnetic resonance imaging (phMRI) to evaluate the dose-dependent effect of GAT107 on brain activity in awake male rats. Rats were given a vehicle or one of three different doses of GAT107 (1, 3, and 10 mg/kg) during a 35 min scanning session. Changes in BOLD signal and resting state functional connectivity were evaluated and analyzed using a rat 3D MRI atlas with 173 brain areas. Results GAT107 presented with an inverted-U dose response curve with the 3 mg/kg dose having the greatest effect on the positive BOLD volume of activation. The primary somatosensory cortex, prefrontal cortex, thalamus, and basal ganglia, particularly areas with efferent connections from the midbrain dopaminergic system were activated as compared to vehicle. The hippocampus, hypothalamus, amygdala, brainstem, and cerebellum showed little activation. Forty-five min post treatment with GAT107, data for resting state functional connectivity were acquired and showed a global decrease in connectivity as compared to vehicle. Discussion GAT107 activated specific brain regions involved in cognitive control, motivation, and sensory perception using a BOLD provocation imaging protocol. However, when analyzed for resting state functional connectivity there was an inexplicable, general decrease in connectivity across all brain areas.
Collapse
Affiliation(s)
- Brittany M. Brems
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Erin E. Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jenna G. Connolly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jingchun Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
6
|
The Effects of Positive Allosteric Modulators of α7–nAChR on Social Play Behavior in Adolescent Rats Prenatally Exposed to Valproic Acid. Pharmaceuticals (Basel) 2022; 15:ph15111417. [PMID: 36422547 PMCID: PMC9697996 DOI: 10.3390/ph15111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
There is still no effective treatment that addresses the core symptoms of autism spectrum disorders (ASD), including social and communication deficits. A comprehensive body of evidence points to the cholinergic system, including alpha7–nicotinic acetylcholine receptors (α7–nAChRs), as a potential target of pharmacotherapy. A promising approach is based on positive allosteric modulators (PAMs) of these receptors due to their advantages over direct agonists. Nevertheless, α7 n–AChR ligands have not been widely studied in the context of autism. Therefore, using one of the most widely used rodent models of ASD, that is, prenatal exposure to valproic acid (VPA), we examined the impact of α7–nAChR PAMs (PNU–120596 and CCMI) on socio-communicative behavior during social play in adolescent male and female rats. The current study demonstrated that PAM treatment affected certain aspects of socio-communicative behavior in adolescent rats. Accordingly, PNU–120596 ameliorated deficient play abilities in VPA-exposed males, as revealed by increased play time during a social encounter. In addition, this compound enhanced the emission of ultrasonic vocalizations that accompanied playful interactions. Moreover, we observed the overall effect of PNU–120596 on non-playful forms of social behavior (i.e., social exploration) and acoustic parameters (i.e., the duration) of emitted calls. The present results suggest the ability of α7–nAChR PAMs to facilitate socio-communicative behavior in adolescent rats.
Collapse
|
7
|
Comprehensive metabolomic characterization of the hippocampus in a ketamine mouse model of schizophrenia. Biochem Biophys Res Commun 2022; 632:150-157. [DOI: 10.1016/j.bbrc.2022.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
8
|
Wei Y, Xiao L, Fan W, Zou J, Yang H, Liu B, Ye Y, Wen D, Liao L. Astrocyte Activation, but not Microglia, Is Associated with the Experimental Mouse Model of Schizophrenia Induced by Chronic Ketamine. J Mol Neurosci 2022; 72:1902-1915. [PMID: 35802289 DOI: 10.1007/s12031-022-02046-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Ketamine is a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors. Many experimental studies have shown that ketamine can induce cognitive impairments and schizophrenia-like symptoms. While much data have demonstrated that glial cells are associated with the pathophysiology of psychiatric disorders, including schizophrenia, the response of glial cells to ketamine and its significance to schizophrenia are not clear. The present study was intended to explore whether chronic ketamine treatment would induce behavioral and glial changes in mice. First, ketamine was used to stimulate behavioral abnormalities similar to schizophrenia evaluated by the open field test, elevated plus-maze test, Y maze test, novel object recognition test, and tail suspension test. Secondly, histopathology and Nissl staining were performed. Meanwhile, immunofluorescence was used to evaluate the expression levels of IBA-1 (a microglial marker) and GFAP (an astrocyte marker) in the mouse hippocampus for any change. Then, ELISA was used to analyze proinflammatory cytokine levels for any change. Our results showed that ketamine (25 mg/kg, i.p., qid, 12 days) induced anxiety, recognition deficits, and neuronal injury in the hippocampus. Moreover, chronic ketamine treatment enhanced GFAP expression in CA1 and DG regions of the hippocampus but did not influence the expression of IBA-1. Ketamine also increased the levels of IL-1β, IL-6, and TNF-α in the mouse hippocampus. Our study created a new procedure for ketamine administration, which successfully induce negative symptoms and cognitive-behavioral defects in schizophrenia by chronic ketamine. This study further revealed that an increase in astrocytosis, but not microglia, is associated with the mouse model of schizophrenia caused by ketamine. In summary, hippocampal astrocytes may be involved in the pathophysiology of ketamine-induced schizophrenia-like phenotypes through reactive transformation and regulation of neuroinflammation.
Collapse
Affiliation(s)
- Ying Wei
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Li Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Zou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Yang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Bo Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Linchuan Liao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Schick B, Barth E, Mayer B, Weber CL, Hagemeyer T, Schönfeldt C. Prospective, observational, single-centre cohort study with an independent control group matched for age and sex aimed at investigating the significance of cholinergic activity in patients with schizophrenia: study protocol of the CLASH-study. BMJ Open 2021; 11:e050501. [PMID: 34930729 PMCID: PMC8689167 DOI: 10.1136/bmjopen-2021-050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Alterations in the cholinergic metabolism may cause various clinical symptoms of schizophrenia. In addition to the 'monoamine hypothesis,' neuroinflammation is also discussed as a cause of schizophrenia. To date, there has been no evidence of alterations in the central cholinergic transmitter balance in patients with schizophrenia under clinical conditions. By contrast, studies in critically ill patients have established the measurement of acetylcholinesterase activity as a suitable surrogate parameter of central cholinergic transmitter balance/possible pathophysiological changes. Butyrylcholinesterase activity has been established as a parameter indicating possible (neuro)inflammatory processes. Both parameters can now be measured using a point-of-care approach. Therefore, the primary objective of this study is to investigate whether acetylcholinesterase and butyrylcholinesterase activity differs in patients with various forms of schizophrenia. Secondary objectives address the possible association between acetylcholinesterase and butyrylcholinesterase activity and (1) schizophrenic symptoms using the Positive and Negative Syndrome Scale, (2) the quantity of antipsychotics taken and (3) the duration of illness. METHODS AND ANALYSIS The study is designed as a prospective, observational cohort study with one independent control group. It is being carried out at the Department of Psychiatry and Psychotherapy III, Ulm University Hospital, Germany. Patient enrolment started in October 2020, and the anticipated end of the study is in January 2022. The enrolment period was set from October 2020 to December 2021 (extension required due to SARS-CoV-2 pandemic). The sample size is calculated at 50 patients in each group. Esterase activity is measured on hospital admission (acute symptomatology) and after referral to a postacute ward over a period of three consecutive days. The matched control group will be created after reaching 50 patients with schizophrenia. This will be followed by a comprehensive statistical analysis of the data set. ETHICS AND DISSEMINATION The study was registered prospectively in the German Clinical Trials Register (DRKS-ID: DRKS00023143,URL: https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00023143) after approval by the ethics committee of the University of Ulm, Germany Trial Code No. 280/20. TRIAL REGISTRATION NUMBER DRKS00023143; Pre-results.
