1
|
Eyvani K, Letafatkar N, Babaei P. AMPA Receptors Endocytosis Inhibition Attenuates Cognition Deficit Via c-Fos/BDNF Signaling in Amyloid β Neurotoxicity. Exp Aging Res 2024:1-13. [PMID: 39077805 DOI: 10.1080/0361073x.2024.2377440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024]
Abstract
Glutamatergic imbalance, particularly downregulation of α-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid receptor (AMPARs) endocytosis, has been addressed as a possible reason for cognitive dysfunctions in Alzheimer's disease (AD). We hypothesized that inhibition of AMPAR endocytosis may ameliorate memory impairment in AD model of rats. To approach this, twenty-four adults male Wistar rats were divided into three groups: saline + saline (control group), Aβ + saline, and Aβ + Tat-GluR23Y (AMPA endocytosis inhibitor). Animals received an intracerebroventricular (i.c.v) injection of Aβ (1-42) to induce neuro-toxicity, followed by chronic administration of GluR23Y, and further behavioral assessments by MWM. Afterward, the hippocampal level of Brain Derived Neurotrophic Factor (BDNF) and c-Fos was measured via Western blotting. The results of our study revealed that chronic administration of GluR23Y improved both working and reference memories evidenced by shorter latency time and longer total time spent in the target zone in MWM. Additionally, this improvement was paralleled by an increase in BDNF, but a decrease in c-Fos. In conclusion, GluR23Y improves spatial memory impairment at least partly via elevating neuroprotective factor of BDNF and reducing apoptotic protein of c-Fos.
Collapse
Affiliation(s)
- Kimia Eyvani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Zhang M, Wei R, Jing J, Huang S, Qiu G, Xia X, Zhang Y, Li Y. Subsequent maternal sleep deprivation aggravates cognitive impairment by modulating hippocampal neuroinflammatory responses and synaptic function in maternal isoflurane-exposed offspring mice. Brain Behav 2024; 14:e3610. [PMID: 38945806 PMCID: PMC11214875 DOI: 10.1002/brb3.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO. METHODS Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods. RESULTS The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor. CONCLUSION Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.
Collapse
Affiliation(s)
- Meng‐Ying Zhang
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Jun Jing
- Department of AnesthesiologyMaanshan People's HospitalMaanshanAnhuiP. R. China
| | - Shu‐Ren Huang
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gao‐Lin Qiu
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xiao‐Qiong Xia
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yuan‐Hai Li
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
3
|
Wei RM, Zhang YM, Zhang KX, Liu GX, Li XY, Zhang JY, Lun WZ, Liu XC, Chen GH. An enriched environment ameliorates maternal sleep deprivation-induced cognitive impairment in aged mice by improving mitochondrial function via the Sirt1/PGC-1α pathway. Aging (Albany NY) 2024; 16:1128-1144. [PMID: 38231482 PMCID: PMC10866428 DOI: 10.18632/aging.205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Early life stress can cause cognitive impairment in aged offspring. Environmental enrichment (EE) is considered to be an effective non-pharmacological treatment for improving cognitive decline. The aim of this research was to evaluate the effect of EE, on cognitive impairment in aged offspring induced by maternal sleep deprivation (MSD) and the underlying mechanisms involved to investigate its potential value in clinical practice. METHODS CD-1 damns were subjected or not to sleep deprivation during late gestation. Twenty-one days after birth, the offspring were assigned to standard or EE cages. At 18 months-old, the learning and memory function of the offspring mice was evaluated using Morris water maze. The hippocampal and prefrontal cortical levels of protein, gene, proinflammation cytokines, and oxidative stress indicators was examined by Western blot, real-time polymerase chain reaction, enzyme linked immunosorbent assay, and biochemical assays. RESULTS Offspring in MSD group exhibited declined learning and memory abilities compared with control animals. Moreover, the hippocampal and prefrontal cortical levels of Sirtuin1 (Sirt1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), postsynaptic density protein-95, and synaptophysin were lower and those of proinflammation cytokines higher in the MSD group; meanwhile, the superoxide dismutase content was higher and the malondialdehyde and reactive oxygen species contents were lower. However, these deleterious changes were ameliorated by exposure to EE. CONCLUSIONS EE attenuates MSD-induced cognitive impairment, oxidative stress, and neuroinflammation and reverses the reduction in synaptic protein levels in aged offspring mice via the Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Gao-Xia Liu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Wei-Zhong Lun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Chun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, Anhui, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| |
