1
|
Liao HY, Yen CM, Hsiao IH, Hsu HC, Lin YW. Eicosapentaenoic Acid Modulates Transient Receptor Potential V1 Expression in Specific Brain Areas in a Mouse Fibromyalgia Pain Model. Int J Mol Sci 2024; 25:2901. [PMID: 38474148 PMCID: PMC10932372 DOI: 10.3390/ijms25052901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience accompanied by tissue injury. Often, an individual's experience can be influenced by different physiological, psychological, and social factors. Fibromyalgia, one of the most difficult-to-treat types of pain, is characterized by general muscle pain accompanied by obesity, fatigue, sleep, and memory and psychological concerns. Fibromyalgia increases nociceptive sensations via central sensitization in the brain and spinal cord level. We used intermittent cold stress to create a mouse fibromyalgia pain model via a von Frey test (day 0: 3.69 ± 0.14 g; day 5: 2.13 ± 0.12 g). Mechanical pain could be reversed by eicosapentaenoic acid (EPA) administration (day 0: 3.72 ± 0.14 g; day 5: 3.69 ± 0.13 g). A similar trend could also be observed for thermal hyperalgesia. The levels of elements in the transient receptor potential V1 (TRPV1) signaling pathway were increased in the ascending pain pathway, including the thalamus, medial prefrontal cortex, somatosensory cortex, anterior cingulate cortex, and cerebellum. EPA intake significantly attenuated this overexpression. A novel chemogenetics method was used to inhibit SSC and ACC activities, which presented an analgesic effect through the TRPV1 downstream pathway. The present results provide insights into the role of the TRPV1 signaling pathway for fibromyalgia and its potential as a clinical target.
Collapse
Affiliation(s)
- Hsien-Yin Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Chia-Ming Yen
- Department of Anesthesiology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - I-Han Hsiao
- College of Chinese Medicine, School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Neurosurgery, China Medical University Hospital, Taichung 404332, Taiwan
| | - Hsin-Cheng Hsu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Traditional Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Cinquina V, Keimpema E, Pollak DD, Harkany T. Adverse effects of gestational ω-3 and ω-6 polyunsaturated fatty acid imbalance on the programming of fetal brain development. J Neuroendocrinol 2023; 35:e13320. [PMID: 37497857 PMCID: PMC10909496 DOI: 10.1111/jne.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Obesity is a key medical challenge of our time. The increasing number of children born to overweight or obese women is alarming. During pregnancy, the circulation of the mother and her fetus interact to maintain the uninterrupted availability of essential nutrients for fetal organ development. In doing so, the mother's dietary preference determines the amount and composition of nutrients reaching the fetus. In particular, the availability of polyunsaturated fatty acids (PUFAs), chiefly their ω-3 and ω-6 subclasses, can change when pregnant women choose a specific diet. Here, we provide a succinct overview of PUFA biochemistry, including exchange routes between ω-3 and ω-6 PUFAs, the phenotypes, and probable neurodevelopmental disease associations of offspring born to mothers consuming specific PUFAs, and their mechanistic study in experimental models to typify signaling pathways, transcriptional, and epigenetic mechanisms by which PUFAs can imprint long-lasting modifications to brain structure and function. We emphasize that the ratio, rather than the amount of individual ω-3 or ω-6 PUFAs, might underpin physiologically correct cellular differentiation programs, be these for neurons or glia, during pregnancy. Thereupon, the PUFA-driven programming of the brain is contextualized for childhood obesity, metabolic, and endocrine illnesses.
