1
|
Benoy A, Ramaswamy S. Histamine in the neocortex: Towards integrating multiscale effectors. Eur J Neurosci 2024; 60:4597-4623. [PMID: 39032115 DOI: 10.1111/ejn.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Histamine is a modulatory neurotransmitter, which has received relatively less attention in the central nervous system than other neurotransmitters. The functional role of histamine in the neocortex, the brain region that controls higher-order cognitive functions such as attention, learning and memory, remains largely unknown. This article focuses on the emerging roles and mechanisms of histamine release in the neocortex. We describe gaps in current knowledge and propose the application of interdisciplinary tools to dissect the detailed multiscale functional logic of histaminergic action in the neocortex ranging from sub-cellular, cellular, dendritic and synaptic levels to microcircuits and mesoscale effects.
Collapse
Affiliation(s)
- Amrita Benoy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
2
|
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, Shadrina MI, Alieva AK. Effects of Age and MPTP-Induced Parkinson's Disease on the Expression of Genes Associated with the Regulation of the Sleep-Wake Cycle in Mice. Int J Mol Sci 2024; 25:7721. [PMID: 39062963 PMCID: PMC11276692 DOI: 10.3390/ijms25147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Ivan N. Rybolovlev
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Alexander I. Budko
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maxim S. Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, 119435 Krasnogorsk, Russia;
| | - Denis A. Abaimov
- Research Center of Neurology, Volokolamskoye Shosse 80, 125367 Moscow, Russia;
| | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| |
Collapse
|
3
|
Futagawa A, Tsuneoka Y, Lazarus M, Oishi Y. Comprehensive mapping of histamine H 1 receptor mRNA in the mouse brain. J Comp Neurol 2024; 532:e25622. [PMID: 38712635 DOI: 10.1002/cne.25622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Histamine H1 receptor (H1R) in the central nervous system plays an important role in various functions, including learning and memory, aggression, feeding behaviors, and wakefulness, as evidenced by studies utilizing H1R knockout mice and pharmacological interventions. Although previous studies have reported the widespread distribution of H1R in the brains of rats, guinea pigs, monkeys, and humans, the detailed distribution in the mouse brain remains unclear. This study provides a comprehensive description of the distribution of H1R mRNA in the mouse brain using two recently developed techniques: RNAscope and in situ hybridization chain reaction, both of which offer enhanced sensitivity and resolution compared to traditional methodologies such as radioisotope labeling, which were used in previous studies. The H1R mRNA expression was observed throughout the entire brain, including key regions implicated in sleep-wake regulatory functions, such as the pedunculopontine tegmental nucleus and dorsal raphe. Additionally, strong H1R mRNA signals were identified in the paraventricular hypothalamus and ventromedial hypothalamus, which may explain the potential mechanisms underlying histamine-mediated feeding regulation. Notably, we identified strong H1R mRNA expression in previously unreported cerebral regions, such as the dorsal endopiriform nucleus, bed nucleus of the accessory olfactory tract, and postsubiculum. These findings significantly contribute to our understanding of the multifaceted roles of H1R in diverse brain functions.
Collapse
Affiliation(s)
- Asako Futagawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Daniali R, Zeraati F, Mohammadi M, Haddadi R. The role of histamine H 1 receptor in the anterior cingulate cortex on nociception level following acute restraint stress in male rats. Pharmacol Res Perspect 2024; 12:e1188. [PMID: 38483045 PMCID: PMC10938791 DOI: 10.1002/prp2.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Considering the importance of pain and stress, we decided to investigate the intra-anterior cingulate cortex (ACC) microinjection of histamine and mepyramine alone and concurrently on acute pain induced by hot plate following restraint stress in male rats. 24-gauge, 10 mm stainless steel guide cannula was implanted over the ACC in the incised scalp of 4 groups. Restraint stress in healthy rats produced a significant increase (p < .05) in the pain threshold. The simultaneous microinjection of 4 μg/side histamine and 8 μg/side mepyramine as a histaminergic system inverse agonist in healthy nonrestraint animals did not affect the pain threshold. Although Histamine decreased the threshold of pain meaningfully, mepyramine elevated it in a significant manner (p < .05). In the restrained animals, intra-ACC microinjection of histamine produced no significant impact on the pain threshold. However, intra-ACC microinjection of mepyramine before histamine, significantly (p < .01) altered the result and enhanced the threshold of pain. The results of our study demonstrated that histaminergic neurons have an important role in the processing of pain in the ACC following restraint stress.
