1
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Serefko A, Wróbel J, Szopa A, Dobrowolski P, Kluz T, Wdowiak A, Bojar I, Poleszak E, Romejko-Wolniewicz E, Derlatka P, Grabowska-Derlatka L, Kacperczyk-Bartnik J, Gieleta AW, Bartnik P, Jakimiuk A, Misiek M, Wróbel A. The Orexin OX 2 Receptor-Dependent Pathway Is Implicated in the Development of Overactive Bladder and Depression in Rats Exposed to Corticosterone. Neurourol Urodyn 2025; 44:229-244. [PMID: 39402852 DOI: 10.1002/nau.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 12/24/2024]
Abstract
AIM In the present study, we wanted to check whether TCS OX2 29 (TCS), a potent selective antagonist of OX2 receptors, would have positive effects in an animal model of detrusor overactivity co-existed with the depression-like state in Wistar male rats. METHODS The forced swim test with the measurement of spontaneous locomotor activity, conscious cystometry, determination of c-Fos expression in central micturition areas, and a set of biochemical analyses (with the use of urine, hippocampus, bladder urothelium, and detrusor muscle of tested animals) were carried out. RESULTS The outcomes showed that a 7-day administration of TCS (3 mg/kg/day, subcutaneously) normalizes the cystometric parameters corresponding to overactivity of the detrusor and reverses the pro-depressive response. Furthermore, the antagonism of OX2 receptors restored the abnormal levels of overactive bladder markers (i.e., ATP, CGRP, OCT3, TRPV1, ROCK1, and VAChT), diminished neuronal overactivity in central micturition areas (i.e., pontine micturition center, ventrolateral periaqueductal gray, and medial preoptic area) as well as restored the altered hippocampal levels of CRF, cytokines (IL-1β, IL-6, IL-10, and TNF-α), and growth factors (BDNF and NGF) that reflected biochemical disturbances detected in depressed people. CONCLUSIONS It seems that our findings open new perspectives regarding the implication of the orexin system in the functioning of the urinary bladder and in the pathophysiology of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Romejko-Wolniewicz
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Derlatka
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Paweł Bartnik
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, Warsaw, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Yaeger JDW, Achua JK, Booth CD, Khalid D, John MM, Ledesma LJ, Greschke TL, Potter AM, Howe CB, Krupp KT, Smith JP, Ronan PJ, Summers CH. Learned phenotypes emerge during social stress modifying hippocampal orexin receptor gene expression. Sci Rep 2024; 14:31691. [PMID: 39738291 DOI: 10.1038/s41598-024-81590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved. The hippocampus, studied for its role in learning, is divided into regions that designate the passage of neuronal signaling during memory formation, including dentate gyrus (DG), CA3, CA2, and CA1. Inputs into these hippocampal subregions, like those from hypothalamic orexinergic neurons, may modify learning outcomes. We have previously shown the orexin system to balance stress states, where receptor subtypes prompt opposing actions on behavior. Here, we explore the connection between hippocampal orexin receptors and learning during stress. In a social stress/learning paradigm separating mice into stress resilient and vulnerable populations, hippocampal Orx1R and Orx2R transcription is regulated in a phenotype-dependent fashion. We further identified Orx1R as highly expressed in the hilus of DG, while Orx2R is abundant in CA2. Finally, we designed an experiment where mice were provided prior exposure to a stressful environment, which ultimately modified behavior, as well as transcription of hippocampal orexin receptors.