Collapse
Affiliation(s)
- Valentina Cinquina
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Erik Keimpema
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Daniela D. Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Deaprtment of NeuroscienceBiomedicum 7D, Karolinska InstitutetStockholmSweden
| |
Collapse
|
3
|
Yang Y, Wang X, Chen L, Wang S, Han J, Wang Z, Wen M. A Compared Study of Eicosapentaenoic Acid and Docosahexaenoic Acid in Improving Seizure-Induced Cognitive Deficiency in a Pentylenetetrazol-Kindling Young Mice Model. Mar Drugs 2023; 21:464. [PMID: 37755077 PMCID: PMC10533149 DOI: 10.3390/md21090464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a chronic neurological disorder that is more prevalent in children, and recurrent unprovoked seizures can lead to cognitive impairment. Numerous studies have reported the benefits of docosahexaenoic acid (DHA) on neurodevelopment and cognitive ability, while comparatively less attention has been given to eicosapentaenoic acid (EPA). Additionally, little is known about the effects and mechanisms of DHA and EPA in relation to seizure-induced cognitive impairment in the young rodent model. Current research indicates that ferroptosis is involved in epilepsy and cognitive deficiency in children. Further investigation is warranted to determine whether EPA or DHA can mitigate seizure-induced cognitive deficits by inhibiting ferroptosis. Therefore, this study was conducted to compare the effects of DHA and EPA on seizure-induced cognitive deficiency and reveal the underlying mechanisms focused on ferroptosis in a pentylenetetrazol (PTZ)-kindling young mice model. Mice were fed a diet containing DHA-enriched ethyl esters or EPA-enriched ethyl esters for 21 days at the age of 3 weeks and treated with PTZ (35 mg/kg, i.p.) every other day 10 times. The findings indicated that both EPA and DHA exhibited ameliorative effects on seizure-induced cognitive impairment, with EPA demonstrating a superior efficacy. Further mechanism study revealed that supplementation of DHA and EPA significantly increased cerebral DHA and EPA levels, balanced neurotransmitters, and inhibited ferroptosis by modulating iron homeostasis and reducing lipid peroxide accumulation in the hippocampus through activating the Nrf2/Sirt3 signal pathway. Notably, EPA exhibited better an advantage in ameliorating iron dyshomeostasis compared to DHA, owing to its stronger upregulation of Sirt3. These results indicate that DHA and EPA can efficaciously alleviate seizure-induced cognitive deficiency by inhibiting ferroptosis in PTZ-kindled young mice.
Collapse
Affiliation(s)
- Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Xueyan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Lu Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Shiben Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China;
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
- Pet Nutrition Research and Development Center, Gambol Pet Group Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
4
|
Kelaiditis CF, Gibson E, Dyall SC. Effects of long-chain omega-3 polyunsaturated fatty acids on reducing anxiety and/or depression in adults; A systematic review and meta-analysis of randomised controlled trials. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102572. [PMID: 37028202 DOI: 10.1016/j.plefa.2023.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
The omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic- (EPA), docosahexaenoic- (DHA) and docosapentaenoic acid (DPAn-3) are promising therapeutic options in reducing the severity of anxious and depressive symptoms. However, meta-analyses of randomised controlled trials (RCTs) yield mixed findings. This systematic review and meta-analysis reviewed the evidence and assessed the efficacy of EPA, DHA and DPAn-3 in reducing the severity of anxiety and depression with specific consideration to methodological complications unique to the field e.g., dose and ratio of omega-3 PUFAs and placebo composition. Random-effects meta-analysis of ten RCTs comprising 1426 participants revealed statistically significant reduction in depression severity with EPA-enriched interventions at proportions ≥ 60% of total EPA + DHA (SMD: -0.36; 95% CI: -0.68, -0.05; p = 0.02) (I2 = 86%) and EPA doses between ≥ 1 g/day and < 2 g/day (SMD: -0.43; 95% CI: -0.79, -0.07; p = 0.02) (I2 = 88%); however, EPA doses ≥ 2 g/day were not associated with significant therapeutic effects (SMD: -0.20; 95% CI: -0.48, 0.07; p = 0.14). Only one study reported significant reduction in anxiety severity with 2.1 g/day EPA (85.6% of total EPA + DHA), therefore meta-analysis was not possible. No trials administering DPAn-3 were identified. Visual examination of the funnel plot revealed asymmetry, suggesting publication bias and heterogeneity amongst the trials. These results support the therapeutic potential of EPA in depression at proportions ≥ 60% of total EPA + DHA and doses ≥ 1 g/day and < 2 g/day. The observed publication bias and heterogeneity amongst the trials reflect the need for more high-quality trials in this area with consideration to the unique nature of omega-3 PUFAs research, to more fully elucidate the therapeutic potential of EPA, DHA and DPAn-3.