Collapse
Affiliation(s)
- Benedikt Schick
- Department of Anaesthesiology, University Hospital Ulm, Ulm, Germany
| | - Eberhard Barth
- Department of Anaesthesiology, University Hospital Ulm, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Claire-Louise Weber
- Department of Psychiatry and Psychotherapy III, University Hospital Ulm, Ulm, Germany
| | - Theresa Hagemeyer
- Department of Psychiatry and Psychotherapy III, University Hospital Ulm, Ulm, Germany
| | - Carlos Schönfeldt
- Department of Psychiatry and Psychotherapy III, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
10
|
Wang X, Xiao H, Wang J, Huang Z, Peng G, Xie W, Bian X, Liu H, Shi C, Yang T, Li X, Gao J, Meng Y, Jiang Q, Chen W, Hu F, Wei N, Wang X, Zhang L, Wang K, Sun Q. Synthesis and Biological Evaluation of Novel Triazine Derivatives as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. J Med Chem 2021; 64:12379-12396. [PMID: 34374537 DOI: 10.1021/acs.jmedchem.1c01058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancing neuronal α7 nicotinic acetylcholine receptor (α7 nAChR) function can alleviate cognitive deficits. Here, we report the design, synthesis, and evaluation of N-(4-(trifluoromethoxy)phenyl)-1,3,5-triazin-2-amine derivatives 8-10 as a series of novel α7 nAChR positive allosteric modulators (PAMs). The representative compound 10e functions as a type I PAM with an EC50 of 3.0 μM and approximately 38-fold enhancement of α7 current in the presence of agonist acetylcholine (100 μM). It specifically enhances α7 current with high selectivity. Compound 10e shows good pharmacokinetic property in mice. Intraperitoneal injection of 10e (3 mg/kg) exhibits sufficient blood-brain barrier penetration in mice. Furthermore, 10e can also rescue the auditory gating deficit in mice with schizophrenia-like behavior. Molecular docking of 10e with homopentameric α7 nAChR reveals a new mode of action. These results support the potential of 10e for treatment for schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haoran Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Zongze Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Geng Peng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenjun Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiling Bian
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huijie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Taoyi Yang
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jian Gao
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qianchen Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Xiaowei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Potasiewicz A, Faron-Gorecka A, Popik P, Nikiforuk A. Repeated treatment with alpha 7 nicotinic acetylcholine receptor ligands enhances cognitive processes and stimulates Erk1/2 and Arc genes in rats. Behav Brain Res 2021; 409:113338. [PMID: 33940049 DOI: 10.1016/j.bbr.2021.113338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the treatment of cognitive decline in patients with schizophrenia, Alzheimer's disease, and attention-deficit/hyperactivity disorder. Here we examined the promnesic activity of the α7 nAChR agonist (A582941), the type I (CCMI), and the type II (PNU120596) positive allosteric modulators (PAMs) in rats following single and repeated (once daily for seven days) treatment. To determine the neuronal mechanisms underlying the procognitive activity of the tested compounds, levels of the extracellular signal-regulated kinases (Erk1/2) and the activity-regulated cytoskeleton-associated protein (Arc) mRNAs were assessed in the frontal cortical and hippocampal brain regions. Using the novel object recognition test, we demonstrate that the lower doses of A582941 (0.1 mg/kg), CCMI (1 mg/kg), and PNU120596 (0.3 mg/kg) improved recognition memory after repeated but not single administration, suggesting a cumulative effect of repeated dosing. In contrast, the higher doses of A582941 (0.3 mg/kg), CCMI (3 mg/kg) and PNU120596 (1 mg/kg) demonstrated promnesic efficacy following both single and repeated administration. Subsequent in situ hybridization revealed that repeated treatment with A582941 and CCMI, but not PNU120596 enhanced mRNA expression of the Erk1/2 and Arc in the frontal cortex and hippocampus. Present data suggest that both the α7 nAChR agonist and PAMs exhibit procognitive effects after single and repeated administration. The increased level of the Erk1/2 and Arc genes is likely to be at least partially involved in this effect.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland.
| | - Agata Faron-Gorecka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Krakow, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland
| |
Collapse
|
12
|
Gaidhani N, Tucci FC, Kem WR, Beaton G, Uteshev VV. Therapeutic efficacy of α7 ligands after acute ischaemic stroke is linked to conductive states of α7 nicotinic ACh receptors. Br J Pharmacol 2021; 178:1684-1704. [PMID: 33496352 DOI: 10.1111/bph.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting α7 nicotinic ACh receptors (nAChRs) in neuroinflammatory disorders including acute ischaemic stroke holds significant therapeutic promise. However, therapeutically relevant signalling mechanisms remain unidentified. Activation of neuronal α7 nAChRs triggers ionotropic signalling, but there is limited evidence for it in immunoglial tissues. The α7 ligands which are effective in reducing acute ischaemic stroke damage promote α7 ionotropic activity, suggesting a link between their therapeutic effects for treating acute ischaemic stroke and activation of α7 conductive states. EXPERIMENTAL APPROACH This hypothesis was tested using a transient middle cerebral artery occlusion (MCAO) model of acute ischaemic stroke, NS6740, a known selective non-ionotropic agonist of α7 nAChRs and 4OH-GTS-21, a partial α7 agonist. NS6740-like ligands exhibiting low efficacy/potency for ionotropic activity will be referred to as non-ionotropic agonists or "metagonists". KEY RESULTS 4OH-GTS-21, used as a positive control, significantly reduced neurological deficits and brain injury after MCAO as compared to vehicle and NS6740. By contrast, NS6740 was ineffective in identical assays and reversed the effects of 4OH-GTS-21 when these compounds were co-applied. Electrophysiological recordings from acute hippocampal slices obtained from NS6740-injected animals demonstrated its remarkable brain availability and protracted effects on α7 nAChRs as evidenced by sustained (>8 h) alterations in α7 ionotropic responsiveness. CONCLUSION AND IMPLICATIONS These results suggest that α7 ionotropic activity may be obligatory for therapeutic efficacy of α7 ligands after acute ischaemic stroke yet, highlight the potential for selective application of α7 ligands to disease states based on their mode of receptor activation.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Fabio C Tucci
- Epigen Biosciences, Inc., San Diego, California, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Graham Beaton
- Epigen Biosciences, Inc., San Diego, California, USA
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
13
|
Verma MK, Goel RN, Bokare AM, Dandekar MP, Koul S, Desai S, Tota S, Singh N, Nigade PB, Patil VB, Modi D, Mehta M, Gundu J, Walunj SS, Karche NP, Sinha N, Kamboj RK, Palle VP. LL-00066471, a novel positive allosteric modulator of α7 nicotinic acetylcholine receptor ameliorates cognitive and sensorimotor gating deficits in animal models: Discovery and preclinical characterization. Eur J Pharmacol 2021; 891:173685. [PMID: 33127363 DOI: 10.1016/j.ejphar.2020.173685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023]
Abstract
α7 nicotinic acetylcholine receptor (α7 nAChR) is an extensively validated target for several neurological and psychiatric conditions namely, dementia and schizophrenia, owing to its vital roles in cognition and sensorimotor gating. Positive allosteric modulation (PAM) of α7 nAChR represents an innovative approach to amplify endogenous cholinergic signaling in a temporally restricted manner in learning and memory centers of brain. α7 nAChR PAMs are anticipated to side-step burgeoning issues observed with several clinical-stage orthosteric α7 nAChR agonists, related to selectivity, tolerance/tachyphylaxis, thus providing a novel dimension in therapeutic strategy and pharmacology of α7 nAChR ion-channel. Here we describe a novel α7 nAChR PAM, LL-00066471, which potently amplified agonist-induced Ca2+ fluxes in neuronal IMR-32 neuroblastoma cells in a α-bungarotoxin (α-BTX) sensitive manner. LL-00066471 showed excellent oral bioavailability across species (mouse, rat and dog), low clearance and good brain penetration (B/P ratio > 1). In vivo, LL-00066471 robustly attenuated cognitive deficits in both procognitive and antiamnesic paradigms of short-term episodic and recognition memory in novel object recognition task (NORT) and social recognition task (SRT), respectively. Additionally, LL-00066471 mitigated apomorphine-induced sensorimotor gating deficits in acoustic startle reflex (ASR) and enhanced antipsychotic efficacy of olanzapine in conditioned avoidance response (CAR) task. Further, LL-00066471 corrected redox-imbalances and reduced cortico-striatal infarcts in stroke model. These finding together suggest that LL-00066471 has potential to symptomatically alleviate cognitive deficits associated with dementias, attenuate sensorimotor gating deficits in schizophrenia and correct redox-imbalances in cerebrovascular disorders. Therefore, LL-00066471 presents potential for management of cognitive impairments associated with neurological and psychiatric conditions.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cell Line, Tumor
- Cholinergic Agents/pharmacokinetics
- Cholinergic Agents/pharmacology
- Cognition/drug effects
- Cognitive Dysfunction/metabolism
- Cognitive Dysfunction/physiopathology
- Cognitive Dysfunction/prevention & control
- Cognitive Dysfunction/psychology
- Disease Models, Animal
- Dogs
- Exploratory Behavior/drug effects
- Gait Disorders, Neurologic/metabolism
- Gait Disorders, Neurologic/physiopathology
- Gait Disorders, Neurologic/prevention & control
- Gait Disorders, Neurologic/psychology
- Ischemic Stroke/drug therapy
- Ischemic Stroke/metabolism
- Ischemic Stroke/physiopathology
- Male
- Mice, Inbred BALB C
- Open Field Test/drug effects
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Rats, Wistar
- Reflex, Startle/drug effects
- Sensory Gating/drug effects
- Signal Transduction
- Social Behavior
- alpha7 Nicotinic Acetylcholine Receptor/drug effects
- alpha7 Nicotinic Acetylcholine Receptor/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Mahip K Verma
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India.