Collapse
Affiliation(s)
- Jazmine D W Yaeger
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, 2301 E. 60th St. N., Sioux Falls, SD, 57104, USA
| | - Justin K Achua
- Division of Urology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Clarissa D Booth
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th St. N., Sioux Falls, SD, 57104, USA
| | - Delan Khalid
- School of Medicine, BMP, University of Pittsburgh, 3500 Fifth Ave., Pittsburg, PA, 12213, USA
| | - Megan M John
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Leighton J Ledesma
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trent L Greschke
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
| | - Ashley M Potter
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Chase B Howe
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kevin T Krupp
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
- Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA
- Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO, 80220, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
4
|
Luo PX, Serna Godoy A, Zakharenkov HC, Vang N, Wright EC, Balantac TA, Archdeacon SC, Black AM, Lake AA, Ramirez AV, Lozier LE, Perez MD, Bhangal I, Desta NM, Trainor BC. Hypocretin in the nucleus accumbens shell modulates social approach in female but not male California mice. Neuropsychopharmacology 2024; 49:2000-2010. [PMID: 39117901 PMCID: PMC11480414 DOI: 10.1038/s41386-024-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice and Mus musculus NAc showed that Hcrtr2 was more abundant than Hcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, USA
| | | | | | - Nou Vang
- Department of Psychology, University of California, Davis, CA, USA
| | - Emily C Wright
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | | | - Alexis M Black
- Department of Psychology, University of California, Davis, CA, USA
| | - Alyssa A Lake
- Department of Psychology, University of California, Davis, CA, USA
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA, USA
| | - Lauren E Lozier
- Department of Psychology, University of California, Davis, CA, USA
| | - Melvin D Perez
- Department of Psychology, University of California, Davis, CA, USA
| | - Irvin Bhangal
- Department of Psychology, University of California, Davis, CA, USA
| | - Nile M Desta
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Li J, Wang S, He Y, Song Y. Orexin improves chronic restraint stress induced depressive-like behavior via modulating the lateral septum in mice. Biochem Biophys Res Commun 2024; 735:150679. [PMID: 39265365 DOI: 10.1016/j.bbrc.2024.150679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The orexin system participates in the regulation of depression; however, its effects show significant heterogeneity, indicating the involvement of complex downstream neural circuit mechanisms. The lateral septum (LS), located downstream of the orexin system, contributes to depression. However, the effects and mechanisms underlying the orexin-mediated modulation of the LS in patients with depression remain unclear. Herein, we applied fiber photometry, chemogenetics, neuropharmacology, and in vitro electrophysiology to show that LS orexinergic afferents are sensitive to acute restraint and that chronic restraint stress (CRS) inhibits LS-projecting orexin neurons. Chemogenetic activation of LS orexinergic afferents or injection of orexin-A into the LS improved CRS-induced depression-like behavior. In vitro perfusion of orexin-A increased the action potential of somatostatin neurons in the LS. Overall, this study provides evidence that orexin improves depressive-like behavior by modulating the LS, and that this effect is probably mediated by the upregulation of LS somatostatin neurons.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Yuting He
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Yunyun Song
- Department of Medical Psychology, Airforce Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Oliveira GVM, Hernandes PM, Santos FHD, Soares VPMN, Falconi-Sobrinho LL, Coimbra NC, Wotjak CT, Almada RC. Orexin mechanisms in the prelimbic cortex modulate the expression of contextual conditioned fear. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06701-x. [PMID: 39387863 DOI: 10.1007/s00213-024-06701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
RATIONALE Despite the existing anatomical and physiological evidence pointing to the involvement of orexinergic projections from the lateral hypothalamus (LH) in regulating fear-related responses, little is known regarding the contribution of the orexin system in the prelimbic cortex (PL) on contextual fear. OBJECTIVES We investigated the role of orexin-A (OrxA) and orexin type 1 receptors (Orx1R) in the PL during the expression of contextual conditioned fear in mice. METHODS Neural tract tracing of the LH-PL pathway and Orx1R immunoreactivity in the PL of C57BL/6 male mice were performed. In a pharmacological approach, the animals were treated with either the Orx1R selective antagonist SB 334,867 (3, 30, and 300 nM/0.1 µL) or OrxA (28, 70, and 140 pmol/0.1 µL) in the PL before the test session of contextual fear conditioning. RESULTS Neural tract tracing deposits in the LH showed some perikarya, mainly axons and terminal buttons in the PL, suggesting LH-PL reciprocate pathways. Furthermore, we showed a profuse network comprised of Orx1R-labeled thin varicose fibers widely distributed in the same field of LH-PL pathways projection. The selective blockade of Orx1R with SB 334,867 at 30 and 300 nM in the PL caused a decrease in freezing response, whereas the treatment with OrxA at 140 pmol promoted an increase in freezing response. CONCLUSION In summary, these data confirmed an anatomical link between LH and PL, established the presence of Orx1R in the PL, and a modulatory role of the orexin system in such structure, possibly mainly via Orx1R, during contextual fear conditioning.