Collapse
|
5
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
6
|
Characterization of the fatty acid profile in the ventral midbrain of mice exposed to dietary imbalance between omega-6 and omega-3 fatty acids during specific life stages. BMC Res Notes 2022; 15:285. [PMID: 36064737 PMCID: PMC9446585 DOI: 10.1186/s13104-022-06175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are essential nutrients. Dietary imbalance between these PUFAs, in particular high in n-6 PUFAs and low in n-3 PUFAs (n-6high/n-3low), is common in modern society. We have previously reported that C57BL/6 mouse male offspring derived from mothers exposed to an n-6high/n-3low diet during the gestation had an augmented ventral midbrain dopamine system in adulthood; however, the fatty acid composition in this brain region has not yet been investigated. This follow-up study aims to characterize the fatty acid profile of the ventral midbrain of mice exposed to the n-6high/n-3low diet during specific life stages. Results n-6 PUFAs, especially linoleic acid, were increased in the ventral midbrain of offspring exposed to the n-6high/n-3low diet during the gestation compared to those exposed to a well-balanced control diet throughout life. On the other hand, n-3 PUFAs, especially docosahexaenoic acid, were decreased in the ventral midbrain of offspring exposed to the n-6high/n-3low diet during the gestation, lactation, or postweaning period compared to those exposed to the control diet throughout life. Thus, exposure to the n-6high/n-3low diet in pregnancy increases linoleic acid and that in any life stage decreases docosahexaenoic acid in the offspring's ventral midbrain. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06175-0.
Collapse
|
7
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
8
|
Brandt MJV, Nijboer CH, Nessel I, Mutshiya TR, Michael-Titus AT, Counotte DS, Schipper L, van der Aa NE, Benders MJNL, de Theije CGM. Nutritional Supplementation Reduces Lesion Size and Neuroinflammation in a Sex-Dependent Manner in a Mouse Model of Perinatal Hypoxic-Ischemic Brain Injury. Nutrients 2021; 14:176. [PMID: 35011052 PMCID: PMC8747710 DOI: 10.3390/nu14010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of neonatal brain injury, leading to long-term neurological impairments. Medical nutrition can be rapidly implemented in the clinic, making it a viable intervention to improve neurodevelopment after injury. The omega-3 (n-3) fatty acids docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3), uridine monophosphate (UMP) and choline have previously been shown in rodents to synergistically enhance brain phospholipids, synaptic components and cognitive performance. The objective of this study was to test the efficacy of an experimental diet containing DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 in a mouse model of perinatal HI. Male and female C57Bl/6 mice received the experimental diet or an isocaloric control diet from birth. Hypoxic ischemic encephalopathy was induced on postnatal day 9 by ligation of the right common carotid artery and systemic hypoxia. To assess the effects of the experimental diet on long-term motor and cognitive outcome, mice were subjected to a behavioral test battery. Lesion size, neuroinflammation, brain fatty acids and phospholipids were analyzed at 15 weeks after HI. The experimental diet reduced lesion size and neuroinflammation specifically in males. In both sexes, brain n-3 fatty acids were increased after receiving the experimental diet. The experimental diet also improved novel object recognition, but no significant effects on motor performance were observed. Current data indicates that early life nutritional supplementation with a combination of DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 may provide neuroprotection after perinatal HI.
Collapse
Affiliation(s)
- Myrna J. V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| | - Cora H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| | - Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | - Tatenda R. Mutshiya
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | | | - Lidewij Schipper
- Danone Nutricia Research, 3508 TC Utrecht, The Netherlands; (D.S.C.); (L.S.)
| | - Niek E. van der Aa
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (N.E.v.d.A.); (M.J.N.L.B.)
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (N.E.v.d.A.); (M.J.N.L.B.)