Collapse
|
4
|
Chen Y, Li X, Xiong Q, Du Y, Luo M, Yi L, Pang Y, Shi X, Wang YT, Dong Z. Inhibiting NLRP3 inflammasome signaling pathway promotes neurological recovery following hypoxic-ischemic brain damage by increasing p97-mediated surface GluA1-containing AMPA receptors. J Transl Med 2023; 21:567. [PMID: 37620837 PMCID: PMC10463885 DOI: 10.1186/s12967-023-04452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3) inflammasome is believed to be a key mediator of neuroinflammation and subsequent secondary brain injury induced by ischemic stroke. However, the role and underlying mechanism of the NLRP3 inflammasome in neonates with hypoxic-ischemic encephalopathy (HIE) are still unclear. METHODS The protein expressions of the NLRP3 inflammasome including NLRP3, cysteinyl aspartate specific proteinase-1 (caspase-1) and interleukin-1β (IL-1β), the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) subunit, and the ATPase valosin-containing protein (VCP/p97), were determined by Western blotting. The interaction between p97 and AMPA glutamate receptor 1 (GluA1) was determined by co-immunoprecipitation. The histopathological level of hypoxic-ischemic brain damage (HIBD) was determined by triphenyltetrazolium chloride (TTC) staining. Polymerase chain reaction (PCR) and Western blotting were used to confirm the genotype of the knockout mice. Motor functions, including myodynamia and coordination, were evaluated by using grasping and rotarod tests. Hippocampus-dependent spatial cognitive function was measured by using the Morris-water maze (MWM). RESULTS We reported that the NLRP3 inflammasome signaling pathway, such as NLRP3, caspase-1 and IL-1β, was activated in rats with HIBD and oxygen-glucose deprivation (OGD)-treated cultured primary neurons. Further studies showed that the protein level of the AMPAR GluA1 subunit on the hippocampal postsynaptic membrane was significantly decreased in rats with HIBD, and it could be restored to control levels after treatment with the specific caspase-1 inhibitor AC-YVAD-CMK. Similarly, in vitro studies showed that OGD reduced GluA1 protein levels on the plasma membrane in cultured primary neurons, whereas AC-YVAD-CMK treatment restored this reduction. Importantly, we showed that OGD treatment obviously enhanced the interaction between p97 and GluA1, while AC-YVAD-CMK treatment promoted the dissociation of p97 from the GluA1 complex and consequently facilitated the localization of GluA1 on the plasma membrane of cultured primary neurons. Finally, we reported that the deficits in motor function, learning and memory in animals with HIBD, were ameliorated by pharmacological intervention or genetic ablation of caspase-1. CONCLUSION Inhibiting the NLRP3 inflammasome signaling pathway promotes neurological recovery in animals with HIBD by increasing p97-mediated surface GluA1 expression, thereby providing new insight into HIE therapy.
Collapse
Affiliation(s)
- Yuxin Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qian Xiong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Man Luo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Tian Wang
- Department of Medicine, Brain Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
5
|
Du Y, Li J, Wang M, Tian Q, Pang Y, Wen Y, Wu D, Wang YT, Dong Z. Genetic inhibition of glutamate allosteric potentiation of GABA ARs in mice results in hyperexcitability, leading to neurobehavioral abnormalities. MedComm (Beijing) 2023; 4:e235. [PMID: 37101797 PMCID: PMC10123808 DOI: 10.1002/mco2.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
The imbalance between neuronal excitation and inhibition (E/I) in neural circuit has been considered to be at the root of numerous brain disorders. We recently reported a novel feedback crosstalk between the excitatory neurotransmitter glutamate and inhibitory γ-aminobutyric acid type A receptor (GABAAR)-glutamate allosteric potentiation of GABAAR functions through a direct binding of glutamate to the GABAAR itself. Here, we investigated the physiological significance and pathological implications of this cross-talk by generating the β3E182G knock-in (KI) mice. We found that β3E182G KI, while had little effect on basal GABAAR-mediated synaptic transmission, significantly reduced glutamate potentiation of GABAAR-mediated responses. These KI mice displayed lower thresholds for noxious stimuli, higher susceptibility to seizures and enhanced hippocampus-related learning and memory. Additionally, the KI mice exhibited impaired social interactions and decreased anxiety-like behaviors. Importantly, hippocampal overexpression of wild-type β3-containing GABAARs was sufficient to rescue the deficits of glutamate potentiation of GABAAR-mediated responses, hippocampus-related behavioral abnormalities of increased epileptic susceptibility, and impaired social interactions. Our data indicate that the novel crosstalk among excitatory glutamate and inhibitory GABAAR functions as a homeostatic mechanism in fine-tuning neuronal E/I balance, thereby playing an essential role in ensuring normal brain functioning.