| | - Rajan N Goel
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Anand M Bokare
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Manoj P Dandekar
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Sarita Koul
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Sagar Desai
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Santoshkumar Tota
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Nilendra Singh
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Prashant B Nigade
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Vinod B Patil
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Dipak Modi
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Maneesh Mehta
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Jayasagar Gundu
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Sameer S Walunj
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Navnath P Karche
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Neelima Sinha
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Rajender K Kamboj
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Venkata P Palle
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| |
Collapse
|
14
|
Unal G, Sirvanci S, Aricioglu F. α7 nicotinic receptor agonist and positive allosteric modulators differently improved schizophrenia-like cognitive deficits in male rats. Behav Brain Res 2020; 397:112946. [PMID: 33011186 DOI: 10.1016/j.bbr.2020.112946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
The majority of schizophrenia patients have cognitive deficits as a separate symptom cluster independent of positive or negative symptoms. Current medicines, unfortunately, cannot provide clear benefits for cognitive symptoms in patients. Recent findings showed decreased α7 nicotinic acetylcholine receptor (nAChR) expressions in subjects with schizophrenia. α7 nAChR full/partial agonists and positive allosteric modulators (PAMs) may be valuable drug candidates to treat cognitive deficits of disease. This study comparatively investigated the effect of α7 nAChR agonist (A-582941), type I PAM (CCMI), type II PAM (PNU-120596), and the antipsychotic drug (clozapine) on behavioral, molecular, and immunohistochemical parameters in a subchronic MK-801 model of schizophrenia in male rats. Novel object recognition (NOR) and Morris water maze (MWM) tests were performed to evaluate recognition and spatial memories, respectively. Gene and protein expressions of parvalbumin, glutamic acid decarboxylase-67 (GAD67), and α7 nAChR were examined in the rats' hippocampal tissue. The subchronic MK-801 administration produced cognitive deficits in the NOR and MWM tests. It also decreased the protein and gene expressions of parvalbumin, GAD67, and α7 nAChR in the hippocampus. Clozapine, A-582941, and PNU-120596 but not CCMI increased the parvalbumin and α7 nAChR expressions and provided benefits in recognition memory. Interestingly, clozapine and CCMI restored the MK-801 induced deficits on GAD1 expression and spatial memory while A-582941 and PNU-120596 were ineffective. These results indicated that α7 nAChR agonist, type I and type II PAMs may provide benefits in different types of cognitive deficits rather than a complete treatment in schizophrenia.
Collapse
Affiliation(s)
- Gokhan Unal
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey
| | - Serap Sirvanci
- Marmara University, School of Medicine, Department of Embryology and Histology, Istanbul, Turkey
| | - Feyza Aricioglu
- Marmara University, Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Istanbul, Turkey.
| |
Collapse
|
15
|
Koola MM, Looney SW, Hong H, Pillai A, Hou W. Meta-analysis of randomized controlled trials of galantamine in schizophrenia: significant cognitive enhancement. Psychiatry Res 2020; 291:113285. [PMID: 32763546 DOI: 10.1016/j.psychres.2020.113285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairments are core features of schizophrenia and the best predictor of functional outcome. Cholinergic system and alpha-7 nicotinic acetylcholine (α7nACh) receptors are strongly implicated in the pathophysiologic mechanisms associated with cognitive impairments in schizophrenia. Galantamine is not only a reversible, competitive inhibitor of acetylcholinesterase but also a type I positive allosteric modulator of α7nACh receptors. The objective of this meta-analysis was to examine the efficacy of galantamine for cognitive symptoms of schizophrenia. In the meta-analysis that included six randomized controlled trials (RCTs, N=226), cognitive impairments significantly improved with galantamine compared to placebo, with a small Hedges' g effect size of 0.233. This finding is consistent with other RCTs in schizophrenia with medications with a similar mechanism of action. On the basis of the results from all the failed (although some efficacy has been shown) RCTs to date in schizophrenia, targeting only one pathophysiologic mechanism may be insufficient to detect a clinically meaningful signal. Nicotinergic medications, like any other add-on medications, are unlikely to be effective as stand-alone medications. Hence, these medications may have to be combined with other medications with complementary mechanisms such as glutamatergic/N-methyl-D-aspartate systems to detect a meaningful effect size for the three domains of psychopathology.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794, USA.
| | - Stephen W Looney
- Department of Population Health Sciences, Division of Biostatistics and Data Science, Augusta University, Augusta, GA, USA
| | - Houlin Hong
- Department of Family, Population and Preventive Medicine, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wei Hou
- Department of Family, Population and Preventive Medicine, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
16
|
Shenkarev ZO, Shulepko MA, Bychkov ML, Kulbatskii DS, Shlepova OV, Vasilyeva NA, Andreev-Andrievskiy AA, Popova AS, Lagereva EA, Loktyushov EV, Koshelev SG, Thomsen MS, Dolgikh DA, Kozlov SA, Balaban PM, Kirpichnikov MP, Lyukmanova EN. Water-soluble variant of human Lynx1 positively modulates synaptic plasticity and ameliorates cognitive impairment associated with α7-nAChR dysfunction. J Neurochem 2020; 155:45-61. [PMID: 32222974 DOI: 10.1111/jnc.15018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Abstract
Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC50 ~ 50 µM. In mice, ws-Lynx1 penetrated the blood-brain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.
Collapse
Affiliation(s)
- Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Shlepova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| | - Nathalia A Vasilyeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Andreev-Andrievskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anfisa S Popova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeniya A Lagereva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| |
Collapse
|
17
|
Unal G, Bekci H, Cumaoglu A, Yerer MB, Aricioglu F. Alpha 7 nicotinic receptor agonist and positive allosteric modulators improved social and molecular deficits of MK-801 model of schizophrenia in rats. Pharmacol Biochem Behav 2020; 193:172916. [PMID: 32220620 DOI: 10.1016/j.pbb.2020.172916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/28/2023]
Abstract
Schizophrenia is a common psychiatric disease that cannot be fully treated with current antipsychotic drugs. It has shown that glutamatergic NMDA receptor antagonists such as MK-801 cause schizophrenia-like phenotype in rodents. Recent studies indicated that α7 nicotinic acetylcholine receptor (nAChR) deficits contribute to schizophrenia. Enhancing its activity with agonist or positive allosteric modulators (PAMs) may be a valuable approach for treatment. The certain intracellular pathways such as Akt/Glycogen synthase kinase 3 beta (GSK-3β) and phosphodiesterase-4 (PDE-4)/cAMP are associated with the pathogenesis of schizophrenia. In this study, we examined the effect of α7 nAChR agonists and PAMs on the behavioral and molecular phenotype of schizophrenia in the subchronic MK-801 administered rats. Social interaction, the levels of α7 nAChR, and related intracellular pathways (cAMP, PDE4A, PDE4D, p-Akt/Akt, p-GSK-3β/GSK-3β) were measured by behavioral or ELISA and western blot tests. Subchronic MK-801 administration decreased the following behaviors and increased the avoiding behaviors. However, only α7 nAChR agonist (A-582941) increased the following behavior while α7 nAChR agonist, PAMs (CCMI and PNU-120596), and clozapine decreased the avoiding behavior compared to MK-801. For molecular parameters, MK-801 administration decreased the α7 nAChR, p-Akt/Akt, p-GSK-3β/GSK-3β expressions, and cAMP levels while it increased PDE4A, PDE4D expressions in the prefrontal cortex. Besides, MK-801 decreased the α7 nAChR, p-GSK-3β/GSK-3β expressions in the hippocampus. We found clozapine, α7 nAChR agonists, and PAMs reversed the molecular deficits induced by MK-801. Herein, we showed that prefrontal cortex is more sensitive to the devastating effects of subchronic MK-801 administration, especially for PDE4, in rats. In addition to clozapine, α7 nAChR agonists and PAMs found to be beneficial on both social and molecular deficits induced by MK-801 in rats. We suggested that α7 nAChR agonists and PAMs might be valuable approaches to treat negative symptoms of schizophrenia when unmet needs and current limitations considered in this pathology.