Collapse
Affiliation(s)
- Roxana Daniali
- Faculty of Pharmacy, Department of PharmacologyHamadan University of Medical SciencesHamadanIran
| | - Fatemeh Zeraati
- Faculty of Pharmacy, Department of PharmacologyHamadan University of Medical SciencesHamadanIran
| | - Mozhdeh Mohammadi
- Faculty of Pharmacy, Department of PharmacologyHamadan University of Medical SciencesHamadanIran
| | - Rasool Haddadi
- Faculty of Pharmacy, Department of PharmacologyHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
5
|
McNaught-Flores DA, Kooistra AJ, Chen YC, Arias-Montano JA, Panula P, Leurs R. Pharmacological Characterization of the Zebrafish (Danio Rerio) Histamine H 1 Receptor Reveals the Involvement of the Second Extracellular Loop in the Binding of Histamine. Mol Pharmacol 2024; 105:84-96. [PMID: 37977823 DOI: 10.1124/molpharm.123.000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The zebrafish (Danio rerio) histamine H1 receptor gene (zfH1R) was cloned in 2007 and reported to be involved in fish locomotion. Yet, no detailed characterization of its pharmacology and signaling properties have so far been reported. In this study, we pharmacologically characterized the zfH1R expressed in HEK-293T cells by means of [3H]-mepyramine binding and G protein-signaling assays. The zfH1R [dissociation constant (KD), 0.7 nM] displayed similar affinity for the antagonist [3H]-mepyramine as the human histamine H1 receptor (hH1R) (KD, 1.5 nM), whereas the affinity for histamine is 100-fold higher than for the human H1R. The zfH1R couples to Gαq/11 proteins and activates several reporter genes, i.e., NFAT, NFϰB, CRE, VEGF, COX-2, SRE, and AP-1, and zfH1R-mediated signaling is prevented by the Gαq/11 inhibitor YM-254890 and the antagonist mepyramine. Molecular modeling of the zfH1R and human H1R shows that the binding pockets are identical, implying that variations along the ligand binding pathway could underly the differences in histamine affinity instead. Targeting differentially charged residues in extracellular loop 2 (ECL2) using site-directed mutagenesis revealed that Arg21045x55 is most likely involved in the binding process of histamine in zfH1R. This study aids the understanding of the pharmacological differences between H1R orthologs and the role of ECL2 in histamine binding and provides fundamental information for the understanding of the histaminergic system in the zebrafish. SIGNIFICANCE STATEMENT: The use of the zebrafish as in vivo models in neuroscience is growing exponentially, which asks for detailed characterization of the aminergic neurotransmitter systems in this model. This study is the first to pharmacologically characterize the zebrafish histamine H1 receptor after expression in HEK-293T cells. The results show a high pharmacological and functional resemblance with the human ortholog but also reveal interesting structural differences and unveils an important role of the second extracellular loop in histamine binding.
Collapse
Affiliation(s)
- Daniel A McNaught-Flores
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Albert J Kooistra
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Yu-Chia Chen
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Jose-Antonio Arias-Montano
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Pertti Panula
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| |
Collapse
|
6
|
Maurer JJ, Choi A, An I, Sathi N, Chung S. Sleep disturbances in autism spectrum disorder: Animal models, neural mechanisms, and therapeutics. Neurobiol Sleep Circadian Rhythms 2023; 14:100095. [PMID: 37188242 PMCID: PMC10176270 DOI: 10.1016/j.nbscr.2023.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Sleep is crucial for brain development. Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, these sleep problems are positively correlated with the severity of ASD core symptoms such as deficits in social skills and stereotypic behavior, indicating that sleep problems and the behavioral characteristics of ASD may be related. In this review, we will discuss sleep disturbances in children with ASD and highlight mouse models to study sleep disturbances and behavioral phenotypes in ASD. In addition, we will review neuromodulators controlling sleep and wakefulness and how these neuromodulatory systems are disrupted in animal models and patients with ASD. Lastly, we will address how the therapeutic interventions for patients with ASD improve various aspects of sleep. Together, gaining mechanistic insights into the neural mechanisms underlying sleep disturbances in children with ASD will help us to develop better therapeutic interventions.
Collapse
|
7
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Seugnet L, Anaclet C, Perier M, Ghersi‐Egea J, Lin J. A marked enhancement of a BLOC-1 gene, pallidin, associated with somnolent mouse models deficient in histamine transmission. CNS Neurosci Ther 2023; 29:483-486. [PMID: 36258293 PMCID: PMC9804043 DOI: 10.1111/cns.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Laurent Seugnet
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292Claude Bernard University Lyon 1BronFrance
| | - Christelle Anaclet
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292Claude Bernard University Lyon 1BronFrance
- Department of Neurological SurgeryUniversity of California, Davis School of MedicineSacramentoUSA
| | - Magali Perier
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292Claude Bernard University Lyon 1BronFrance
| | - Jean‐François Ghersi‐Egea
- Fluids and Barriers of the Central Nervous System, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292Claude Bernard University Lyon 1BronFrance
| | - Jian‐Sheng Lin
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292Claude Bernard University Lyon 1BronFrance
| |
Collapse
|
9
|
Jung J, Kim T. General anesthesia and sleep: like and unlike. Anesth Pain Med (Seoul) 2022; 17:343-351. [DOI: 10.17085/apm.22227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
General anesthesia and sleep have long been discussed in the neurobiological context owingto their commonalities, such as unconsciousness, immobility, non-responsiveness to externalstimuli, and lack of memory upon returning to consciousness. Sleep is regulated bycomplex interactions between wake-promoting and sleep-promoting neural circuits. Anestheticsexert their effects partly by inhibiting wake-promoting neurons or activating sleep-promotingneurons. Unconscious but arousable sedation is more related to sleep-wake circuitries,whereas unconscious and unarousable anesthesia is independent of them. Generalanesthesia is notable for its ability to decrease sleep propensity. Conversely, increasedsleep propensity due to insufficient sleep potentiates anesthetic effects. Taken together, it isplausible that sleep and anesthesia are closely related phenomena but not the same ones.Further investigations on the relationship between sleep and anesthesia are warranted.