Collapse
Affiliation(s)
- Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Maoju Wang
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ya Wen
- Brain Research Centre and Department of MedicineVancouver Coastal Health Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Dongchuan Wu
- Translational Medicine Research CenterChina Medical University HospitalGraduate Institutes of Biomedical SciencesTaichungChina
| | - Yu Tian Wang
- Brain Research Centre and Department of MedicineVancouver Coastal Health Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Institute for Brain Science and Disease of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Zhang Y, Wei R, Ni M, Wu Q, Li Y, Ge Y, Kong X, Li X, Chen G. An enriched environment improves maternal sleep deprivation-induced cognitive deficits and synaptic plasticity via hippocampal histone acetylation. Brain Behav 2023; 13:e3018. [PMID: 37073496 PMCID: PMC10275536 DOI: 10.1002/brb3.3018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/20/2023] Open
Abstract
INTRODUCTION Growing evidence clearly demonstrates that maternal rodents exposure to sleep deprivation (SD) during late pregnancy impairs learning and memory in their offspring. Epigenetic mechanisms, particularly histone acetylation, are known to be involved in synaptic plasticity, learning, and memory. We hypothesize that the cognitive decline induced by SD during late pregnancy is associated with histone acetylation dysfunction, and this effect could be reversed by an enriched environment (EE). METHODS In the present study, pregnant CD-1 mice were exposed to SD during the third trimester of pregnancy. After weaning, all offspring were randomly assigned to two subgroups in either a standard environment or an EE. When offspring were 3 months old, the Morris water maze was used to evaluate hippocampal-dependent learning and memory ability. Molecular biological techniques, including western blot and real-time fluorescence quantitative polymerase chain reaction, were used to examine the histone acetylation pathway and synaptic plasticity markers in the hippocampus of offspring. RESULTS The results showed that the following were all reversed by EE treatment: maternal SD (MSD)-induced cognitive deficits including spatial learning and memory; histone acetylation dysfunction including increased histone deacetylase 2 (HDAC2) and decreased histone acetyltransferase (CBP), and the acetylation levels of H3K9 and H4K12; synaptic plasticity dysfunction including decreased brain-derived neurotrophic factor; and postsynaptic density protein-95. CONCLUSIONS Our findings suggested that MSD could damage learning ability and memory in offspring via the histone acetylation pathway. This effect could be reversed by EE treatment.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ming‐Zhu Ni
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Qi‐Tao Wu
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yun Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
7
|
Wei RM, Zhang YM, Li Y, Wu QT, Wang YT, Li XY, Li XW, Chen GH. Altered cognition and anxiety in adolescent offspring whose mothers underwent different-pattern maternal sleep deprivation, and cognition link to hippocampal expressions of Bdnf and Syt-1. Front Behav Neurosci 2022; 16:1066725. [PMID: 36570704 PMCID: PMC9772274 DOI: 10.3389/fnbeh.2022.1066725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Inadequate sleep during pregnancy negatively affects the neural development of offspring. Previous studies have focused on the continuous sleep deprivation (CSD) paradigm, but the sleep pattern during late pregnancy is usually fragmented. Objective To compare the effects of CSD and fragmented sleep deprivation (FSD) in late pregnancy on emotion, cognition, and expression of synaptic plasticity-related proteins in offspring mice. Methods Pregnant CD-1 mice were either subjected to 3/6 h of CSD/FSD during gestation days 15-21, while those in the control group were left untreated. After delivery, the offspring were divided into five groups, i.e., control (CON), short or long CSD (CSD3h, CSD6h), and short or long FSD (FSD3h, FSD6h). When the offspring were 2 months old, the anxiety-like behavior level was tested using the open field (OF) and elevated plus maze (EPM) test, and spatial learning and memory were evaluated using the Morris water maze (MWM) test. The expression of hippocampal of brain-derived neurotrophic factor (Bdnf) and synaptotagmin-1 (Syt-1) was determined using RT-PCR and western blotting. Results The CSD6h, FSD3h, and FSD6h had longer latency, fewer center times in the OF test, less open arms time and fewer numbers of entries in the open arms of the EPM, longer learning distance swam and lower memory percentage of distance swam in the target quadrant in the MWM test, and decreased BDNF and increased Syt-1 mRNA and protein levels in the hippocampus. Compared to the CSD6h, the FSD3h and FSD6h had longer distance swam, a lower percentage of distance swam in the target quadrant, decreased BDNF, and increased Syt-1 mRNA and protein levels in the hippocampus. Conclusion The results suggested that maternal sleep deprivation during late pregnancy impairs emotion and cognition in offspring, and FSD worsened the cognitive performance to a higher extent than CSD. The observed cognitive impairment could be associated with the expression of altered hippocampal of Bdnf and Syt-1 genes.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ya-Tao Wang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,Xue-Wei Li