| | - Caroline G. M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| |
Collapse
|
9
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Patan MJ, Kennedy DO, Husberg C, Hustvedt SO, Calder PC, Khan J, Forster J, Jackson PA. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid, improves global cognitive function in healthy, young adults: results from randomized controlled trials. Am J Clin Nutr 2021; 114:914-924. [PMID: 34113957 PMCID: PMC8408864 DOI: 10.1093/ajcn/nqab174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Evidence regarding the effects of the omega-3 (ɷ-3) PUFAs (n-3 PUFAs) DHA and EPA on cognition is lacking. OBJECTIVES We investigated whether supplementation with oils rich in EPA or DHA improves cognition, prefrontal cortex (PFC) hemoglobin (Hb) oxygenation, and memory consolidation. METHODS Healthy adults (n = 310; age range: 25-49 y) completed a 26-wk randomized controlled trial in which they consumed either 900 mg DHA/d and 270 mg EPA/d (DHA-rich oil), 360 mg DHA/d and 900 mg EPA/d (EPA-rich oil), or 3000 mg/d refined olive oil (placebo). Cognitive performance and memory consolidation were assessed via computerized cognitive test battery. PFC Hb oxygenation was measured using near infrared spectroscopy (NIRS). RESULTS Both global accuracy and speed improved with EPA-rich oil compared with placebo and DHA-rich oil [EPA vs. placebo accuracy: estimated marginal mean (EMM) = 0.17 (95% CI: 0.09, 0.24) vs. EMM = 0.03 (95% CI = -0.04, 0.11); P = 0.044; EPA vs. placebo speed: EMM = -0.15 (95% CI: -0.22, -0.07) vs. EMM = 0.03 (95% CI: -0.05, 0.10); P = 0.003]. Accuracy of memory was improved with EPA compared with DHA [EMM = 0.66 (95% CI: 0.26, 1.06) vs. EMM = -0.08 (95% CI: -0.49, 0.33); P = 0.034]. Both EPA- and DHA-rich oils showed trends towards reduced PFC oxygenated Hb (oxy-Hb) compared with placebo [placebo: EMM = 27.36 µM (95% CI: 25.73, 28.98); DHA: EMM = 24.62 µM (95% CI: 22.75, 26.48); P = 0.060; EPA: EMM = 24.97 µM (95% CI: 23.35, 26.59); P = 0.082]. CONCLUSIONS EPA supplementation improved global cognitive function and was superior to the oil enriched with DHA. Interpreted within a neural efficiency framework, reduced PFC oxygenated Hb suggests that n-3 PUFAs may be associated with increased efficiency.These trials were registered in the clinical trials registry (https://clinicaltrials.gov/) as NCT03158545, NCT03592251, NCT02763514.
Collapse
Affiliation(s)
- Michael J Patan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - David O Kennedy
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute of Health Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Julie Khan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Joanne Forster
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Philippa A Jackson
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
11
|
The Role of Supplementation with Natural Compounds in Post-Stroke Patients. Int J Mol Sci 2021; 22:ijms22157893. [PMID: 34360658 PMCID: PMC8348438 DOI: 10.3390/ijms22157893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.
Collapse
|
12
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
13
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
14
|
Liu X, Wu Y, Zhou D, Xie Y, Zhou Y, Lu Y, Yang R, Liu S. N‑linoleyltyrosine protects PC12 cells against oxidative damage via autophagy: Possible involvement of CB1 receptor regulation. Int J Mol Med 2020; 46:1827-1837. [PMID: 33000188 PMCID: PMC7521587 DOI: 10.3892/ijmm.2020.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the main pathogenic factors of neurodegenerative diseases. As the ligand of cannabinoid type 1 (CB1) and 2 (CB2) receptors, anandamide (AEA) exerts benign antioxidant activities. However, the instability of AEA results in low levels in vivo, which limit its further application. Based on the structure of AEA, N‑linoleyltyrosine (NITyr) was synthesized in our laboratory and was hypothesized to possess a similar function to that of AEA. To the best of our knowledge, the present study demonstrates for the first time, the activities and mechanisms of NITyr. NITyr treatment attenuated hydrogen peroxide (H2O2)‑induced cytotoxicity, with the most promiment effect observed at 1 µmol/l. Treatment with NITyr also suppressed the H2O2‑induced elevation of reactive oxygen species (ROS) and enhanced the expression of the autophagy‑related proteins, LC3‑II, beclin‑1, ATG 5 and ATG13. The autophagic inhibitor, 3‑methyladenine, reversed the effects of NITyr on ROS levels and cellular viability. Furthermore, AM251, a CB1 receptor antagonist, but not AM630 (a CB2 receptor antagonist), diminished the effects of NITyr on cell viability, ROS generation and autophagy‑related protein expression. However, NITyr increased the protein expression of both the CB1 and CB2 receptors. Therefore, NITyr was concluded to protect PC12 cells against H2O2‑induced oxidative injury by inducing autophagy, a process which may involve the CB1 receptor.