Collapse
Affiliation(s)
- Gabriela V M Oliveira
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Paloma M Hernandes
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Fábio H Dos Santos
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Victor P M N Soares
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael Carvalho Almada
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil.
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
van Herk L, Schilder FP, de Weijer AD, Bruinsma B, Geuze E. Heightened SAM- and HPA-axis activity during acute stress impairs decision-making: A systematic review on underlying neuropharmacological mechanisms. Neurobiol Stress 2024; 31:100659. [PMID: 39070283 PMCID: PMC11277380 DOI: 10.1016/j.ynstr.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Individuals might be exposed to intense acute stress while having to make decisions with far-reaching consequences. Acute stress impairs processes required for decision-making by activating different biological stress cascades that in turn affect the brain. By knowing which stress system, brain areas, and receptors are responsible for compromised decision-making processes, we can effectively find potential pharmaceutics that can prevent the deteriorating effects of acute stress. We used a systematic review procedure and found 44 articles providing information on this topic. Decision-making processes could be subdivided into 4 domains (cognitive, motivational, affective, and predictability) and could be referenced to specific brain areas, while mostly being impaired by molecules associated with the sympathetic-adrenal-medullar and hypothalamic-pituitary-adrenal axes. Potential drugs to alleviate these effects included α1 and β adrenoceptor antagonists, α2 adrenoceptor agonists, and corticotropin releasing factor receptor1/2 antagonists, while consistent stress-like effects were found with yohimbine, an α2 adrenoceptor antagonist. We suggest possible avenues for future research.
Collapse
Affiliation(s)
- Lukas van Herk
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Frank P.M. Schilder
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Antoin D. de Weijer
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Bastiaan Bruinsma
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Elbert Geuze
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| |
Collapse
|
8
|
Krupp KT, Yaeger JDW, Ledesma LJ, Withanage MHH, Gale JJ, Howe CB, Allen TJ, Sathyanesan M, Newton SS, Summers CH. Single administration of a psychedelic [(R)-DOI] influences coping strategies to an escapable social stress. Neuropharmacology 2024; 252:109949. [PMID: 38636726 PMCID: PMC11073902 DOI: 10.1016/j.neuropharm.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.
Collapse
Affiliation(s)
- Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Jazmine D W Yaeger
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Leighton J Ledesma
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | | | - J J Gale
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Chase B Howe
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trevor J Allen
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Samuel S Newton
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
9
|
Yu J, Zhang Y, Cai L, Sun Q, Li W, Zhou J, Liang J, Wang Z. The Changed Nocturnal Sleep Structure and Higher Anxiety, Depression, and Fatigue in Patients with Narcolepsy Type 1. Nat Sci Sleep 2024; 16:725-735. [PMID: 38873239 PMCID: PMC11170032 DOI: 10.2147/nss.s452665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/11/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose This study aimed to evaluate nocturnal sleep structure and anxiety, depression, and fatigue in patients with narcolepsy type 1 (NT1). Methods Thirty NT1 patients and thirty-five healthy controls were enrolled and evaluated using the Epworth sleepiness scale (ESS), Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Fatigue Severity Scale (FSS), polysomnography, multiple sleep latency test, and brain function state monitoring. Statistical analyses were performed using SPSS Statistics for Windows, version 23.0. Benjamini-Hochberg correction was performed to control the false discovery rate. Results Apart from typical clinical manifestations, patients with NT1 are prone to comorbidities such as nocturnal sleep disorders, anxiety, depression, and fatigue. Compared with the control group, patients with NT1 exhibited abnormal sleep structure, including increased total sleep time (P adj=0.007), decreased sleep efficiency (P adj=0.002), shortening of sleep onset latency (P adj<0.001), elevated wake after sleep onset (P adj=0.002), increased N1% (P adj=0.006), and reduced N2%, N3%, and REM% (P adj=0.007, P adj<0.001, P adj=0.013). Thirty-seven percent of patients had moderate to severe obstructive sleep apnea-hypopnea syndrome. And sixty percent of patients were complicated with REM sleep without atonia. Patients with NT1 displayed increased anxiety propensity (P adj<0.001), and increased brain fatigue (P adj=0.020) in brain function state monitoring. FSS scores were positively correlated with brain fatigue (P adj<0.001) and mean sleep latency was inversely correlated with FSS scores and brain fatigue (P adj=0.013, P adj=0.029). Additionally, ESS scores and brain fatigue decreased after 3 months of therapy (P=0.012, P=0.030). Conclusion NT1 patients had abnormal nocturnal sleep structures, who showed increased anxiety, depression, and fatigue. Excessive daytime sleepiness and fatigue improved after 3 months of treatment with methylphenidate hydrochloride prolonged-release tablets in combination with venlafaxine.