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China,*Correspondence: Gui-Hai Chen
| |
Collapse
|
8
|
Nevarez-Brewster M, Demers CH, Mejia A, Haase MH, Bagonis MM, Kim SH, Gilmore JH, Hoffman MC, Styner MA, Hankin BL, Davis EP. Longitudinal and prospective assessment of prenatal maternal sleep quality and associations with newborn hippocampal and amygdala volume. Dev Cogn Neurosci 2022; 58:101174. [PMID: 36375383 PMCID: PMC9661438 DOI: 10.1016/j.dcn.2022.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rapid maturation of the fetal brain renders the fetus susceptible to prenatal environmental signals. Prenatal maternal sleep quality is known to have important health implications for newborns including risk for preterm birth, however, the effect on the fetal brain is poorly understood. METHOD Participants included 94 pregnant participants and their newborns (53% female). Pregnant participants (Mage = 30; SDage= 5.29) reported on sleep quality three times throughout pregnancy. Newborn hippocampal and amygdala volumes were assessed using structural magnetic resonance imaging. Multilevel modeling was used to test the associations between trajectories of prenatal maternal sleep quality and newborn hippocampal and amygdala volume. RESULTS The overall trajectory of prenatal maternal sleep quality was associated with hippocampal volume (left: b = 0.00003, p = 0.013; right: b = 0.00003, p = .008). Follow up analyses assessing timing of exposure indicate that poor sleep quality early in pregnancy was associated with larger hippocampal volume bilaterally (e.g., late gestation left: b = 0.002, p = 0.24; right: b = 0.004, p = .11). Prenatal sleep quality was not associated with amygdala volume. CONCLUSION These findings highlight the implications of poor prenatal maternal sleep quality and its role in contributing to newborn hippocampal development.
Collapse
Affiliation(s)
| | - Catherine H Demers
- University of Denver, Department of Psychology, United States; University of Colorado Anschutz Medical Campus, Department of Psychiatry, United States
| | - Alexandra Mejia
- University of Denver, Department of Psychology, United States
| | | | - Maria M Bagonis
- University of North Carolina - Chapel Hill, Department of Psychiatry, United States
| | - Sun Hyung Kim
- University of North Carolina - Chapel Hill, Department of Psychiatry, United States
| | - John H Gilmore
- University of North Carolina - Chapel Hill, Department of Psychiatry, United States
| | - M Camille Hoffman
- University of Colorado Anschutz Medical Campus, Department of Psychiatry, United States; University of Colorado Denver School of Medicine, Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, United States
| | - Martin A Styner
- University of North Carolina - Chapel Hill, Department of Psychiatry, United States; University of North Carolina - Chapel Hill, Department of Computer Science, United States
| | - Benjamin L Hankin
- University of Illinois at Urbana-Champaign, Department of Psychology, United States
| | - Elysia Poggi Davis
- University of Denver, Department of Psychology, United States; University of California, Irvine, Department of Pediatrics, United States
| |
Collapse
|
9
|
Shahveisi K, Abdoli N, Khazaie H, Farnia V, Khodamoradi M. Maternal sleep deprivation affects extinction and reinstatement of methamphetamine reward memory in male offspring: role of the D1-like and D2-like dopamine receptors. Brain Res 2022; 1792:148033. [PMID: 35905786 DOI: 10.1016/j.brainres.2022.148033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
Maternal sleep-deprivation (MSD) has been shown to induce stress, hyperactivity, and risk taking behavior in the offspring; howbeit, it is not yet clear whether it may also affect vulnerability to psychostimulant abuse in the offspring. We aimed to determine whether MSD affects extinction and reinstatement of methamphetamine (METH) reward memory in the offspring and also to evaluate the possible role of dopamine D1-like and D2-like receptors in these processes. Thirty-day-old male offspring born to control and sleep-deprived dams (during the third week of pregnancy) were trained to acquire METH-induced place preference (2 mg/kg., i.p.). METH reward memory was then reinstated following an 8-day period of extinction. The offspring received SCH 23390 (0.03 or 0.1 mg/kg, i.p.) or sulpiride (20 or 60 mg/kg, i.p.) as antagonists of dopamine D1-like and D2-like receptors, respectively, either immediately after each daily extinction session or prior to the reinstatement session. MSD postponed METH extinction and facilitated METH reinstatement in the offspring. SCH 23390 facilitated METH extinction and decreased reinstatement of the extinguished METH preference. Sulpiride in the offspring from sleep-deprived dams facilitated METH extinction, but it did not affect reinstatement of the extinguished METH place preference. It seems that MSD may enhance vulnerability to METH abuse in the offspring. Furthermore, both dopamine D1-like and D2-like receptors may mediate METH extinction in the offspring born to the sleep-deprived dams; however, only the dopamine D1 receptor may play an important role in reinstating the extinguished METH reward memory in the offspring.