Collapse
|
10
|
Valle-Bautista R, Márquez-Valadez B, Herrera-López G, Griego E, Galván EJ, Díaz NF, Arias-Montaño JA, Molina-Hernández A. Long-Term Functional and Cytoarchitectonic Effects of the Systemic Administration of the Histamine H1 Receptor Antagonist/Inverse Agonist Chlorpheniramine During Gestation in the Rat Offspring Primary Motor Cortex. Front Neurosci 2022; 15:740282. [PMID: 35140581 PMCID: PMC8820484 DOI: 10.3389/fnins.2021.740282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
The transient histaminergic system is among the first neurotransmitter systems to appear during brain development in the rat mesencephalon/rhombencephalon. Histamine increases FOXP2-positive deep-layer neuron differentiation of cortical neural stem cells through H1 receptor activation in vitro. The in utero or systemic administration of chlorpheniramine (H1 receptor antagonist/inverse agonist) during deep-layer cortical neurogenesis decreases FOXP2 neurons in the developing cortex, and H1R- or histidine decarboxylase-knockout mice show impairment in learning and memory, wakefulness and nociception, functions modulated by the cerebral cortex. Due to the role of H1R in cortical neural stem cell neurogenesis, the purpose of this study was to evaluate the postnatal impact of the systemic administration of chlorpheniramine during deep-layer cortical neuron differentiation (E12–14) in the primary motor cortex (M1) of neonates (P0) and 21-day-old pups (P21). Chlorpheniramine or vehicle were systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats at gestational days 12–14, and the expression and distribution of deep- (FOXP2 and TBR1) and superficial-layer (SATB2) neuronal cortical markers were analyzed in neonates from both groups. The qRT-PCR analysis revealed a reduction in the expression of Satb2 and FoxP2. However, Western blot and immunofluorescence showed increased protein levels in the chlorpheniramine-treated group. In P21 pups, the three markers showed impaired distribution and increased immunofluorescence in the experimental group. The Sholl analysis evidenced altered dendritic arborization of deep-layer neurons, with lower excitability in response to histamine, as evaluated by whole-cell patch-clamp recording, as well as diminished depolarization-evoked [3H]-glutamate release from striatal slices. Overall, these results suggest long-lasting effects of blocking H1Rs during early neurogenesis that may impact the pathways involved in voluntary motor activity and cognition.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Berenice Márquez-Valadez
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Gabriel Herrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Néstor-Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
- *Correspondence: Anayansi Molina-Hernández, ; orcid.org/0000-0002-4787-312X
| |
Collapse
|
11
|
Arrigoni E, Fuller PM. The Role of the Central Histaminergic System in Behavioral State Control. Curr Top Behav Neurosci 2022; 59:447-468. [PMID: 34595740 DOI: 10.1007/7854_2021_263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Histamine is a small monoamine signaling molecule that plays a role in many peripheral and central physiological processes, including the regulation of wakefulness. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and histamine neurons are thought to promote wakefulness and vigilance maintenance - under certain environmental and/or behavioral contexts - through their diffuse innervation of the cortex and other wake-promoting brain circuits. Histamine neurons also contain a number of other putative neurotransmitters, although the functional role of these co-transmitters remains incompletely understood. Within the brain histamine operates through three receptor subtypes that are located on pre- and post-synaptic membranes. Some histamine receptors exhibit constitutive activity, and hence exist in an activated state even in the absence of histamine. Newer medications used to reduce sleepiness in narcolepsy patients in fact enhance histamine signaling by blunting the constitutive activity of these histamine receptors. In this chapter, we provide an overview of the central histamine system with an emphasis on its role in behavioral state regulation and how drugs targeting histamine receptors are used clinically to treat a wide range of sleep-wake disorders.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Patrick M Fuller
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
12
|
Iacovides S, Kamerman P, Baker FC, Mitchell D. Why It Is Important to Consider the Effects of Analgesics on Sleep: A Critical Review. Compr Physiol 2021; 11:2589-2619. [PMID: 34558668 DOI: 10.1002/cphy.c210006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the known physiological mechanisms underpinning all of pain processing, sleep regulation, and pharmacology of analgesics prescribed for chronic pain. In particular, we describe how commonly prescribed analgesics act in sleep-wake neural pathways, with potential unintended impact on sleep and/or wake function. Sleep disruption, whether pain- or drug-induced, negatively impacts quality of life, mental and physical health. In the context of chronic pain, poor sleep quality heightens pain sensitivity and may affect analgesic function, potentially resulting in further analgesic need. Clinicians already have to consider factors including efficacy, abuse potential, and likely side effects when making analgesic prescribing choices. We propose that analgesic-related sleep disruption should also be considered. The neurochemical mechanisms underlying the reciprocal relationship between pain and sleep are poorly understood, and studies investigating sleep in those with specific chronic pain conditions (including those with comorbidities) are lacking. We emphasize the importance of further work to clarify the effects (intended and unintended) of each analgesic class to inform personalized treatment decisions in patients with chronic pain. © 2021 American Physiological Society. Compr Physiol 11:1-31, 2021.
Collapse
Affiliation(s)
- Stella Iacovides
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter Kamerman
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C Baker
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Human Sleep Research Program, SRI International, Menlo Park, California, USA
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Different Peas in the Same Pod: The Histaminergic Neuronal Heterogeneity. Curr Top Behav Neurosci 2021; 59:303-327. [PMID: 34455575 DOI: 10.1007/7854_2021_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The histaminergic neuronal system is recently receiving increasing attention, as much has been learned over the past 25 years about histamine role as a neurotransmitter. Indeed, this amine is crucial in maintaining arousal and provides important contributions to regulate circadian rhythms, energy, endocrine homeostasis, motor behavior, and cognition. The extent to which these distinct physiological functions are operated by independent histamine neuronal subpopulation is unclear. In the rat brain histamine neuronal cell bodies are grouped within the tuberomamillary nucleus of the posterior hypothalamus in five clusters, E1-E5, each sending overlapping axons throughout the entire central nervous system with no strict topographical pattern. These features lead to the concept that histamine regulation of a wide range of functions in the central nervous system is achieved by the histaminergic neuronal system as a whole. However, increasing experimental evidence suggesting that the histaminergic system is organized into distinct pathways modulated by selective mechanisms challenges this view. In this review, we summarized experimental evidence supporting the heterogeneity of histamine neurons, and their organization in functionally distinct circuits impinging on separate brain regions and displaying selective control mechanisms. This implies independent functions of subsets of histaminergic neurons according to their respective origin and terminal projections with relevant consequences for the development of specific compounds that affect only subsets of histamine neurons, thus increasing the target specificity.