Collapse
Affiliation(s)
- G Unal
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey
| | - H Bekci
- Kayseri University, Yahyalı Vocational School, Kayseri, Turkey
| | - A Cumaoglu
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - M B Yerer
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey
| | - F Aricioglu
- Marmara University, Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Istanbul, Turkey.
| |
Collapse
|
18
|
Nikiforuk A, Litwa E, Krawczyk M, Popik P, Arias H. Desformylflustrabromine, a positive allosteric modulator of α4β2-containing nicotinic acetylcholine receptors, enhances cognition in rats. Pharmacol Rep 2020; 72:589-599. [PMID: 32207091 PMCID: PMC7329799 DOI: 10.1007/s43440-020-00092-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Rationale The α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) may represent useful targets for cognitive improvement. It has been recently proposed that a strategy based on positive allosteric modulation of α4β2-nAChRs reveals several advantages over the direct agonist approach. Nevertheless, the procognitive effects of α4β2-nAChR positive allosteric modulators (PAMs) have not been extensively characterized. Objectives The aim of the present study was to evaluate the procognitive efficacy of desformylflustrabromine (dFBr), a selective α4β2-nAChR PAM. Methods Cognitive effects were investigated in the novel object recognition task (NORT) and the attentional set-shifting task (ASST) in rats. Results The results demonstrate that dFBr attenuated the delay-induced impairment in NORT performance and facilitated cognitive flexibility in the ASST. The beneficial effects of dFBr were inhibited by dihydro-β-erythroidine, a relatively selective α4β2-nAChR antagonist, indicating the involvement of α4β2-nAChRs in cognitive processes. The tested α4β2-PAM was also effective against ketamine- and scopolamine-induced deficits of object recognition memory. Moreover, procognitive effects were also observed after combined treatment with inactive doses of dFBr and TC-2403, a selective α4β2-nAChR agonist. Conclusions These findings indicate that dFBr presents procognitive activity, supporting the strategy based on α4β2-nAChR potentiation as a plausible therapy for cognitive impairment. Electronic supplementary material The online version of this article (10.1007/s43440-020-00092-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Ewa Litwa
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Martyna Krawczyk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Hugo Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
19
|
Wang X, Bell IM, Uslaner JM. Activators of α7 nAChR as Potential Therapeutics for Cognitive Impairment. Curr Top Behav Neurosci 2020; 45:209-245. [PMID: 32451955 DOI: 10.1007/7854_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a promising target for the treatment of cognitive deficits associated with psychiatric and neurological disorders, including schizophrenia and Alzheimer's disease (AD). Several α7 nAChR agonists and positive allosteric modulators (PAMs) have demonstrated procognitive effects in preclinical models and early clinical trials. However, despite intense research efforts in the pharmaceutical industry and academia, none of the α7 nAChR ligands has been approved for clinical use. This chapter will focus on the α7 nAChR ligands that have advanced to clinical studies and explore the reasons why these agents have not met with unequivocal clinical success.
Collapse
Affiliation(s)
- Xiaohai Wang
- Department of Neuroscience Research, Merck & Co. Inc., West Point, PA, USA
| | - Ian M Bell
- Department of Discovery Chemistry, Merck & Co. Inc., West Point, PA, USA
| | - Jason M Uslaner
- Department of Neuroscience Research, Merck & Co. Inc., West Point, PA, USA.
| |
Collapse
|
20
|
Xue Y, He X, Yang T, Wang Y, Liu Z, Zhang G, Wang Y, Wang K, Zhang L, Zhang L. Discovery of fused heterocyclic carboxamide derivatives as novel α7-nAChR agonists: Synthesis, preliminary SAR and biological evaluation. Eur J Med Chem 2019; 182:111618. [PMID: 31434041 DOI: 10.1016/j.ejmech.2019.111618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) has emerged as a promising therapeutic target for schizophrenia. In our previous work, a novel series of α7-nAChR agonists bearing scaffold of indolizine were discovered. To explore the effect of aromaticity on the activity and find more active agents, herein, fused heterocyclic carboxamide derivatives were designed and synthesized in this study. Based on the evaluation by two-electrode voltage clamp in Xenopus oocytes, 27 of the synthesized compounds showed obvious agonism of α7 nAChR. Particularly, compounds 10a and 10e showed significantly higher Emax than EVP-6124. The result illustrated the importance of aromaticity to the activity of agonism. Compound 10a, which showed EC50 of 1.88 μM and Emax of 72.4%, was further characterized comprehensively, including co-application with type II positive allosteric modulator PNU-120596, selectivity with other closely related ligand-gated ion channel, etc. The results showed that 10a showed moderate selectivity over other subtypes such as α4β2 and α3β4 nAChR. 10a evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. The analysis of binding mode and understanding of structure-activity relationship provided insights to develop more potent novel α7-nAChR agonists.
Collapse
Affiliation(s)
- Yu Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Xiaomeng He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Taoyi Yang
- Department of Molecular and Cellular Pharmacology, PKU-IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Guisen Zhang
- Jiangsu Nhwa Pharmaceutical Co. Ltd, 69 Minzhu South Road, Xuzhou, Jiangsu, 221116, PR China
| | - Yanxing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Kewei Wang
- Department of Molecular and Cellular Pharmacology, PKU-IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
21
|
Bali ZK, Nagy LV, Budai D, Hernádi I. Facilitation and inhibition of firing activity and N-methyl-D-aspartate-evoked responses of CA1 hippocampal pyramidal cells by alpha7 nicotinic acetylcholine receptor selective compounds in vivo. Sci Rep 2019; 9:9324. [PMID: 31249369 PMCID: PMC6597544 DOI: 10.1038/s41598-019-45796-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) are promising novel targets for the treatment of neurocognitive disorders. Although the cognitive enhancer potential of alpha7 nAChR agonists and positive allosteric modulators (PAMs) has been confirmed in several preclinical animal models, there are only sparse in vivo electrophysiological data on their effects on the firing activity and excitability of neurons. The present study investigated and compared local effects of alpha7 nAChR agonist PHA-543613 and PAMs PNU-120596 and NS-1738 on the spontaneous and N-methyl-D-aspartate-evoked (NMDA-evoked) firing rate of rat CA1 hippocampal pyramidal cells, in vivo. Furthermore, effects of alpha7 nAChR antagonist methyllycaconitine (MLA) and GABA were also tested. Results showed substantially different effects of the alpha7 nAChR agonist and PAMs. While PNU-120596 and NS-1738 predominantly and significantly increased both spontaneous and NMDA-evoked firing rate of the neurons, application of PHA-543613 resulted in almost equal distribution of facilitatory and inhibitory effects. The increase of the NMDA-evoked firing rate exerted by NS-1738 was superadditive over the sum of the single effects of NMDA and NS-1738. The simultaneous application of alpha7 nAChR agonist PHA-543613 and PAM NS-1738 resulted in additive increase of both spontaneous and NMDA-evoked firing rate. However, NS-1738 counteracted inhibitory effects of PHA-543613 in 5 out of 6 neurons, resulting in a synergistic potentiation of their firing responses to NMDA. Our results suggest that alpha7 nAChR PAMs increase neuronal excitability more potently than agonists, while the remarkable occurrence of inhibitory effects of PHA-543613 (possibly originating from receptor desensitization) implies that agonists may exert neuroprotective effects.