Collapse
Affiliation(s)
- Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Abdoli
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Farnia
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Yao ZY, Li XH, Zuo L, Xiong Q, He WT, Li DX, Dong ZF. Maternal sleep deprivation induces gut microbial dysbiosis and neuroinflammation in offspring rats. Zool Res 2022; 43:380-390. [PMID: 35362675 PMCID: PMC9113977 DOI: 10.24272/j.issn.2095-8137.2022.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 11/07/2022] Open
Abstract
Maternal sleep deprivation (MSD) is a global public health problem that affects the physical and mental development of pregnant women and their newborns. The latest research suggests that sleep deprivation (SD) disrupts the gut microbiota, leading to neuroinflammation and psychological disturbances. However, it is unclear whether MSD affects the establishment of gut microbiota and neuroinflammation in the newborns. In the present study, MSD was performed on pregnant Sprague-Dawley rats in the third trimester of pregnancy (gestational days 15-21), after which intestinal contents and brain tissues were collected from offspring at different postnatal days (P1, P7, P14, and P56). Based on microbial profiling, microbial diversity and richness increased in pregnant rats subjected to MSD, as reflected by the significant increase in the phylum Firmicutes. In addition, microbial dysbiosis marked by abundant Firmicutes bacteria was observed in the MSD offspring. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) showed that the expression levels of proinflammatory cytokines interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were significantly higher in the MSD offspring at adulthood (P56) than in the control group. Through Spearman correlation analysis, IL-1β and TNF-α were also shown to be positively correlated with Ruminococcus_1 and Ruminococcaceae_UCG-005 at P56, which may determine the microbiota-host interactions in MSD-related neuroinflammation. Collectively, these results indicate that MSD changes maternal gut microbiota and affects the establishment of neonatal gut microbiota, leading to neuroinflammation in MSD offspring. Therefore, understanding the role of gut microbiota during physiological development may provide potential interventions for cognitive dysfunction in MSD-impacted offspring.
Collapse
Affiliation(s)
- Zheng-Yu Yao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiao-Huan Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Li Zuo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qian Xiong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wen-Ting He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dong-Xu Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhi-Fang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China. E-mail:
| |
Collapse
|
11
|
Wan Y, Gao W, Zhou K, Liu X, Jiang W, Xue R, Wu W. Role of IGF-1 in neuroinflammation and cognition deficits induced by sleep deprivation. Neurosci Lett 2022; 776:136575. [PMID: 35276231 DOI: 10.1016/j.neulet.2022.136575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022]
Abstract
Sleep deprivation negatively influences cognition, however, the regulatory mechanisms to counteract this effect have not been identified. IGF-1 has been shown to be anti-inflammatory and neuroprotective in CNS injury models. In this study, we determined the impact of IGF-1 on brain injury and inflammation while modeling sleep deprivation. We found that IGF-1 was downregulated in human peripheral blood and in mice subjected to sleep deprivation for 5 days, with reduced activation of the downstream PI3K/AKT/GSK-3β pathway in mice brains. In addition, we found reduced levels of the anti-apoptosis enzyme Bcl-2 and increased levels of pro-apoptosis enzyme Caspase-9 expression, together with increased pro-inflammatory factors. The administration of IGF-1 after sleep deprivation induced activation of the PI3K/AKT/GSK-3β pathway, reversed changes in Bcl-2, Caspase-9, and pro-inflammatory factors, and alleviated cognitive impairment. Notably, IGF-1 also induced activation of the PI3K/AKT/GSK-3β pathway, and displayed anti-apoptosis and anti-inflammatory properties under normal sleep conditions,while IGF-1 did not improve the cognition under normal sleep conditions. These results suggest that the IGF-1/PI3K/AKT/GSK-3β pathway is involved in the regulation of cognitive function after sleep deprivation through modulation of apoptosis and inflammatory response. IGF-1 could be a viable therapeutic target, though further investigation is required to better understand its role in sleep deprivation.