Collapse
|
14
|
Um MY, Yoon M, Lee J, Jung J, Cho S. A Novel Potent Sleep-Promoting Effect of Turmeric: Turmeric Increases Non-Rapid Eye Movement Sleep in Mice Via Histamine H 1Receptor Blockade. Mol Nutr Food Res 2021; 65:e2100100. [PMID: 34003596 DOI: 10.1002/mnfr.202100100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/03/2021] [Indexed: 12/27/2022]
Abstract
SCOPE Turmeric has a broad spectrum of biological properties; however, the sleep-promoting effects of turmeric have not yet been reported. Thus, this study aims to investigate the effect of turmeric on sleep and the molecular mechanism underlying this effect. METHODS AND RESULTS Pentobarbital-induce sleep test and sleep-wake profile assessment using recorded electroencephalography are used to evaluate the hypnotic effects of the turmeric extract (TE) compared to diazepam on sleep in mice. Additionally, the molecular mechanism of TE's sleep effect is investigated using ex vivo electrophysiological recordings from brain slices in histamine H1 receptor (H1 R) knockout mice. Oral administration of TE and diazepam significantly reduce sleep latency and increase non-rapid eye movement sleep (NREMS) duration without delta activity in mice. Like doxepin, TE inhibits the H1 R agonist (2-pyridylethylamine dihydrochloride)-induced increase in action potentials in the hypothalamic neurons. In animal tests using neurotransmitter agonists or antagonists, TE effect mimick H1 R antagonistic effect of doxepin. Additionally, both reduce sleep latency and increase NREMS in wild-type mice, although these effects are not observed in H1 R knockout mice. CONCLUSION TE has a sleep-promoting effect owing to reduction in sleep latency and enhancement of NREMS via H1 R blockade; therefore, it could be useful in insomnia.
Collapse
Affiliation(s)
- Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Jaekwang Lee
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Jonghoon Jung
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
15
|
Han ME, Park SY, Oh SO. Large-scale functional brain networks for consciousness. Anat Cell Biol 2021; 54:152-164. [PMID: 33967030 PMCID: PMC8225483 DOI: 10.5115/acb.20.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
The generation and maintenance of consciousness are fundamental but difficult subjects in the fields of psychology, philosophy, neuroscience, and medicine. However, recent developments in neuro-imaging techniques coupled with network analysis have greatly advanced our understanding of consciousness. The present review focuses on large-scale functional brain networks based on neuro-imaging data to explain the awareness (contents) and wakefulness of consciousness. Despite limitations, neuroimaging data suggests brain maps for important psychological and cognitive processes such as attention, language, self-referential, emotion, motivation, social behavior, and wakefulness. We considered a review of these advancements would provide new insights into research on the neural correlates of consciousness.
Collapse
Affiliation(s)
- Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Korea
| | - Si-Young Park
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Korea
| |
Collapse
|
16
|
Hagenow S, Affini A, Pioli EY, Hinz S, Zhao Y, Porras G, Namasivayam V, Müller CE, Lin JS, Bezard E, Stark H. Adenosine A 2AR/A 1R Antagonists Enabling Additional H 3R Antagonism for the Treatment of Parkinson's Disease. J Med Chem 2021; 64:8246-8262. [PMID: 34107215 DOI: 10.1021/acs.jmedchem.0c00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.
Collapse
Affiliation(s)
- Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Anna Affini
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Elsa Y Pioli
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Institute of Pharmacology and Toxicology, School of Medicine, University of Witten/Herdecke, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Alfred-Herrhausen-Street 50, 58448 Witten, Germany
| | - Yan Zhao
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | | | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jian-Sheng Lin
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Erwan Bezard
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| |
Collapse
|
17
|
Dupont D, Lin JS, Peyron F, Akaoka H, Wallon M. Chronic Toxoplasma gondii infection and sleep-wake alterations in mice. CNS Neurosci Ther 2021; 27:895-907. [PMID: 34085752 PMCID: PMC8265947 DOI: 10.1111/cns.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Toxoplasma gondii (Tg) is an intracellular parasite infecting more than a third of the human population. Yet, the impact of Tg infection on sleep, a highly sensitive index of brain functions, remains unknown. We designed an experimental mouse model of chronic Tg infection to assess the effects on sleep-wake states. METHODS Mice were infected using cysts of the type II Prugniaud strain. We performed chronic sleep-wake recordings and monitoring as well as EEG power spectral density analysis in order to assess the quantitative and qualitative changes of sleep-wake states. Pharmacological approach was combined to evaluate the direct impact of the infection and inflammation caused by Tg. RESULTS Infected mouse exhibited chronic sleep-wake alterations over months, characterized by a marked increase (>20%) in time spent awake and in cortical EEG θ power density of all sleep-wake states. Meanwhile, slow-wave sleep decreased significantly. These effects were alleviated by an anti-inflammatory treatment using corticosteroid dexamethasone. CONCLUSION We demonstrated for the first time the direct consequences of Tg infection on sleep-wake states. The persistently increased wakefulness and reduced sleep fit with the parasite's strategy to enhance dissemination through host predation and are of significance in understanding the neurodegenerative and neuropsychiatric disorders reported in infected patients.