Collapse
Affiliation(s)
- Zsolt Kristóf Bali
- Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary.,Grastyán Endre Translational Research Center, University of Pécs, Pécs, Hungary
| | - Lili Veronika Nagy
- Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Dénes Budai
- Kation Scientific LLC, Minneapolis, Minnesota, USA
| | - István Hernádi
- Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary. .,János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary. .,Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary. .,Grastyán Endre Translational Research Center, University of Pécs, Pécs, Hungary.
| |
Collapse
|
22
|
Sun LL, Yang TY, Wei NN, Lu W, Jiao WX, Zhou QQ, Miao YZ, Gao Q, Wang XT, Sun Q, Wang K. Pharmacological characterization of JWX-A0108 as a novel type I positive allosteric modulator of α7 nAChR that can reverse acoustic gating deficits in a mouse prepulse inhibition model. Acta Pharmacol Sin 2019; 40:737-745. [PMID: 30333556 PMCID: PMC6786413 DOI: 10.1038/s41401-018-0163-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated Ca2+-permeable homopentameric ion channel implicated in cognition and neuropsychiatric disorders. Pharmacological enhancement of α7 nAChR function has been suggested for improvement of cognitive deficits. In the present study, we characterized a thiazolyl heterocyclic derivative, 6-(2-chloro-6-methylphenyl)-2-((3-fluoro-4-methylphenyl)amino)thiazolo[4,5-d]pyrimidin-7(6H)-one (JWX-A0108), as a novel type I α7 nAChR positive allosteric modulator (PAM), and evaluated its ability to reverse auditory gating and spatial working memory deficits in mice. In Xenopus oocytes expressing human nAChR channels, application of JWX-A0108 selectively enhanced α7 nAChR-mediated inward current in the presence of the agonist ACh (EC50 value = 4.35 ± 0.12 µM). In hippocampal slices, co-application of ACh and JWX-A0108 (10 µM for each) markedly increased both the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded in pyramidal neurons, but JWX-A0108 did not affect GABA-induced current in oocytes expressing human GABAA receptor α1β3γ2 and α5β3γ2 subtypes. In mice with MK-801-induced deficits in auditory gating, administration of JWX-A0108 (1, 3, and 10 mg/kg, i.p.) dose-dependently attenuates MK-801-induced auditory gating deficits in five prepulse intensities (72, 76, 80, 84, and 88 dB). Furthermore, administration of JWX-A0108 (0.03, 0.1, or 0.3 mg/kg, i.p.) significantly reversed MK-801-induced impaired spatial working memory in mice. Our results demonstrate that JWX-A0108 is a novel type I PAM of α7 nAChR, which may be beneficial for improvement of cognitive deficits commonly found in neuropsychiatric disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Li-Lan Sun
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Tao-Yi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ning-Ning Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Wei Lu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Wen-Xuan Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi-Qi Zhou
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Yong-Zhen Miao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Qin Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Xin-Tong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China.
| |
Collapse
|
23
|
Chronic treatment with galantamine rescues reversal learning in an attentional set-shifting test after experimental brain trauma. Exp Neurol 2019; 315:32-41. [PMID: 30711647 DOI: 10.1016/j.expneurol.2019.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Approximately 10 million new cases of traumatic brain injury (TBI) are reported each year worldwide with many of these injuries resulting in higher order cognitive impairments. Galantamine (GAL), an acetylcholine esterase inhibitor (AChEI) and positive allosteric modulator of nicotinic acetylcholine receptors (nAChRs), has been reported to ameliorate cognitive deficits after clinical TBI. Previously, we demonstrated that controlled cortical impact (CCI) injury to rats resulted in significant executive function impairments as measured by the attentional set-shifting test (AST), a complex cognitive task analogous to the Wisconsin Card Sorting Test (WCST). We hypothesized that chronic administration of GAL would normalize performance on the AST post-TBI. Isoflurane-anesthetized adult male rats were subjected to moderate CCI (2.8 mm tissue deformation at 4 m/s) or sham injury. Rats were then randomized into one of three treatment groups (i.e., 1 mg/kg GAL, 2 mg/kg GAL, or 1 mL/kg saline vehicle; VEH) or their respective sham controls. GAL or VEH was administered intraperitoneally daily commencing 24 hours post-surgery and until AST testing at 4 weeks post-injury. The AST data revealed significant impairments in the first reversal stage after TBI, seen as increased trials to reach criterion and elevated total errors (p < 0.05). These behavioral flexibility deficits were equally normalized by the administration of both doses of GAL (p < 0.05). Additionally, the higher dose of GAL (2 mg/kg) also significantly reduced cortical lesion volume compared to TBI + VEH controls (p < 0.05). In summary, daily GAL administration provides an efficacious treatment for cognitive deficits and histological recovery after experimental brain trauma. Clinically, these findings are promising considering robust results were attained using a pharmacotherapy already used in the clinic to treat mild dementia.
Collapse
|
24
|
Selective adrenergic alpha2C receptor antagonist ameliorates acute phencyclidine-induced schizophrenia-like social interaction deficits in rats. Psychopharmacology (Berl) 2019; 236:1245-1253. [PMID: 30535904 PMCID: PMC6591184 DOI: 10.1007/s00213-018-5130-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/21/2018] [Indexed: 11/05/2022]
Abstract
RATIONALE Social withdrawal is a core feature of the negative symptoms of schizophrenia. Currently available pharmacotherapies have only limited efficacy towards the negative symptoms, i.e., there is a significant unmet medical need in the treatment of these symptoms. OBJECTIVE We wanted to confirm whether selective adrenergic α2C receptor (AR) antagonist therapy could ameliorate acute phencyclidine (PCP)-induced schizophrenia-like social interaction deficits in rats, and to compare the effects of an α2C AR antagonist to another putative therapeutic alternative, an α7 nicotinic acetylcholine receptor (nAChR) partial agonist, as well against three commonly used atypical antipsychotics. METHODS Here, we used acute PCP administration and modified a protocol for testing social interaction deficits in male Wistar rats and then used this model to compare the effects of an α2C AR antagonist (ORM-13070 0.3 and 1.0 mg/kg s.c.) with an α7 nAChR partial agonist (EVP-6124 0.3 mg/kg s.c.) and three atypical antipsychotics (clozapine 2.5 mg/kg i.p., risperidone 0.04 and 0.08 mg/kg s.c., olanzapine 0.125 and 0.5 mg/kg s.c.) on social interaction behavior. RESULTS Acute PCP (1.5 mg/kg s.c.) produced robust and reproducible deficits in social interaction behavior without affecting locomotor activity. The selective α2C AR antagonist significantly ameliorated PCP-induced social interaction deficits. In contrast, neither the partial α7 nAChR agonist nor any of the three atypical antipsychotics were able to reverse the behavioral deficits at the selected doses. CONCLUSION Our findings confirm that α2C AR antagonism is a potential mechanism for the treatment of the negative symptoms of schizophrenia.