Collapse
Affiliation(s)
- Jieyang Yu
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yanan Zhang
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lijia Cai
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Qingqing Sun
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Wanru Li
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Junfang Zhou
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Zan Wang
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
10
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
11
|
Lu J, Qin C, Wang C, Sun J, Mao H, Wei J, Shen X, Chen Y, Liu S, Qu X. Lateral hypothalamic orexin neurons mediate electroacupuncture-induced anxiolytic effects in a rat model of post-traumatic stress disorder. Brain Res Bull 2023; 201:110712. [PMID: 37481143 DOI: 10.1016/j.brainresbull.2023.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The lateral hypothalamus' orexinergic system has been associated with anxiety-related behaviors, and electroacupuncture (EA) modifies orexin neurons to control the anti-anxiety process. However, in a rat model of post-traumatic stress disorder (PTSD), the important role of LH orexin neurons (OXNs) in the anxiolytic effects induced by EA has not been explored. In this study, rats underwent modified single prolonged stress (MSPS) for seven days before developing EA. The rats were then subjected to elevated plus maze (EPM) and open field (OFT) tests, and western blot and c-Fos/orexin double labeling investigations were carried out to determine the functional activation of LH orexinergic neurons. Compared to MSPS model rats, it has been demonstrated that EA stimulation enhanced the amount of time spent in the central zone (TSCZ) in OFT and the amount of time spent in the open arm (TSOA) in EPM in MSPS model rats (P < 0.01). After behavioral testing, MSPS model rats had decreased activated c-Fos positive OXNs. Still, EA in SPS rats increased that number and elevated orexin type 1 receptors (OXR1) protein expression in the LH. Furthermore, after administering SB334867 (an OXR1 antagonist) to MSPS model rats, the effects of EA therapy on anxiety-like behaviors (ALBs) were significantly diminished. Additionally, when low-dose orexin-A (LORXA) was administered intracerebroventricularly together with EA stimulation in MSPS rats, the anxiolytic effects of the stimulation were substantially enhanced (P < 0.05). The results of this study reveal the mechanisms by which acupuncture may reduce PTSD and advance our understanding of the function of LH orexin signaling in EA's anxiolytic effects.
Collapse
Affiliation(s)
- Jiaqi Lu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Qin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Can Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Sun
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.