Collapse
Affiliation(s)
- Damien Dupont
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Jian-Sheng Lin
- Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - François Peyron
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Hideo Akaoka
- Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Martine Wallon
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
18
|
Wang Z, Bosma R, Kuhne S, van den Bor J, Garabitian W, Vischer HF, Wijtmans M, Leurs R, de Esch IJ. Exploring the Effect of Cyclization of Histamine H 1 Receptor Antagonists on Ligand Binding Kinetics. ACS OMEGA 2021; 6:12755-12768. [PMID: 34056427 PMCID: PMC8154229 DOI: 10.1021/acsomega.0c06358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics.
Collapse
Affiliation(s)
| | | | | | - Jelle van den Bor
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wrej Garabitian
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J.P. de Esch
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
19
|
Terasaka S, Hachiuma K, Mano Y, Onishi K, Kitajima I, Nishino I, Endo H. Drug-drug interaction potential and clinical pharmacokinetics of enerisant, a novel potent and selective histamine H 3 receptor antagonist. Xenobiotica 2021; 51:786-795. [PMID: 33910470 DOI: 10.1080/00498254.2021.1918361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We evaluated the in vitro drug-drug interaction (DDI) potential of enerisant (TS-091), a histamine H3 receptor antagonist/inverse agonist, mediated by cytochrome P450 (CYP) and transporters, as well as the pharmacokinetics of enerisant in healthy male subjects.Enerisant did not inhibit CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, or CYP3A4 and did not induce CYP1A2, CYP2B6, or CYP3A4. Enerisant inhibited organic cation transporter 2, multidrug and toxin extrusion protein (MATE) 1, and MATE2-K, but not P-glycoprotein (P-gp), breast cancer resistance protein, organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic anion transporter (OAT) 1, or OAT3. Enerisant was a substrate for P-gp, but not for eight other transporters.In healthy male subjects, enerisant was rapidly absorbed after oral administration, and the plasma concentration increased dose-dependently. The urinary excretion of enerisant within 48 h after administration was 64.5% to 89.9% of the dose, indicating that most of the absorbed enerisant was excreted in the urine without being metabolized.Based on the plasma concentrations at the estimated clinical dose, enerisant is unlikely to cause CYP-mediated, clinically relevant DDI. Although the possibility of transporter-mediated, clinically relevant DDI cannot be ruled out, there is little or no risk of side effects.
Collapse
Affiliation(s)
- Shuichi Terasaka
- Drug Metabolism and Pharmacokinetics, Drug Safety and Pharmacokinetics Laboratories, Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kenji Hachiuma
- Drug Metabolism and Pharmacokinetics, Drug Safety and Pharmacokinetics Laboratories, Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yoko Mano
- Development Headquarters, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Koichi Onishi
- Development Headquarters, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Iwao Kitajima
- Development Headquarters, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Izumi Nishino
- Development Headquarters, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Hiromi Endo
- Drug Metabolism and Pharmacokinetics, Drug Safety and Pharmacokinetics Laboratories, Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| |
Collapse
|
20
|
Abstract
Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.
Collapse
|
21
|
Dhuna NA, Malkani RG. Antidepressants and Their Impact on Sleep. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Germundson DL, Vendsel LP, Nagamoto-Combs K. Region-specific regulation of central histaminergic H3 receptor expression in a mouse model of cow's milk allergy. Brain Res 2020; 1749:147148. [PMID: 33035498 DOI: 10.1016/j.brainres.2020.147148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023]
Abstract
Central histaminergic H3 receptor (H3R) has been extensively investigated as a potential therapeutic target for various neurological and neurodegenerative disorders. Despite promising results in preclinical rodent models, clinical trials have not provided conclusive evidence for the benefit of H3R antagonists to alleviate cognitive and behavioral symptoms of these disorders. Inconsistent pharmacological efficacies may arise from aberrant changes in H3R over time during disease development. Because H3R is involved in feedback inhibition of histamine synthesis and secretion, the expression of the autoreceptor may also be reciprocally regulated by altered histamine levels in a pathological condition. Thus, we investigated H3R expression in a mouse model of cow's milk allergy, a condition associated with increased histamine levels. Mice were sensitized to bovine whey proteins (WP) over 5 weeks and H3R protein and transcript levels were examined in the brain. Substantially increased H3R immunoreactivity was observed in various brain regions of WP-sensitized mice compared to sham mice. Elevated H3R expression was also found in the thalamic/hypothalamic region. The expression of histaminergic H1, but not H2, receptor subtype was also increased in this and the midbrain regions. Unlike the brain, all three histaminergic receptors were increased in the small intestine. These results indicated that the central histaminergic receptors were altered in WP-sensitized mice in a subtype- and region-specific manner, which likely contributed to behavioral changes we observed in these mice. Our study also suggests that altered levels of H3R could be considered during a pharmacological intervention of a neurological disease.