Collapse
|
25
|
Potasiewicz A, Golebiowska J, Popik P, Nikiforuk A. Procognitive effects of varenicline in the animal model of schizophrenia depend on α4β2- and α 7-nicotinic acetylcholine receptors. J Psychopharmacol 2018; 33:269881118812097. [PMID: 30501536 DOI: 10.1177/0269881118812097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Varenicline, a partial agonist of the α4β2 nicotinic acetylcholine receptor (α4β2-nAChR), is currently used to facilitate smoking cessation. Preclinical and clinical studies have suggested that this compound may also be effective in treating cognitive impairments in schizophrenia. However, it is unclear which nicotinic acetylcholine receptor subtypes may be involved because varenicline is not only a partial agonist for α4β2-nAChRs but also a full agonist for α7 nicotinic acetylcholine receptors (α7-nAChRs). AIM We investigated the effects of varenicline, compared to the α4β2-nAChR partial agonist TC-2403 and the α7-nAChR full agonist PNU-282987, in a ketamine-based model of schizophrenia-like cognitive deficits on the attentional set-shifting task in rats. The second goal was to elucidate whether the procognitive efficacy of varenicline was due to the compound's action on α4β2-nAChRs or α7-nAChRs. METHODS Ketamine was administered to rats for 10 consecutive days and the test was performed 14 days following the last injection. The tested compounds were administered 30 min prior to the attentional set-shifting task. RESULTS Varenicline, TC-2403 and PNU-282987 ameliorated ketamine-evoked set-shifting deficits. While the α4β2-nAChR antagonist dihydro-β-erythroidine and the α7-nAChR antagonist methyllycaconitine completely prevented the procognitive actions of TC-2403 and PNU-282987, respectively, varenicline's effect was only partially blocked by any given antagonist. Moreover, the combined treatment with TC-2403 and PNU-282987 more effectively facilitated rats' set-shifting ability than activation of either type of nicotinic acetylcholine receptor alone. CONCLUSION The present findings demonstrated that varenicline's actions on both α7-nAChRs and α4β2-nAChRs may be necessary to produce its full procognitive effect in the present experimental setting.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Kraków, Poland
| | - Joanna Golebiowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Kraków, Poland
| | - Piotr Popik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Kraków, Poland
| | - Agnieszka Nikiforuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Kraków, Poland
| |
Collapse
|
26
|
Koola MM. Potential Role of Antipsychotic-Galantamine-Memantine Combination in the Treatment of Positive, Cognitive, and Negative Symptoms of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:134-148. [PMID: 30643787 PMCID: PMC6323397 DOI: 10.1159/000494495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Schizophrenia is, in part, a cognitive illness. There are no approved medications for cognitive impairments associated with schizophrenia (CIAS) and primary negative symptoms. Cholinergic and glutamatergic systems, alpha-7 nicotinic acetylcholine (α-7nACh) and N-methyl-D-aspartate (NMDA) receptors, kynurenic acid (KYNA), and mismatch negativity have been implicated in the pathophysiology of CIAS and negative symptoms. Galantamine is an acetylcholinesterase inhibitor that is also a positive allosteric modulator at the α4β2 and α7nACh receptors. Memantine is a noncompetitive NMDA receptor antagonist. Galantamine and memantine alone and in combination were effective for cognition in animals and people with Alzheimer's disease. The objective of this article is to critically dissect the published randomized controlled trials with galantamine and memantine for CIAS to highlight the efficacy signal. These studies may have failed to detect a clinically meaningful efficacy signal due to limitations, methodological issues, and possible medication nonadherence. There is evidence from a small open-label study that the galantamine-memantine combination may be effective for CIAS with kynurenine pathway metabolites as biomarkers to detect the severity of cognitive impairments. Given that there are no available treatments for cognitive impairments and primary negative symptoms in schizophrenia, testing of this "five-pronged strategy" (quintuple hypotheses: dopamine, nicotinic-cholinergic, glutamatergic/NMDA, GABA, and KYNA) is a "low-risk high-gain" approach that could be a major breakthrough in the field. The galantamine-memantine combination has the potential to treat positive, cognitive, and negative symptoms, and targeting the quintuple hypotheses concurrently may lead to a major scientific advancement - from antipsychotic treatment to antischizophrenia treatment.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
27
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|
28
|
Milienne-Petiot M, Higa KK, Grim A, Deben D, Groenink L, Twamley EW, Geyer MA, Young JW. Nicotine improves probabilistic reward learning in wildtype but not alpha7 nAChR null mutants, yet alpha7 nAChR agonists do not improve probabilistic learning. Eur Neuropsychopharmacol 2018; 28:1217-1231. [PMID: 30213668 PMCID: PMC6344043 DOI: 10.1016/j.euroneuro.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/25/2018] [Accepted: 08/07/2018] [Indexed: 11/27/2022]
Abstract
Cognitive impairments, e.g., reward learning, are present in various psychiatric disorders and warrant treatment. Improving reward-related learning could synergistically enhance psychosocial treatments and cognition generally. A critical first step is to understand the mechanisms underlying reward learning. The dopamine system has been implicated in such learning, but less known is how indirect activation of this system may affect reward learning. We determined the role of alpha7 nicotinic acetylcholine receptors (nAChR) on a probabilistic reversal learning task (PRLT) in mice that includes reward and punishment. Male alpha7 knockout (KO), heterozygous (HT), and wildtype (WT) littermate mice (n = 84) were treated with vehicle, 0.03, or 0.3 mg/kg nicotine. Two cohorts of C57BL/6NJ male mice were treated with various alpha7 nAChR ligands, including the full agonists PNU282877 and AR-R-17779, the positive allosteric modulator CCMI, the partial agonist SSR180711, and the antagonist methyllycaconitine. All mice were then tested in the PRLT. Nicotine (0.3 mg/kg) significantly improved initial reward learning in alpha7 WT and HT mice but did not improve learning in KO mice, suggesting an involvement of the alpha7 nAChR in the pro-learning effects of nicotine. Neither alpha7 nAChR treatments (PNU282987, AR-R-17779, CCMI, SSR180711, nor methyllycaconitine) affected mouse PRLT performance however. Nicotine improved reward learning via a mechanism that may include alpha7 nAChRs. This improvement unlikely relied solely on alpha7 nAChRs however, since no alpha7 nAChR ligand improved reward learning in normal mice. Future assessments of the effects of other nAChR subtypes on reward learning are needed.
Collapse
Affiliation(s)
- Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Kerin K Higa
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States
| | - Andrea Grim
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States
| | - Debbie Deben
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Lucianne Groenink
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States
| | - Elizabeth W Twamley
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Center of Excellence for Stress and Mental Health and Research Service, VA San Diego Healthcare System, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| |
Collapse
|
29
|
Nikiforuk A. Assessment of cognitive functions in animal models of schizophrenia. Pharmacol Rep 2018; 70:639-649. [DOI: 10.1016/j.pharep.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
30
|
α7 Nicotinic receptor-modulating agents reverse the hyperdopaminergic tone in the MAM model of schizophrenia. Neuropsychopharmacology 2018; 43:1712-1720. [PMID: 29695783 PMCID: PMC6006162 DOI: 10.1038/s41386-018-0066-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
Abstract
Recent evidence has emerged supporting a role for the cholinergic system in schizophrenia, including the potential of α7 modulators as a treatment strategy. However, preclinical studies to date have relied on studies in normal systems rather than on a validated developmental model of schizophrenia. Furthermore, there have been only few studies on whether orthosteric and allosteric modulators have differential impacts in such models. Thus, we investigated the effects of α7 agonists and positive allosteric modulators (PAMs) on dopamine (DA) neuron activity in the ventral tegmental area (VTA) in the methylazoxymethanol acetate (MAM) developmental disruption model of schizophrenia. Four different drugs were evaluated: PNU282987 (full agonist), SSR180711 (partial agonist) NS1738 (PAM type I) and PNU120596 (PAM type II). PNU120596 increased the number of spontaneously active VTA DA neurons in normal rats. In contrast, PNU282987 and SSR180711 reduced the hyperdopaminergic tone in MAM rats. This appeared to be due to effects on DA afferent regulation, in that PNU282987 or SSR180711 infusion into the ventral hippocampus of MAM rats replicated the decrease in the number of spontaneously active VTA DA neurons. In contrast, infusion of the same drugs into the basolateral amygdala increased the number of spontaneously active VTA DA neurons in normal rats without impacting MAM rats. These data suggest that α7 receptors may represent a promising target in the development of new pharmacological therapies for schizophrenia.
Collapse
|
31
|
Jones C. α7 Nicotinic Acetylcholine Receptor: A Potential Target in Treating Cognitive Decline in Schizophrenia. J Clin Psychopharmacol 2018; 38:247-249. [PMID: 29505470 DOI: 10.1097/jcp.0000000000000859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE The aim of this article is to review the recent trials of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists and positive allosteric modulators (PAMs) on the treatment of cognitive decline in schizophrenia. α7 Nicotinic acetylcholine receptor abnormalities in schizophrenia and clinical implications of α7 nAChR agonists and PAMs are also discussed. PROCEDURES Studies were searched on PubMed with keywords "nicotinic," "alpha7," and "schizophrenia" over a 2-year period: January 1, 2016, to December 1, 2017. Cognition was not included in key terms in order to broaden the results. Inclusion criteria included (1) article categorization as a clinical study, review, or journal article; (2) schizophrenia diagnosis based on Diagnostic and Statistical Manual of Mental Disorders criteria; (3) article in English; (4) objective measure of cognition from effects of α7 nAChR agonists/PAMs; and (5) article currently published. FINDINGS A total of 76 studies were found over the past 2 years. Fifteen of these studies were included in this review. Human studies were limited. Cognitive-related improvements in rodent models were found across the 6 cognitive constructs: perception, executive functioning, social and affective processes, working memory, and long-term memory. IMPLICATIONS These results support the potential of nAChR agonists and PAMs to improve cognitive decline in patients with schizophrenia as an adjunct treatment to antipsychotics. However, these results were found primarily in rodent models of schizophrenia, and further primate/human studies are necessary to support this conclusion in humans.