Collapse
Affiliation(s)
- Xuechen Liu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yiying Wu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Dan Zhou
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yuting Xie
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yi Zhou
- Research and Development Center, Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan 610200, P.R. China
| | - Yu Lu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Rui Yang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Sha Liu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
15
|
Fellous T, De Maio F, Kalkan H, Carannante B, Boccella S, Petrosino S, Maione S, Di Marzo V, Iannotti FA. Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets. Biochem Pharmacol 2020; 175:113859. [DOI: 10.1016/j.bcp.2020.113859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
|
16
|
Nessel I, Khashu M, Dyall SC. The effects of storage conditions on long-chain polyunsaturated fatty acids, lipid mediators, and antioxidants in donor human milk - A review. Prostaglandins Leukot Essent Fatty Acids 2019; 149:8-17. [PMID: 31421526 DOI: 10.1016/j.plefa.2019.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/14/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
Abstract
Donor human milk (DHM) is the recommended alternative, if maternal milk is unavailable. However, current human milk banking practices may negatively affect the nutritional quality of DHM. This review summarises the effects of these practices on polyunsaturated fatty acids, lipid mediators and antioxidants of human milk. Overall, there is considerable variation in the reported effects, and further research is needed, particularly with lipid mediators and antioxidants. However, to preserve nutritional quality, DHM should be protected from light exposure and storage at 4 °C minimised, to prevent decreases in vitamin C and endocannabinoids and increases in free fatty acids and lipid peroxidation products. Storage at -20 °C prior to pasteurisation should also be minimised, to prevent free fatty increases and total fat and endocannabinoid decreases. Storage ≤-70 °C is preferable wherever possible, although post-pasteurisation storage at -20 °C for three months appears safe for free fatty acids, lipid peroxidation products, and total fat content.
Collapse
Affiliation(s)
- Isabell Nessel
- Centre for Midwifery, Maternal and Perinatal Health, Bournemouth University, Royal London House, Christchurch Road, Bournemouth, BH13LT U.K..
| | - Minesh Khashu
- Centre for Midwifery, Maternal and Perinatal Health, Bournemouth University, Royal London House, Christchurch Road, Bournemouth, BH13LT U.K.; Neonatal Unit, Poole Hospital NHS Foundation Trust, Poole, U.K
| | - Simon C Dyall
- Department of Life Sciences, University of Roehampton, London, U.K
| |
Collapse
|
17
|
Omega-3 Docosahexaenoic Acid Is a Mediator of Fate-Decision of Adult Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174240. [PMID: 31480215 PMCID: PMC6747551 DOI: 10.3390/ijms20174240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been reported in the brains of patients with neurodegenerative diseases. Preventing this decrease or supplementing the brain with DHA has been considered as a therapy for the DHA brain deficiency that could be linked with neuronal death or neurodegeneration. The mammalian brain has, however, a mechanism of compensation for loss of neurons in the brain: neurogenesis, the birth of neurons from neural stem cells. In adulthood, neurogenesis is still present, although at a slower rate and with low efficiency, where most of the newly born neurons die. Neural stem/progenitor cells (NSPCs) have been shown to require lipids for proper metabolism for proliferation maintenance and neurogenesis induction. Recent studies have focused on the effects of these essential lipids on the neurobiology of NSPCs. This review aimed to introduce the possible use of DHA to impact NSPC fate-decision as a therapy for neurodegenerative diseases.
Collapse
|
18
|
Maternal n-3 PUFAs deficiency during pregnancy inhibits neural progenitor cell proliferation in fetal rat cerebral cortex. Int J Dev Neurosci 2019; 76:72-79. [PMID: 31299388 DOI: 10.1016/j.ijdevneu.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the in vivo impacts of maternal n-3 polyunsaturated fatty acids (PUFAs) deficiency during pregnancy on the proliferation of neural progenitor cells (NPCs) in the developing cerebral cortex of fetal rats. Our results showed that about 5 weeks of maternal dietary n-3 PUFAs deprivation resulted in a substantial n-3 PUFA deficiency in fetal rat cerebral cortex. Importantly, by two survival schemes and two quantitative methods, we found that maternal intake of n-3 PUFAs deficient diet during the gestation significantly inhibited the proliferation of NPCs in fetal rat cerebral cortex. Moreover, the decreased cortical NPCs proliferation induced by nutritional n-3 PUFAs restriction did not originate from the increased NPCs apoptosis. Finally, our observations indicated that the down-regulation of cyclin E protein might be involved in the inhibitory effects of maternal n-3 PUFAs deficient diet on the proliferation of cortical NPCs. These findings highlight the importance of maternal intake of appropriate n-3 PUFAs and deepen our understanding of the exact effects of n-3 PUFAs on mammalian brain development.