Collapse
Affiliation(s)
- Danielle L Germundson
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 N. Columbia Rd, Grand Forks, ND, United States
| | - Lane P Vendsel
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 N. Columbia Rd, Grand Forks, ND, United States
| | - Kumi Nagamoto-Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 N. Columbia Rd, Grand Forks, ND, United States.
| |
Collapse
|
23
|
Porta LC, Campeiro JD, Papa GB, Oliveira EB, Godinho RO, Rodrigues T, Hayashi MAF. In vivo effects of the association of the psychoactive phenotiazine thioridazine on antitumor activity and hind limb paralysis induced by the native polypeptide crotamine. Toxicon 2020; 185:64-71. [PMID: 32621838 DOI: 10.1016/j.toxicon.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Crotamine is a cationic polypeptide composed by 42 amino acid residues with several pharmacological and biological properties, including the selective ability to enter and kill actively proliferating tumour cells, which led us to propose its use as a theranostic agent for cancer therapy. At the moment, the improvement of crotamine antitumoral efficacy by association with chemotherapeutic adjuvants is envisioned. In the present work, we evaluated the association of crotamine with the antitumoral adjuvant phenotiazine thioridazine (THD). In spite of the clear efficacy of these both compounds as anticancer agents in long-term in vivo treatment of animal model bearing implanted xenograph melanoma tumor, the expected mutual potentiation of the antitumor effects was not observed here. Moreover, this association revealed for the first time the influence of THD on crotamine ability to trigger the hind limb paralysis in mice, and this discovery may represent the first report suggesting the potential involvement of the CNS in the action of this snake polypeptide on the skeletal muscle paralysis, which was classically believed to be essentially limited to a direct action in peripheral tissues as the skeletal muscle. This is also supported by the observed ability of crotamine to potentiate the sedative effects of THD which action was consistently demonstrated to be based on its central action. The better characterization of crotamine properties in CNS may certainly bring important insights for the knowledge needed to pave the way toward the use of this molecule as a theranostic compound in human diseases as cancer.
Collapse
Affiliation(s)
- Lucas C Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Giovanna B Papa
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Rosely O Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | | | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
24
|
S. Hamed S, Abdel Sala S, F. El-Khad M, A. AL-Megr W, K. Hassan Z, M. Shuker E. Chlorpheniramine Maleate Induced Cardiotoxicity, Hepatotoxicity and Antioxidant Gene Expression Changes in Male Wistar Rats. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.351.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019; 42:5099478. [PMID: 30239935 PMCID: PMC6335869 DOI: 10.1093/sleep/zsy183] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Histamine was first identified in the brain about 50 years ago, but only in the last few years have researchers gained an understanding of how it regulates sleep/wake behavior. We provide a translational overview of the histamine system, from basic research to new clinical trials demonstrating the usefulness of drugs that enhance histamine signaling. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and like many of the arousal systems, histamine neurons diffusely innervate the cortex, thalamus, and other wake-promoting brain regions. Histamine has generally excitatory effects on target neurons, but paradoxically, histamine neurons may also release the inhibitory neurotransmitter GABA. New research demonstrates that activity in histamine neurons is essential for normal wakefulness, especially at specific circadian phases, and reducing activity in these neurons can produce sedation. The number of histamine neurons is increased in narcolepsy, but whether this affects brain levels of histamine is controversial. Of clinical importance, new compounds are becoming available that enhance histamine signaling, and clinical trials show that these medications reduce sleepiness and cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | - Nicholas P Franks
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac, Université Montpellier, INSERM, Montpellier, France
| |
Collapse
|
26
|
Kárpáti A, Yoshikawa T, Naganuma F, Matsuzawa T, Kitano H, Yamada Y, Yokoyama M, Futatsugi A, Mikoshiba K, Yanai K. Histamine H 1 receptor on astrocytes and neurons controls distinct aspects of mouse behaviour. Sci Rep 2019; 9:16451. [PMID: 31712580 PMCID: PMC6848115 DOI: 10.1038/s41598-019-52623-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
Abstract
Histamine is an important neurotransmitter that contributes to various processes, including the sleep-wake cycle, learning, memory, and stress responses. Its actions are mediated through histamine H1-H4 receptors. Gene knockout and pharmacological studies have revealed the importance of H1 receptors in learning and memory, regulation of aggression, and wakefulness. H1 receptors are abundantly expressed on neurons and astrocytes. However, to date, studies selectively investigating the roles of neuronal and astrocytic H1 receptors in behaviour are lacking. We generated novel astrocyte- and neuron-specific conditional knockout (cKO) mice to address this gap in knowledge. cKO mice showed cell-specific reduction of H1 receptor gene expression. Behavioural assessment revealed significant changes and highlighted the importance of H1 receptors on both astrocytes and neurons. H1 receptors on both cell types played a significant role in anxiety. Astrocytic H1 receptors were involved in regulating aggressive behaviour, circadian rhythms, and quality of wakefulness, but not sleep behaviour. Our results emphasise the roles of neuronal H1 receptors in recognition memory. In conclusion, this study highlights the novel roles of H1 receptors on astrocytes and neurons in various brain functions.
Collapse
Affiliation(s)
- Anikó Kárpáti
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Takuro Matsuzawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Haruna Kitano
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yo Yamada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Mariko Yokoyama
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Akira Futatsugi
- Department of Basic Medical Sciences, Kobe City College of Nursing, 3-4 Gakuen-nishi-machi, Nishi-ku, Kobe, 651-2103, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
27
|
Human H1 receptor (HRH1) gene polymorphism is associated with the severity of side effects after desloratadine treatment in Chinese patients with chronic spontaneous uticaria. THE PHARMACOGENOMICS JOURNAL 2019; 20:87-93. [PMID: 31406237 DOI: 10.1038/s41397-019-0094-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 01/30/2023]
Abstract
H1 nonsedating antihistamines, such as desloratadine, are first-line treatment options for chronic spontaneous urticaria (CSU). However, desloratadine induces various degrees of sedation side effect in CSU patients, and no biomarkers currently exist for predicting the severity of such side effect. Herein, we evaluated the association between HRH1 gene rs901865 polymorphism and the severity of sedation side effect following desloratadine therapy in patients with CSU. We found that 20 of the 114 patients (17.50%) showed sedation side effect after desloratadine treatment, and 3 patients (2.63%) experienced serious sleepiness. The frequency of HRH1 rs901865 G allele was significantly higher in patients who experienced sedation than in patients with rs901865 A allele (p = 0.0009). Moreover, patients with the rs901865 G/G genotype suffered a more serious sedation side effect than patients with the rs901865 G/A genotype (p = 0.005). These results provide evidence that the HRH1 rs901865 G/G polymorphism is associated with severe sedation side effect after desloratadine treatment. Thus, the HRH1 rs901865 allele may potentially be used as a biomarker for predicting the severity of sedation side effect in patients suffering from CSU and treated with desloratadine.