Collapse
Affiliation(s)
- Yahui Wan
- Departments of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308, China.
| | - Wei Gao
- Departments of Neurology, Beijing Pinggu District Hospital, Beijing 101200, China
| | - Kaili Zhou
- Departments of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308, China
| | - Xuan Liu
- Departments of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308, China
| | - Wei Jiang
- Departments of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rong Xue
- Departments of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Wei Wu
- Departments of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
12
|
Ashourpour F, Jafari A, Babaei P. Chronic administration of Tat-GluR23Y ameliorates cognitive dysfunction targeting CREB signaling in rats with amyloid beta neurotoxicity. Metab Brain Dis 2021; 36:701-709. [PMID: 33420884 DOI: 10.1007/s11011-020-00662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/25/2020] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is behaviorally characterized by memory impairments, and pathologically by amyloid β1-42 (Aβ1-42) plaques and tangles. Aβ binds to excitatory synapses and disrupts their transmission due to dysregulation of the glutamate receptors. Here we hypothesized that chronic inhibition of the endocytosis of AMPA receptors together with GluN2B subunit of NMDA receptors might improve cognition deficit induced by Aβ(1-42) neurotoxicity. Forty male Wistar rats were used in this study and divided into 5 groups: Saline + Saline, Aβ+Saline, Aβ+Ifen (Ifenprodil, 3 nmol /2 weeks), Aβ+GluR23Y (Tat-GluR23Y 3 μmol/kg/2 weeks) and Aβ+Ifen+GluR23Y (same doses and durations). Aβ(1-42) neurotoxicity was induced by intracerebroventricular (ICV) injection of Aβ1-42 (2 μg/μl/side), and then animals received the related treatments for 14 days. Cognitive performance of rats and hippocampal level of cAMP-response element-binding (CREB) were evaluated using Morris Water Maze (MWM), and western blotting respectively. Obtained data from the acquisition trials were analyzed by two way Anova and Student T test. Also one way Analysis of variance (ANOVA) with post hoc Tuckey were used to clarify between groups differences in probe test. The Group receiving Aβ, showed significant cognition deficit (long latency to platform and short total time spent in target quadrant (TTS), parallel with lower level of hippocampal CREB, versus vehicle group. While, Aβ+ GluR23Y exhibited the shortest latency to platform and the longest TTS during the probe test, parallel with the higher hippocampal level of CREB compared with other groups. The present study provides evidence that chronic administration of Tat-GluR23Y; an inhibitor of GluA2-AMPARs endocytosis, successfully restores spatial memory impaired by amyloid beta neurotoxicity targeting CREB signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Ashourpour
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, 8th Km of Rasht -Tehran road, Guilan University Complex, Rasht, Guilan, 41996-13769, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, 8th Km of Rasht -Tehran road, Guilan University Complex, Rasht, Guilan, 41996-13769, Iran.
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
13
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
14
|
Ashourpour F, Jafari A, Babaei P. Co-treatment of AMPA endocytosis inhibitor and GluN2B antagonist facilitate consolidation and retrieval of memory impaired by β amyloid peptide. Int J Neurosci 2020; 132:714-723. [PMID: 33115292 DOI: 10.1080/00207454.2020.1837800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Glutamate neurotransmission stands as an important issue to minimize memory impairment. We investigated the effects of an inhibitor of α-amino-3-hydroxy-5-methyl-4-isozazole propionic acid receptors (AMPA) endocytosis and GluN2B subunit of N-methyl-d-aspartate receptors (NMDA), either isolated or combined, on memory impairments induced by Amyloid beta1-42 (Aβ). METHODS Eighty male Wistar rats were used for two experiments of consolidation and retrieval of memory. Memory impairment was induced by intracerebroventricular (ICV) injection of Aβ1-42 (2 μg/μl), and evaluated using Morris Water Maze (MWM). Each experiment consisted of 5 groups: Saline + Saline, Aβ + Saline, Aβ + Ifenprodil (Ifen, 3 nmol/ICV), Aβ +Tat-GluR23Y (3 µmol/kg/IP), and Aβ1 +Ifen + Tat-GluR23Y. Then, hippocampal cAMP-response element-binding protein (CREB) was measured by western blotting. Data were analyzed by Analysis of variance (ANOVA) repeated measure, and one-way Anova followed by Tukey's post hoc test. RESULTS During retrieval, Aβ+ Tat-GluR23Y showed significant improvement in total time spent (TTS) in the target quadrant (p = 0.009), escape latency to a platform (p = 0.008) and hippocampal level of CREB (p = 0.006) compared with Aβ + saline. Also, coadministration of Tat-GluR23Yand Ifen similar to Tat-GluR23Y alone caused significant improvement in TTS (p = 0.014) and latency to platform (p = 0.013). During consolidation, shorter escape latency (p = 0.001), longer TTS (p = 0.002) and higher level of hippocampal CREB were observed in the Aβ + Tat-GluR23Y (p = 0.001) and Aβ+ Tat-GluR23Y + Ifen (p = 0.017), respectively. CONCLUSION The present study provides pieces of evidence that inhibition of AMPARs endocytosis using Tat-GluR23Y facilitates memory consolidation and retrieval in Aβ induced memory impairment via the CREB signaling pathway.[Formula: see text].