Collapse
Affiliation(s)
- Candace Jones
- From the University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
32
|
Ardic FC, Kose S, Solmaz M, Kulacaoglu F, Balcioglu YH, Yıldız E, Elboğa G, Altındağ A, Arslan M, Metehan Çalışkan A, Göktaş D, İnanlı İ, Çalışır S, Eren İ, Unal G, Aricioglu F, Yulaf Y, Gümştaş F, Gökçe S, Yazgan Y, Memiş ÇÖ, Sevincok D, Doğan B, Kutlu A, Çakaloz B, Sevinçok L, Mutu T, Yazici E, Guzel D, Erol A, Aydın N, Aytaç HM, Yılmaz D, Çetinay Aydın P, Yüksel Yalçın G, Canbay C, Terzioğlu M, Özer A. Outstanding Awards Brief Reports. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1467612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Ferhat Can Ardic
- Department of Psychiatry, Health Sciences University, Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - Samet Kose
- University of Texas Medical School of Houston, Houston, TX, USA
- Center for Neurobehavioral Research on Addictions, Houston, TX, USA
| | - Mustafa Solmaz
- Department of Psychiatry, Health Sciences University, Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - Filiz Kulacaoglu
- Department of Psychiatry, Health Sciences University, Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Neurology and Neurosurgery, Forensic Psychiatry Unit, Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Emrah Yıldız
- Department of Psychiatry, Gaziantep University, Gaziantep, Turkey
| | - Gülçin Elboğa
- Department of Psychiatry, Gaziantep University, Gaziantep, Turkey
| | | | - Mehmet Arslan
- Department of Psychiatry, Babaeski State Hospital, Kırklareli, Turkey
| | | | - Duygu Göktaş
- Department of Psychiatry, Yozgat City Hospital, Yozgat, Turkey
| | - İkbal İnanlı
- Department of Psychiatry, Konya Training and Research Hospital, Konya, Turkey
| | - Saliha Çalışır
- Department of Psychiatry, Konya Training and Research Hospital, Konya, Turkey
| | - İbrahim Eren
- Department of Psychiatry, Konya Training and Research Hospital, Konya, Turkey
| | - Gokhan Unal
- Department pf Pharmacology, Erciyes University School of Pharmacy, Kayseri, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, Marmara University School of Pharmacy, Istanbul, Turkey
| | - Yasemin Yulaf
- Department of Psychology, Istanbul Gelisim University, Istanbul, Turkey
| | - Funda Gümştaş
- Child and Adolescent Psychiatry Clinic, Marmara University Education Research Hospital, Istanbul, Turkey
| | - Sebla Gökçe
- Child and Adolescent Psychiatry Clinic, Maltepe University School of Medicine, Istanbul, Turkey
| | - Yankı Yazgan
- Child and Adolescent Psychiatry Clinic, Marmara University School of Medicine, Istanbul, Turkey
| | - Çağdaş Öykü Memiş
- Department of Psychiatry, School of Medicine, Adnan Menderes, Aydın, Turkey
| | - Doğa Sevincok
- Department of Child and Adolescent Psychiatry, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Bilge Doğan
- Department of Psychiatry, School of Medicine, Adnan Menderes, Aydın, Turkey
| | - Ayşe Kutlu
- Department of Child and Adolescent Psychiatry, Behcet Uz Child Diseases and Neurosurgery Research and Training Hospital, İzmir, Turkey
| | - Burcu Çakaloz
- Department of Child and Adolescent Psychiatry, Pamukkale University School of Medicine, Denizli, Turkey
| | - Levent Sevinçok
- Department of Psychiatry, School of Medicine, Adnan Menderes, Aydın, Turkey
| | - Tuğba Mutu
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Esra Yazici
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Derya Guzel
- Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Atila Erol
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Nazan Aydın
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Hasan Mervan Aytaç
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Doğan Yılmaz
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Pınar Çetinay Aydın
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Gökşen Yüksel Yalçın
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Cana Canbay
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Merve Terzioğlu
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Aysel Özer
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
33
|
Bertrand D, Terry AV. The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2017; 151:214-225. [PMID: 29248596 DOI: 10.1016/j.bcp.2017.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Nearly 30 years of experimental evidence supports the argument that ligands of nicotinic acetylcholine receptors (nAChRs) have potential as therapeutic agents. However, as in the famous Lewis Carroll novel "Alice in Wonderland", there have been many unexpected adventures along the pathway of development, and few nAChR ligands have been approved for any clinical condition to date with the exception of nicotine dependence. The recent failures of nAChR ligands in AD and schizophrenia clinical trials have reduced enthusiasm for this therapeutic strategy and many pharmaceutical companies have now abandoned this field of research. As with other clinical failures, multiple questions arise as to the basis for the failure. More generic questions focus on a potential translational gap between the animal models used and the human clinical condition they are meant to simulate, or the clinical trial mindset that large Ns have to be achieved for statistical power (often requiring multiple trial sites) as opposed to smaller patient cohorts at limited sites where conditions can be better controlled and replicated. More specific to the nAChR field are questions about subtype selectivity, dose selection, whether an agonist, antagonist, or allosteric modulator strategy is best, etc. The purpose of this review is to discuss each of these questions, but also to provide a brief overview of the remarkable progress that has been made over the last three decades in our understanding of this unique ligand-gated ion channel and how this new knowledge may help us improve drug development successes in the future.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| | - A V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia
| |
Collapse
|
34
|
The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials. Acta Pharm Sin B 2017; 7:611-622. [PMID: 29159020 PMCID: PMC5687317 DOI: 10.1016/j.apsb.2017.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 01/06/2023] Open
Abstract
The alpha-7 nicotinic acetylcholine receptor (α7 nAChR), consisting of homomeric α7 subunits, is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7 nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Currently, a number of α7 nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the α7 nAChR in multiple neuropsychiatric disorders and the pharmacological effects of α7 nAChR modulators used in clinical trials.
Collapse
Key Words
- 5-CSRTT, five-choice serial reaction time task
- 5-HT, serotonin
- ACh, acetylcholine
- AD, Alzheimer's disease
- ADHD, attention deficit hyperactivity disorder
- Acetylcholine
- Alpha7
- Alzheimer's disease
- Aβ, amyloid-β peptide
- CNS, central nervous system
- DMTS, delayed matching-to-sample
- ECD, extracellular domain
- GABA, γ-aminobutyric acid
- Ion channel
- MLA, methyllycaconitine
- NOR, novel object recognition
- PAMs, positive allosteric modulators
- PCP, neonatal phencyclidine
- PD, Parkinson's disease
- PPI, prepulse inhibition
- Positive allosteric modulators
- SAR, structure–activity relationship
- Schizophrenia
- TMD, transmembrane domains
- nAChR
- nAChR, nicotinic acetylcholine receptor
- α-Btx, α-bungarotoxin
Collapse
|
35
|
Unal G, Aricioglu F. A-582941, cholinergic alpha 7 nicotinic receptor agonist, improved cognitive and negative symptoms of the sub-chronic MK-801 model of schizophrenia in rats. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1379716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Gokhan Unal
- Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Marmara University, Istanbul, Turkey
| | - Feyza Aricioglu
- Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Marmara University, Istanbul, Turkey
| |
Collapse
|
36
|
Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol 2017. [PMID: 28626937 DOI: 10.1111/bph.13919] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological modulation of glutamatergic neurotransmission to improve cognitive function has been a focus of intensive research, particularly in relation to the cognitive deficits seen in schizophrenia. Despite this effort, there has been little success in the clinical use of glutamatergic compounds as procognitive drugs. Here, we review a selection of the drugs used to modulate glutamatergic signalling and how they impact on cognitive function in rodents and humans. We highlight how glutamatergic dysfunction, and NMDA receptor hypofunction in particular, is a key mechanism contributing to the cognitive deficits observed in schizophrenia and outline some of the glutamatergic targets that have been tested as putative procognitive targets for this disorder. Using translational research in this area as a leading exemplar, namely, models of NMDA receptor hypofunction, we discuss how the study of functional brain network connectivity can provide new insight into how the glutamatergic system impacts on cognitive function. Future studies characterizing functional brain network connectivity will increase our understanding of how glutamatergic compounds regulate cognition and could contribute to the future success of glutamatergic drug validation. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Maria R Dauvermann
- School of Psychology, National University of Ireland, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
37
|
Significance of the nicotinic alpha7 receptor in cognition and antipsychotic-like behavior in the rat. Behav Brain Res 2017; 333:129-134. [DOI: 10.1016/j.bbr.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 11/18/2022]
|
38
|