Collapse
|
28
|
Volonté C, Apolloni S, Sabatelli M. Histamine beyond its effects on allergy: Potential therapeutic benefits for the treatment of Amyotrophic Lateral Sclerosis (ALS). Pharmacol Ther 2019; 202:120-131. [PMID: 31233766 DOI: 10.1016/j.pharmthera.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
ALS currently remains a challenge despite many efforts in performing successful clinical trials and formulating therapeutic solutions. By learning from current failures and striving for success, scientists and clinicians are checking every possibility to search for missing hints and efficacious treatments. Because the disease is very complex and heterogeneous and, moreover, targeting not only motor neurons but also several different cell types including muscle, glial, and immune cells, the right answer to ALS is conceivably a multidrug strategy or the use of broad-spectrum molecules. The aim of the present work is to gather evidence about novel perspectives on ALS pathogenesis and to present recent and innovative paradigms for therapy. In particular, we describe how an old molecule possessing immunomodulatory and neuroprotective functions beyond its recognized effects on allergy, histamine, might have a renewed and far-reaching momentum in ALS.
Collapse
Affiliation(s)
- Cinzia Volonté
- CNR-Institute of Cell Biology and Neurobiology/UCSC, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Savina Apolloni
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Mario Sabatelli
- Institute of Neurology-Catholic University of Sacro Cuore, Clinic Center NEMO- Fondazione Pol. A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
29
|
Yu X, Ma Y, Harding EC, Yustos R, Vyssotski AL, Franks NP, Wisden W. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Sleep 2019; 42:zsz031. [PMID: 30722053 PMCID: PMC6519916 DOI: 10.1093/sleep/zsz031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 11/12/2022] Open
Abstract
Acute chemogenetic inhibition of histamine (HA) neurons in adult mice induced nonrapid eye movement (NREM) sleep with an increased delta power. By contrast, selective genetic lesioning of HA neurons with caspase in adult mice exhibited a normal sleep-wake cycle overall, except at the diurnal start of the lights-off period, when they remained sleepier. The amount of time spent in NREM sleep and in the wake state in mice with lesioned HA neurons was unchanged over 24 hr, but the sleep-wake cycle was more fragmented. Both the delayed increase in wakefulness at the start of the night and the sleep-wake fragmentation are similar phenotypes to histidine decarboxylase knockout mice, which cannot synthesize HA. Chronic loss of HA neurons did not affect sleep homeostasis after sleep deprivation. However, the chronic loss of HA neurons or chemogenetic inhibition of HA neurons did notably reduce the ability of the wake-promoting compound modafinil to sustain wakefulness. Thus, part of modafinil's wake-promoting actions arise through the HA system.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, UK
| | | | - Raquel Yustos
- Department of Life Sciences, Imperial College London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, UK
- UK Dementia Research Institute at Imperial College London, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, UK
- UK Dementia Research Institute at Imperial College London, UK
| |
Collapse
|
30
|
Márquez-Valadez B, Aquino-Miranda G, Quintero-Romero MO, Papacostas-Quintanilla H, Bueno-Nava A, López-Rubalcava C, Díaz NF, Arias-Montaño JA, Molina-Hernández A. The Systemic Administration of the Histamine H 1 Receptor Antagonist/Inverse Agonist Chlorpheniramine to Pregnant Rats Impairs the Development of Nigro-Striatal Dopaminergic Neurons. Front Neurosci 2019; 13:360. [PMID: 31040765 PMCID: PMC6476962 DOI: 10.3389/fnins.2019.00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
The dopaminergic and histaminergic systems are the first to appear during the development of the nervous system. Through the activation of H1 receptors (H1Rs), histamine increases neurogenesis of the cortical deep layers, while reducing the dopaminergic phenotype (cells immunoreactive to tyrosine hydroxylase, TH+) in embryo ventral mesencephalon. Although the function of histamine in neuronal differentiation has been studied, the role of H1Rs in neurogenesis has not been addressed. For this purpose, the H1R antagonist/inverse agonist chlorpheniramine was systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats (gestational days 12-14, E12-14), and control and experimental embryos (E14 and E16) and pups (21-day-old) were evaluated for changes in nigro-striatal development. Western blot and immunohistochemistry determinations showed a significant increase in the dopaminergic markers' TH and PITX3 in embryos from chlorpheniramine-treated rats at E16. Unexpectedly, 21-day-old pups from the chlorpheniramine-treated group, showed a significant reduction in TH immunoreactivity in the substantia nigra pars compacta and dorsal striatum. Furthermore, striatal dopamine content, evoked [3H]-dopamine release and methamphetamine-stimulated motor activity were significantly lower compared to the control group. These results indicate that H1R blockade at E14-E16 favors the differentiation of dopaminergic neurons, but hampers their migration, leading to a decrease in dopaminergic innervation of the striatum in post-natal life.