Collapse
Affiliation(s)
- Fatemeh Ashourpour
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
16
|
Pires GN, Benedetto L, Cortese R, Gozal D, Gulia KK, Kumar VM, Tufik S, Andersen ML. Effects of sleep modulation during pregnancy in the mother and offspring: Evidences from preclinical research. J Sleep Res 2020; 30:e13135. [PMID: 32618040 DOI: 10.1111/jsr.13135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Disturbed sleep during gestation may lead to adverse outcomes for both mother and child. Animal research plays an important role in providing insights into this research field by enabling ethical and methodological requirements that are not possible in humans. Here, we present an overview and discuss the main research findings related to the effects of prenatal sleep deprivation in animal models. Using systematic review approaches, we retrieved 42 articles dealing with some type of sleep alteration. The most frequent research topics in this context were maternal sleep deprivation, maternal behaviour, offspring behaviour, development of sleep-wake cycles in the offspring, hippocampal neurodevelopment, pregnancy viability, renal physiology, hypertension and metabolism. This overview indicates that the number of basic studies in this field is growing, and provides biological plausibility to suggest that sleep disturbances might be detrimental to both mother and offspring by promoting increased risk at the behavioural, hormonal, electrophysiological, metabolic and epigenetic levels. More studies on the effects of maternal sleep deprivation are needed, in light of their major translational perspective.
Collapse
Affiliation(s)
- Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rene Cortese
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Kamalesh K Gulia
- Division of Sleep Research, Biomedical Technology Wing - Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Du Y, Fu M, Huang Z, Tian X, Li J, Pang Y, Song W, Tian Wang Y, Dong Z. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer's disease. Aging Cell 2020; 19:e13113. [PMID: 32061032 PMCID: PMC7059138 DOI: 10.1111/acel.13113] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/25/2019] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.
Collapse
Affiliation(s)
- Yehong Du
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Min Fu
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Zhilin Huang
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Xin Tian
- Department of Neurology Chongqing Key Laboratory of Neurology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Junjie Li
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Yayan Pang
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Weihong Song
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
- Department of Psychiatry Townsend Family Laboratories University of British Columbia Vancouver BC Canada
| | - Yu Tian Wang
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
- Brain Research Centre University of British Columbia Vancouver BCCanada
| | - Zhifang Dong
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
18
|
Wang C, Wei Y, Yuan Y, Yu Y, Xie K, Dong B, Shi Y, Wang G. The role of PI3K-mediated AMPA receptor changes in post-conditioning of propofol in brain protection. BMC Neurosci 2019; 20:51. [PMID: 31570094 PMCID: PMC6771103 DOI: 10.1186/s12868-019-0532-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We aimed to study the role of amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) glutamate receptor 2 (GluR2) subunit trafficking, and activity changes in short-term neuroprotection provided by propofol post-conditioning. We also aimed to determine the role of phosphoinositide-3-kinase (PI3K) in the regulation of these processes. METHODS Rats underwent 1 h of focal cerebral ischemia followed by 23 h of reperfusion were randomly divided into 6 groups (n = 36 per group): sham- operation (S), ischemia-reperfusion (IR), propofol (P group, propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion), and LY294002 (PI3K non-selective antagonist) + sham (L + S, LY294002 of 1.5 mg/kg was infused 30 min before sham operation), LY294002+ ischemia-reperfusion (L + IR, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion), LY294002 + IR + propofol (L + P, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion and propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion). RESULTS Compared with group IR, rats in group P had significant lower neurologic defect scores and infarct volume. Additionally, consistent with enhanced expression of PI3K-AMPAR GluR2 subunit complex substances in ipsilateral hippocampus, GluR2 subunits showed increased levels in both the plasma and postsynaptic membranes of neurons, while pGluR2 expression was reduced in group P. Furthermore, LY294002, the PI3K non-selective antagonist, blocked those effects. CONCLUSION These observations demonstrated that propofol post-conditioning revealed acute neuroprotective role against transient MCAO in rats. The short-term neuroprotective effect was contributed by enhanced GluR2 subunits trafficking to membrane and postsynaptic membranes of neurons, as well as down-regulated the expression of pGluR2 in damaged hippocampus. Finally, the above-mentioned protective mechanism might be contributed by increased combination of PI3K to AMPAR GluR2 subunit, thus maintained the expression and activation of AMPAR GluR2 in the ipsilateral hippocampus.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Ying Wei