| | - Sheng Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoyi Qu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Uğurlu M. Orexin Receptor Antagonists as Adjunct Drugs for the Treatment of Depression: A Mini Meta-Analysis. Noro Psikiyatr Ars 2023; 61:77-84. [PMID: 38496221 PMCID: PMC10943935 DOI: 10.29399/npa.28383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/25/2023] [Indexed: 03/19/2024] Open
Abstract
Introduction There is growing interest in the efficacy of orexin receptor antagonists (ORA), one of the new psychopharmacological agents used in the treatment of insomnia, in other psychiatric disorders such as depression. Methods This meta-analysis was conducted in accordance with PRISMA requirements. Literature searches were conducted using PubMed, Scopus and EBSCO (Medline) databases. Search words were (depression OR mood disorder OR affective disorder) AND (orexin OR orx OR hypocretin OR orx1 OR orx2 OR orexin receptor antagonist OR almorexant OR suvorexant OR lemborexant OR daridorexant OR seltorexant OR vornorexant OR filorexant). No date restrictions were used. The random effects model was used for analyses with I2 values above 50% and fixed effects model was used for analyses with I2 values below 50%. Results In the acute phase, ORAs had no significant effect on core, sleep-adjusted and total symptoms of depression respectively; Standardized Mean Difference (SMD) for random effect -0.422, 95% CI [-0.90; 0.06], p=0.089, I2=62.4%; SMD for random effect -0.375, 95% CI [-1.24; 0.49], p=0.400; I2=66.6% and SMD for random effect -0.477, 95% CI [-0.97; 0.01], p=0.059; I2=83.1%). However, they had a significant effect on core and total symptoms of depression in the early period respectively; SMD for fixed effect=-0.228, 95% CI [-0.44; -0.01], p=0.036, I2=9.1%; and SMD for fixed effect=-0.186, 95% CI [-0.37; -0.001], p=0.048, I2=0.0%, respectively). Conclusion The results of this meta-analysis suggest that ORAs may provide direct antidepressant efficacy when added to existing antidepressant treatment and may also have indirect antidepressant effects through improvement in sleep symptoms. Considering the physiological effects of orexin on behaviors, ORAs may be promising new treatment modalities in the treatment of many psychiatric disorders other than insomnia. However, these results are preliminary and further studies with different ORAs at different doses and with different samples are needed.
Collapse
Affiliation(s)
- Mustafa Uğurlu
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Psychiatry Department, Ankara, Turkey
| |
Collapse
|
13
|
Ziemichód W, Kurowska A, Grabowska K, Kurowska M, Biała G. Characteristics of Seltorexant-Innovative Agent Targeting Orexin System for the Treatment of Depression and Anxiety. Molecules 2023; 28:molecules28083575. [PMID: 37110810 PMCID: PMC10142100 DOI: 10.3390/molecules28083575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Twenty-five years have passed since the discovery of the orexin system, during which time we have learned more and more about it. A number of studies have been conducted showing the role of the orexin system in insomnia, as well as its potential use in the treatment of obesity and depression. In this review, we present the role of the orexin system in the development of depressive illness and show the characteristics of seltorexant, a potential drug for the treatment of depression. This review describes the structure and synthesis of the compound as well as its pharmacodynamics and pharmacokinetics. Pre-clinical and clinical studies are also described, including side effects. There is evidence that the use of seltorexant is considered safe, with no clear or major clinically significant side effects, which makes it a promising candidate for the treatment of depression and anxiety disorders.