Gee KW, Olincy A, Kanner R, Johnson L, Hogenkamp D, Harris J, Tran M, Edmonds SA, Yoshimura R, Johnstone T, Freedman R. First in human trial of a type I positive allosteric modulator of alpha7-nicotinic acetylcholine receptors: Pharmacokinetics, safety, and evidence for neurocognitive effect of AVL-3288. J Psychopharmacol 2017; 31:434-441. [PMID: 28196430 PMCID: PMC11012235 DOI: 10.1177/0269881117691590] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type I positive allosteric modulators (PAMs) of the alpha7-nicotinic receptor enhance its cholinergic activation while preserving the spatiotemporal features of synaptic transmission and the receptor's characteristic rapid desensitization kinetics. Alpha7-nicotinic receptor agonists have shown promise for improving cognition in schizophrenia, but longer-term trials have been disappointing. Therefore, the type I PAM AVL-3288 was evaluated for safety and preliminary evidence of neurocognitive effect in healthy human subjects. Single-dose oral administration in ascending doses was conducted in a double-blind, placebo-controlled Phase I trial in non-smokers. The trial found indication of positive but non-significant effects on neurocognition at 10 and 30 mg, two doses that produced overlapping peak levels. There was also some evidence for effects on inhibition of the P50 auditory evoked potential to repeated stimuli, a biomarker that responds to alpha7-nicotinic receptor activation. The pharmacokinetic characteristics were consistent between subjects, and there were no safety concerns. The effects and safety profile were also assessed at 3 mg in a cohort of smokers, in whom concurrent nicotine administration did not alter either effects or safety. The trial demonstrates that a type I PAM can be safely administered to humans and that it has potential positive neurocognitive effects in central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Kelvin W. Gee
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA 92697
| | - Ann Olincy
- Department of Psychiatry, University of Colorado School of Medicine, Aurora CO 80045
| | - Richard Kanner
- Anvyl LLC, 18092 Sky Park South, Suite F, Irvine, CA 92614
| | - Lynn Johnson
- Department of Psychiatry, University of Colorado School of Medicine, Aurora CO 80045
| | - Derk Hogenkamp
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA 92697
| | - Josette Harris
- Department of Psychiatry, University of Colorado School of Medicine, Aurora CO 80045
| | - Minhtam Tran
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA 92697
| | - Stephen A. Edmonds
- Department of Psychiatry, University of Colorado School of Medicine, Aurora CO 80045
| | - Ryan Yoshimura
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA 92697
| | - Timothy Johnstone
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA 92697
| | - Robert Freedman
- Department of Psychiatry, University of Colorado School of Medicine, Aurora CO 80045
| |
Collapse
|
39
|
Potasiewicz A, Nikiforuk A, Hołuj M, Popik P. Stimulation of nicotinic acetylcholine alpha7 receptors rescue schizophrenia-like cognitive impairments in rats. J Psychopharmacol 2017; 31:260-271. [PMID: 28168926 DOI: 10.1177/0269881116675509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) dysfunction plays an important role in schizophrenia. Positive allosteric modulators of α7 nAChR have emerged as a promising therapeutic approach to manage cognitive deficits that are inadequately treated in schizophrenic patients. The aim of the present study was to evaluate the ability of type I (CCMI) and type II (PNU120596) α7 nAChR positive allosteric modulators to counteract MK-801-induced cognitive and sensorimotor gating deficits. The activity of these compounds was compared with the action of the α7 nAChR agonist A582941. CCMI, PNU120596 and A582941 reversed the sensorimotor gating impairment evoked by MK-801 based on the prepulse inhibition of the startle response. Additionally, no MK-801-evoked working memory deficits were observed with α7 nAChR ligand pretreatment as assessed in a discrete paired-trial delayed alternation task. However, these compounds did not affect the rats' attentional performances in the five-choice serial reaction time test. The α7 nAChR agents demonstrated a beneficial effect on sensorimotor gating and some aspects of cognition tested in a rat model of schizophrenia. Therefore, these results support the use of α7 nAChR positive allosteric modulators as a potential treatment strategy in schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Nikiforuk
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Hołuj
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Popik
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,2 Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
40
|
Potasiewicz A, Hołuj M, Kos T, Popik P, Arias HR, Nikiforuk A. 3-Furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic receptor, reverses schizophrenia-like cognitive and social deficits in rats. Neuropharmacology 2017; 113:188-197. [DOI: 10.1016/j.neuropharm.2016.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/20/2016] [Accepted: 10/01/2016] [Indexed: 12/19/2022]
|
41
|
Discovery, synthesis, biological evaluation and structure-based optimization of novel piperidine derivatives as acetylcholine-binding protein ligands. Acta Pharmacol Sin 2017; 38:146-155. [PMID: 27917874 DOI: 10.1038/aps.2016.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
The homomeric α7 nicotinic receptor (α7 nAChR) is widely expressed in the human brain that could be activated to suppress neuroinflammation, oxidative stress and neuropathic pain. Consequently, a number of α7 nAChR agonists have entered clinical trials as anti-Alzheimer's or anti-psychotic therapies. However, high-resolution crystal structure of the full-length α7 receptor is thus far unavailable. Since acetylcholine-binding protein (AChBP) from Lymnaea stagnalis is most closely related to the α-subunit of nAChRs, it has been used as a template for the N-terminal domain of α-subunit of nAChR to study the molecular recognition process of nAChR-ligand interactions, and to identify ligands with potential nAChR-like activities.Here we report the discovery and optimization of novel acetylcholine-binding protein ligands through screening, structure-activity relationships and structure-based design. We manually screened in-house CNS-biased compound library in vitro and identified compound 1, a piperidine derivative, as an initial hit with moderate binding affinity against AChBP (17.2% inhibition at 100 nmol/L). During the 1st round of optimization, with compound 2 (21.5% inhibition at 100 nmol/L) as the starting point, 13 piperidine derivatives with different aryl substitutions were synthesized and assayed in vitro. No apparent correlation was demonstrated between the binding affinities and the steric or electrostatic effects of aryl substitutions for most compounds, but compound 14 showed a higher affinity (Ki=105.6 nmol/L) than nicotine (Ki=777 nmol/L). During the 2nd round of optimization, we performed molecular modeling of the putative complex of compound 14 with AChBP, and compared it with the epibatidine-AChBP complex. The results suggested that a different piperidinyl substitution might confer a better fit for epibatidine as the reference compound. Thus, compound 15 was designed and identified as a highly affinitive acetylcholine-binding protein ligand. In this study, through two rounds of optimization, compound 15 (Ki=2.8 nmol/L) has been identified as a novel, piperidine-based acetylcholine-binding protein ligand with a high affinity.
Collapse
|
42
|
Bortz D, Upton B, Mikkelsen J, Bruno J. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats. Neuropharmacology 2016; 111:78-91. [DOI: 10.1016/j.neuropharm.2016.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/23/2022]
|
43
|
Marcus MM, Björkholm C, Malmerfelt A, Möller A, Påhlsson N, Konradsson-Geuken Å, Feltmann K, Jardemark K, Schilström B, Svensson TH. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study. Eur Neuropsychopharmacol 2016; 26:1401-1411. [PMID: 27474687 DOI: 10.1016/j.euroneuro.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.
Collapse
Affiliation(s)
- Monica M Marcus
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Carl Björkholm
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Malmerfelt
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Annie Möller
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ninni Påhlsson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Åsa Konradsson-Geuken
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kristin Feltmann
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Björn Schilström
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Torgny H Svensson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
44
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
45
|
The effects of a 5-HT5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia. Neuropharmacology 2016; 105:351-360. [PMID: 26826431 DOI: 10.1016/j.neuropharm.2016.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) receptors still represent promising targets for the development of novel multireceptor or stand-alone antipsychotic drugs with a potential to ameliorate cognitive impairments and negative symptoms in schizophrenia. The 5-HT5A receptor, one of the least known members of the serotonin receptor family, has also drawn attention in this regard. Although the antipsychotic efficacy of 5-HT5A antagonists is still equivocal, recent experimental data suggest the cognitive-enhancing activity of this strategy. The aim of the present study was to evaluate pro-cognitive and pro-social efficacies of the 5-HT5A receptor antagonist in a rat pharmacological model of schizophrenia employing the administration of the NMDA receptor antagonist, ketamine. The ability of SB-699551 to reverse ketamine-induced cognitive deficits in the attentional set-shifting task (ASST) and novel object recognition task (NORT) was examined. The compound's efficacy against ketamine-induced social withdrawal was assessed in the social interaction test (SIT) and in the social choice test (SCT). The results demonstrated the efficacy of SB-699551 in ameliorating ketamine-induced impairments on the ASST and NORT. Moreover, the tested compound also enhanced set-shifting performance in cognitively unimpaired control rats and improved object recognition memory in conditions of delay-induced natural forgetting. The pro-social activity of SB-699551 was demonstrated on both employed paradigms, the SIT and SCT. The present study suggests the preclinical efficacy of a strategy based on the blockade of 5-HT5A receptors against schizophrenia-like cognitive deficits and negative symptoms. The utility of this receptor as a target for improvement of cognitive and social dysfunctions warrants further studies.
Collapse
|