Collapse
|
19
|
Yang J, Tian Y, Zheng R, Li L, Qiu F. Endocannabinoid system and the expression of endogenous ceramides in human hepatocellular carcinoma. Oncol Lett 2019; 18:1530-1538. [PMID: 31423220 DOI: 10.3892/ol.2019.10399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
The endogenous lipid metabolism network is associated with the occurrence and progression of malignancies. Endocannabinoids and ceramides have demonstrated their anti-proliferative and pro-apoptotic properties in a series of cancer studies. The aim of the present study was to evaluate the expression patterns of endocannabinoids and endogenous ceramides in 67 pairs of human hepatocellular carcinoma (HCC) tissues and non-cancerous counterpart controls. Anandamide (AEA), the major endocannabinoid, was reduced in tumor tissues, probably due to the high expression and activity of fatty acid amide hydrolase. Another important endocannabinoid, 2-arachidonylglycerol (2-AG), was elevated in tumor tissues compared with non-tumor controls, indicating that the biosynthesis of 2-AG is faster than the degradation of 2-AG in tumor cells. Furthermore, western blot analysis demonstrated that cannabinoid receptor 1 was downregulated, while cannabinoid receptor 2 was elevated in HCC tissues, in accordance with the alterations in the levels of AEA and 2-AG, respectively. For HCC tissues, the expression levels of C18:0, 20:0 and 24:0-ceramides decreased significantly, whereas C12:0, 16:0, 18:1 and 24:1-ceramides were upregulated, which may be associated with cannabinoid receptor activation and stearoyl-CoA desaturase protein downregulation. The exact role of endocannabinoids and ceramides in regulating the fate of HCC cells requires further investigation.
Collapse
Affiliation(s)
- Jiayong Yang
- Department of Pharmacy, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China.,Department of Pharmacy, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yifeng Tian
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ruihe Zheng
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Lei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Funan Qiu
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
20
|
Garcia‐Arencibia M, Molina-Holgado E, Molina‐Holgado F. Effect of endocannabinoid signalling on cell fate: life, death, differentiation and proliferation of brain cells. Br J Pharmacol 2019; 176:1361-1369. [PMID: 29797438 PMCID: PMC6487559 DOI: 10.1111/bph.14369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Moises Garcia‐Arencibia
- Departamento Sanitario IES TerorConsejería de Educación y Universidades del Gobierno de CanariasLas PalmasSpain
| | - Eduardo Molina-Holgado
- Laboratorio de NeuroinflamaciónUnidad de Investigación, Hospital Nacional de Parapléjicos‐SESCAMToledo45071Spain
| | | |
Collapse
|
21
|
Farioli Vecchioli S, Sacchetti S, Nicolis di Robilant V, Cutuli D. The Role of Physical Exercise and Omega-3 Fatty Acids in Depressive Illness in the Elderly. Curr Neuropharmacol 2018; 16:308-326. [PMID: 28901279 PMCID: PMC5843982 DOI: 10.2174/1570159x15666170912113852] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/20/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background: In adulthood, depression is the most common type of mental illness and will be the second leading cause of disease by 2020. Major depression dramatically affects the function of the central nervous system and degrades the quality of life, especially in old age. Several mechanisms underlie the pathophysiology of depressive illness, since it has a multifactorial etiology. Human and an-imal studies have demonstrated that depression is mainly associated with imbalances in neurotransmitters and neurotrophins, hypothalamic-pituitary-adrenal axis alterations, brain volume changes, neurogenesis dysfunction, and dysregulation of in-flammatory pathways. Also the gut microbiota may influence mental health outcomes. Although depression is not a consequence of normal aging, depressive disorders are common in later life, even if often undi-agnosed or mis-diagnosed in old age. When untreated, depression reduces life expectancy, worsens medical illnesses, en-hances health care costs and is the primary cause of suicide among older people. To date, the underpinnings of depression in the elderly are still to be understood, and the pharmacological treatment is the most commonly used therapy. Objective: Since a sedentary lifestyle and poor eating habits have recently emerged as crucial contributors to the genesis and course of depression, in the present review, we have focused on the effects of physical activity and omega-3 fatty acids on depressive illness in the elderly. Results: A growing literature indicates that both exercise and dietary interventions can promote mental health throughout one’s lifespan. Conclusion: There thus emerges the awareness that an active lifestyle and a balanced diet may constitute valid low-cost pre-vention strategies to counteract depressive illness in the elderly.