- Department of Anesthesiology, Tianjin People’s Hospital, Tianjin Union Medical Center, Tianjin, 300191 China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| |
Collapse
|
19
|
Wang YF, Gao YJ. 2019 Academic Annual Meeting and the Frontier Seminar on "Glial Cell Function and Disease" (Nantong, China). ASN Neuro 2019; 11:1759091419863576. [PMID: 31342775 PMCID: PMC6659189 DOI: 10.1177/1759091419863576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The contribution of glial activities to the functions, diseases, and repair of
the central nervous system has received increasing attention in neuroscience
studies. To promote the research of glial cells and increase cooperation with
peers, the 2019 Academic Annual Meeting and the Frontier Seminar on “Glial Cell
Function and Disease” was held in Nantong City, Jiangsu Province, China from May
24 to 26. The meeting was organized by Drs. Yong-Jing Gao and Jia-Wei Zhou of
the Chinese Society of Neuroscience Glia Branch. The conference focused on the
physiological and pathological functions of astrocytes, microglia, and
oligodendrocytes with 25 speakers in two plenary speeches and five sections of
more than 180 participants engaged in glial cell research. In the two plenary
lectures, Yutian Wang from the University of British Columbia and Xia Zhang from
the University of Ottawa presented “Development of NMDAR (N-methyl-D-aspartic
acid receptor)-positive allosteric modulators as novel therapeutics for brain
disorders” and “Mechanisms underlying cannabinoid regulation of brain function
and disease,” respectively. The five sections included microglia and disease,
astrocytes and disease, glioma treatment and glial imaging, oligodendrocytes and
disease, and glial–neuronal interactions and disease. This meeting allowed
extensive and in-depth academic exchanges on the latest research and
experimental techniques, represented the highest achievements of Chinese
scholars on glial cells, and promoted the cooperation between peers in the
fields of glia studies.
Collapse
Affiliation(s)
- Yu-Feng Wang
- 1 Department of Physiology, Harbin Medical University, China
| | - Yong-Jing Gao
- 2 Institute of Pain Medicine, Institute of Special Environmental Medicine, Nantong University, China
| |
Collapse
|
20
|
Monk C, Lugo-Candelas C, Trumpff C. Prenatal Developmental Origins of Future Psychopathology: Mechanisms and Pathways. Annu Rev Clin Psychol 2019; 15:317-344. [PMID: 30795695 PMCID: PMC7027196 DOI: 10.1146/annurev-clinpsy-050718-095539] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The developmental origins of health and disease hypothesis applied to neurodevelopmental outcomes asserts that the fetal origins of future development are relevant to mental health. There is a third pathway for the familial inheritance of risk for psychiatric illness beyond shared genes and the quality of parental care: the impact of pregnant women's distress-defined broadly to include perceived stress, life events, depression, and anxiety-on fetal and infant brain-behavior development. We discuss epidemiological and observational clinical data demonstrating that maternal distress is associated with children's increased risk for psychopathology: For example, high maternal anxiety is associated with a twofold increase in the risk of probable mental disorder in children. We review several biological systems hypothesized to be mechanisms by which maternal distress affects fetal and child brain and behavior development, as well as the clinical implications of studies of the developmental origins of health and disease that focus on maternal distress. Development and parenting begin before birth.
Collapse
Affiliation(s)
- Catherine Monk
- Department of Psychiatry, Columbia University, New York, NY 10032, USA;
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
- New York State Psychiatric Institute, New York, NY 10032, USA; ,
| | - Claudia Lugo-Candelas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA;
- New York State Psychiatric Institute, New York, NY 10032, USA; ,
| | - Caroline Trumpff
- Department of Psychiatry, Columbia University, New York, NY 10032, USA;
- New York State Psychiatric Institute, New York, NY 10032, USA; ,
| |
Collapse
|