Collapse
Affiliation(s)
- Berenice Márquez-Valadez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Guillermo Aquino-Miranda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mijail-Oliver Quintero-Romero
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Helena Papacostas-Quintanilla
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Antonio Bueno-Nava
- División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Carolina López-Rubalcava
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Néstor Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
31
|
Tatarkiewicz J, Rzodkiewicz P, Żochowska M, Staniszewska A, Bujalska-Zadrożny M. New antihistamines - perspectives in the treatment of some allergic and inflammatory disorders. Arch Med Sci 2019; 15:537-553. [PMID: 30899308 PMCID: PMC6425212 DOI: 10.5114/aoms.2017.68534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Tatarkiewicz
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Rzodkiewicz
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Żochowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Lin JS, Roussel B, Gaspar A, Zhao Y, Hou Y, Schmidt M, Jouvet A, Jouvet M. The unfinished journey with modafinil and discovery of a novel population of modafinil-immunoreactive neurons. Sleep Med 2018; 49:40-52. [DOI: 10.1016/j.sleep.2018.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018; 43:937-952. [PMID: 29206811 PMCID: PMC5854814 DOI: 10.1038/npp.2017.294] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Humans have been fascinated by sleep for millennia. After almost a century of scientific interrogation, significant progress has been made in understanding the neuronal regulation and functions of sleep. The application of new methods in neuroscience that enable the analysis of genetically defined neuronal circuits with unprecedented specificity and precision has been paramount in this endeavor. In this review, we first discuss electrophysiological and behavioral features of sleep/wake states and the principal neuronal populations involved in their regulation. Next, we describe the main modulatory drives of sleep and wakefulness, including homeostatic, circadian, and motivational processes. Finally, we describe a revised integrative model for sleep/wake regulation.
Collapse
Affiliation(s)
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
34
|
Vitrac C, Benoit-Marand M. Monoaminergic Modulation of Motor Cortex Function. Front Neural Circuits 2017; 11:72. [PMID: 29062274 PMCID: PMC5640772 DOI: 10.3389/fncir.2017.00072] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023] Open
Abstract
Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions.
Collapse
Affiliation(s)
- Clément Vitrac
- Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Poitiers, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Marianne Benoit-Marand
- Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Poitiers, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| |
Collapse
|
35
|
Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J Neurosci 2017; 37:9574-9592. [PMID: 28874450 DOI: 10.1523/jneurosci.0580-17.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 11/21/2022] Open
Abstract
Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons (Hdc-Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep.SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain function, but has been difficult to selectively manipulate owing to cellular heterogeneity in this region. Here we use a transgenic mouse to interrogate both the characteristic firing properties of HA neurons and their specific role in maintaining wakefulness. Our results demonstrate that the acute, cell type-specific silencing of HA neurons during wakefulness is sufficient to not only impair arousal but to rapidly and selectively induce slow-wave sleep. This work furthers our understanding of HA-mediated mechanisms that regulate behavioral arousal.
Collapse
|
36
|
Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017; 93:747-765. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Citation(s) in RCA: 564] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/29/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan O Lipton
- Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston, MA 02215, USA
| |
Collapse
|
37
|
Luo T, Wang Y, Qin J, Liu ZG, Liu M. Histamine H3 Receptor Antagonist Prevents Memory Deficits and Synaptic Plasticity Disruption Following Isoflurane Exposure. CNS Neurosci Ther 2017; 23:301-309. [PMID: 28168839 DOI: 10.1111/cns.12675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Exposure to pharmacological concentration of inhaled anesthetics such as isoflurane can cause short- or long-term cognitive impairments in preclinical studies. The selective antagonists of the histamine H3 receptors are considered as a promising group of novel therapeutic agents for the treatment of cognitive disorders. In this study, we investigated whether ciproxifan, a nonimidazole antagonist of H3 histamine receptors, could overcome the functional and electrophysiological sequela associated with isoflurane anesthesia. METHODS Adult male Sprague Dawley rats were exposed to 1.4% isoflurane or vehicle gas for 2 h. The memory tests (novel object recognition and passive avoidance) as well as in vivo hippocampal excitatory synaptic potentials were recorded 24 h postanesthesia. Locomotor activity, anxiety, and nociception 24 h after isoflurane were also examined. The drugs (ciproxifan 3 mg/kg or saline) were intraperitoneally injected 30 min prior to the behavioral tests or long-term potentiation induction. RESULTS Animals that were previously (24 h) exposed to 1.4% isoflurane for 2 h displayed no preference for novel objects and had impaired retention of a passive avoidance response at 1 h after sample phase. Treating isoflurane-exposed rats with ciproxifan significantly improved the memory performance, as evidenced by an increased discrimination ratio in objects recognition and prolonged retention time in passive avoidance test. Accordingly, hippocampus long-term potentiation was reduced in animals that received isoflurane, while administration of ciproxifan completely abolished the effect of isoflurane exposure on synaptic plasticity. Neither isoflurane nor ciproxifan altered motor performance, anxiety, and nociceptive responses. CONCLUSION These results suggest that H3R in the CNS, probably in the hippocampus, may serve as therapeutic target for improvement of anesthesia-associated cognitive deficits.
Collapse
Affiliation(s)
- Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Wang
- Materials Characterization and Preparation Center, Southern University of Science and Technology, Shenzhen, China
| | - Jian Qin
- Central Laboratory, Wuhan University Renmin Hospital, Wuhan, China
| | - Zhi-Gang Liu
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Min Liu
- Central Laboratory, Wuhan University Renmin Hospital, Wuhan, China
| |
Collapse
|
38
|
|
39
|
Histamine and Immune Biomarkers in CNS Disorders. Mediators Inflamm 2016; 2016:1924603. [PMID: 27190492 PMCID: PMC4846752 DOI: 10.1155/2016/1924603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 11/18/2022] Open
Abstract
Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death.
Collapse
|