Collapse
Affiliation(s)
- Stefano Farioli Vecchioli
- Institute of Cell Biology and Neurobiology, CNR/Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Stefano Sacchetti
- Laboratory of Experimental and Behavioral Neurophysiology, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - V Nicolis di Robilant
- Institute of Cell Biology and Neurobiology, CNR/Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Debora Cutuli
- Laboratory of Experimental and Behavioral Neurophysiology, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Via dei Marsi 78, 00185, Rome, Italy
| |
Collapse
|
22
|
Larrieu T, Layé S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front Physiol 2018; 9:1047. [PMID: 30127751 PMCID: PMC6087749 DOI: 10.3389/fphys.2018.01047] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
The central nervous system (CNS) has the highest concentration of lipids in the organism after adipose tissue. Among these lipids, the brain is particularly enriched with polyunsaturated fatty acids (PUFAs) represented by the omega-6 (ω6) and omega-3 (ω3) series. These PUFAs include arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively. PUFAs have received substantial attention as being relevant to many brain diseases, including anxiety and depression. This review addresses an important question in the area of nutritional neuroscience regarding the importance of ω3 PUFAs in the prevention and/or treatment of neuropsychiatric diseases, mainly depression and anxiety. In particular, it focuses on clinical and experimental data linking dietary intake of ω3 PUFAs and depression or anxiety. In particular, we will discuss recent experimental data highlighting how ω3 PUFAs can modulate neurobiological processes involved in the pathophysiology of anxiety and depression. Potential mechanisms involved in the neuroprotective and corrective activity of ω3 PUFAs in the brain are discussed, in particular the sensing activity of free fatty acid receptors and the activity of the PUFAs-derived endocannabinoid system and the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Thomas Larrieu
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Thau-Zuchman O, Gomes RN, Dyall SC, Davies M, Priestley JV, Groenendijk M, De Wilde MC, Tremoleda JL, Michael-Titus AT. Brain Phospholipid Precursors Administered Post-Injury Reduce Tissue Damage and Improve Neurological Outcome in Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:25-42. [PMID: 29768974 PMCID: PMC6306688 DOI: 10.1089/neu.2017.5579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) leads to cellular loss, destabilization of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PLs), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesized that supporting PL synthesis post-injury could improve outcome post-TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of PLs and available for clinical use. The multi-nutrient, Fortasyn® Connect (FC), contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, cofactors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor, Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis post-TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients and is safe and well tolerated, which would enable rapid clinical exploration in TBI.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rita N Gomes
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Simon C Dyall
- 3 Bournemouth University, Royal London House, Bournemouth, United Kingdom
| | - Meirion Davies
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - John V Priestley
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Martine Groenendijk
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Martijn C De Wilde
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jordi L Tremoleda
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Dyall SC. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair. Lipids 2017; 52:885-900. [PMID: 28875399 PMCID: PMC5656721 DOI: 10.1007/s11745-017-4292-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022]
Abstract
The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.
Collapse
Affiliation(s)
- Simon C Dyall
- Faculty of Health and Social Sciences, Bournemouth University, Dorset, UK.
| |
Collapse
|
25
|
Nasello M, Schirò G, Crapanzano F, Balistreri CR. Stem Cells and Other Emerging Agents as Innovative "Drugs" in Neurodegenerative Diseases: Benefits and Limitations. Rejuvenation Res 2017; 21:123-140. [PMID: 28728479 DOI: 10.1089/rej.2017.1946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The brain has a limited process of repair/regeneration linked to the restricted and localized activity of neuronal stem cells. Consequently, it shows a reduced capacity to counteract the age-related loss of neural and glial cells and to repair the consequent injuries/lesions of nervous system. This progressively determines nervous dysfunction and onset/progression of neurodegenerative diseases, which represent a serious social (and economic) problem of our populations. Thus, the research of efficient treatments is encouraged. Stem cell therapy might represent a solution. Today, it, indeed, represents the object of intensive research with the hope of using it, in a near future, as effective therapy for these diseases and preventive treatment in susceptible individuals. Here, we report and discuss the data of the recent studies on this field, underling the obstacles and benefits. We also illustrate alternative measures of intervention, which represent another parallel aim for the care of neurodegenerative pathology-affected individuals. Thus, the road for delaying or retarding these diseases appears hard and long, but the advances might be different.
Collapse
Affiliation(s)
- Martina Nasello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Giuseppe Schirò
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Floriana Crapanzano
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| |
Collapse
|
26
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
27
|
Ramírez-López MT, Vázquez M, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Orio L, Suárez J, Lutz B, Gómez de Heras R, Bindila L, Rodríguez de Fonseca F. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner. PLoS One 2017; 12:e0174307. [PMID: 28346523 PMCID: PMC5367805 DOI: 10.1371/journal.pone.0174307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rosario Noemi Blanco
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - María Antón
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Decara
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rocío Arco
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Suárez
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología. IBIMA. Facultad de Ciencias, Universidad de Malaga. Campus de Teatinos s/n, Malaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- * E-mail: (FRF); (RGH)
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (RGH)
| |
Collapse
|
28
|
Orchard TS, Gaudier-Diaz MM, Weinhold KR, Courtney DeVries A. Clearing the fog: a review of the effects of dietary omega-3 fatty acids and added sugars on chemotherapy-induced cognitive deficits. Breast Cancer Res Treat 2016; 161:391-398. [PMID: 27933449 DOI: 10.1007/s10549-016-4073-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Cancer treatments such as chemotherapy have been an important part of extending survival in women diagnosed with breast cancer. However, chemotherapy can cause potentially toxic side effects in the brain that impair memory, verbal fluency, and processing speed in up to 30% of women treated. Women report that post-chemotherapy cognitive deficits negatively impact quality of life and may last up to ten years after treatment. Mechanisms underlying these cognitive impairments are not fully understood, but emerging evidence suggests that chemotherapy induces structural changes in the brain, produces neuroinflammation, and reduces adult hippocampal neurogenesis. Dietary approaches that modify inflammation and neurogenesis are promising strategies for reducing chemotherapy-induced cognitive deficits in breast cancer survivors. In this review, we describe the cognitive and neuronal side effects associated with commonly used chemotherapy treatments for breast cancer, and we focus on the often opposing actions of omega-3 fatty acids and added sugars on cognitive function, neuroinflammation, and adult hippocampal neurogenesis. Omega-3 fatty acids administered concurrently with doxorubicin chemotherapy have been shown to prevent depressive-like behaviors and reduce neuroinflammation, oxidative stress, and neural apoptosis in rodent models. In contrast, diets high in added sugars may interact with n-3 FAs to diminish their anti-inflammatory activity or act independently to increase neuroinflammation, reduce adult hippocampal neurogenesis, and promote cognitive deficits. We propose that a diet rich in long-chain, marine-derived omega-3 fatty acids and low in added sugars may be an ideal pattern for preventing or alleviating neuroinflammation and oxidative stress, thereby protecting neurons from the toxic effects of chemotherapy. Research testing this hypothesis could lead to the identification of modifiable dietary choices to reduce the long-term impact of chemotherapy on the cognitive functions that are important to quality of life in breast cancer survivors.
Collapse
Affiliation(s)
- Tonya S Orchard
- Department of Human Sciences, The Ohio State University, 325 Campbell Hall, 1787 Neil Avenue, Columbus, OH, 43210, USA.
| | - Monica M Gaudier-Diaz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 614 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Kellie R Weinhold
- Department of Human Sciences, The Ohio State University, 325 Campbell Hall, 1787 Neil Avenue, Columbus, OH, 43210, USA
| | - A Courtney DeVries
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 614 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|