Collapse
Affiliation(s)
- Wojciech Ziemichód
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Antonina Kurowska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Karolina Grabowska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Michalina Kurowska
- Institute of Applied Psychology, Jagiellonian University, 31-007 Warsaw, Poland
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
14
|
D’Alterio A, Menchetti M, Zenesini C, Rossetti A, Vignatelli L, Franceschini C, Varallo G, Pizza F, Plazzi G, Ingravallo F. Resilience and its correlates in patients with narcolepsy type 1. J Clin Sleep Med 2023; 19:719-726. [PMID: 36689313 PMCID: PMC10071382 DOI: 10.5664/jcsm.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 01/24/2023]
Abstract
STUDY OBJECTIVES This study aimed to explore resilience and its possible association with sociodemographic and clinical features in patients with narcolepsy type 1 (NT1). METHODS This was a cross-sectional study involving patients with NT1 and age-/sex-matched controls (comparison group). Sociodemographic and clinical data were collected through semistructured interviews and validated questionnaires, including the Epworth Sleepiness Scale (ESS), State-Trait Anxiety Inventory (STAI)-State Anxiety, Beck Depression Inventory (BDI), 36-item Short Form Survey (SF-36), and the Resilience Scale (RS). Different statistical approaches were used to investigate the relationship between resilience and NT1 and associations with sociodemographic and clinical features. RESULTS The participants comprised 137 patients (mean age, 38.0 years; 52.6% female) and 149 controls (39.6 years; 55.7% female). Compared with controls, patients had a significantly lower (122.6 vs 135.5) mean RS score and a 2-fold risk of having low/mild-range resilience (adjusted odds ratio = 1.99, 95% confidence interval 1.13-3.52). Patients with high resilience had sociodemographic and narcolepsy characteristics similar to patients with low resilience, but they reported anxiety and depressive symptomatology less frequently (4.2% vs 55.8% and 58.3%, respectively), and their SF-36 scores were comparable to those of the comparison group. In patients, RS score was strongly associated with STAI-State Anxiety and BDI (rho = -0.57 and -0.56, respectively) and weakly with ESS (rho = -20) scores. CONCLUSIONS The results of this study suggest that resilience may play a key role in patients' adaptation to NT1. Furthermore, this study supports interventions aimed at increasing patients' resilience and provides a base for further studies, preferably longitudinal and including objective measures, directed toward understanding the relationship between resilience, depression, and quality of life in patients with narcolepsy. CITATION D'Alterio A, Menchetti M, Zenesini C, et al. Resilience and its correlates in patients with narcolepsy type 1. J Clin Sleep Med. 2023;19(4):719-726.
Collapse
Affiliation(s)
- Alessandra D’Alterio
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Andrea Rossetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | | | - Giorgia Varallo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ingravallo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Chen B, Xu J, Chen S, Mou T, Wang Y, Wang H, Zhang Z, Ren F, Wang Z, Jin K, Lu J. Dysregulation of striatal dopamine D2/D3 receptor-mediated by hypocretin induces depressive behaviors in rats. J Affect Disord 2023; 325:256-263. [PMID: 36638964 DOI: 10.1016/j.jad.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND The dysregulation of the dopamine system contributes to depressive-like behaviors in rats, and the neurological functions regulated by hypocretin are severely affected in depression. However, whether suvorexant plays a role in alleviating depression by affecting the dopamine system is unclear. METHODS To preliminarily explore the mechanism of suvorexant (10 mg/kg) in the treatment of depression, the mRNA and protein expression of TH, Drd2, Drd3, GluN2A, DAT, and GluN2B in the striatum of rats was quantified by qPCR and western blotting. The plasma hypocretin-1 and dopamine levels and the striatal dopamine levels were determined by ELISA. RESULTS i) Compared to those of the control group, chronic unpredictable mild stress (CUMS) rats showed depressive-like behaviors, which were subsequently reversed by treatment with suvorexant. ii) The mRNA and protein expressions of TH, Drd2, Drd3, GluN2A, and GluN2B in the striatum of CUMS were significantly increased compared with those in the controls, but decreased after suvorexant treatment. iii) Compared with those in the control group, the plasma and striatal dopamine levels of CUMS decreased while plasma hypocretin-1 levels increased, which was reversed after suvorexant treatment. LIMITATIONS i) The suvorexant is a dual hypocretin receptor antagonist; however, the responsible receptor is unclear. ii) We only focused on related factors in the striatum but did not explore other brain regions, nor did we directly explore the relationship among these factors. CONCLUSION Depressive-like behaviors induced by CUMS can be reversed by suvorexant, and the therapeutic effects of suvorexant may be mediated by affecting the dopamine system.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jiangang Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999007, Hong Kong
| | - Simiao Chen
- School of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haojun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihan Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Feifan Ren
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
16
|
Carpenter RE, Sabirzhanov B, Summers TR, Clark TG, Keifer J, Summers CH. Anxiolytic reversal of classically conditioned / chronic stress-induced gene expression and learning in the Stress Alternatives Model. Behav Brain Res 2023; 440:114258. [PMID: 36521572 PMCID: PMC9872777 DOI: 10.1016/j.bbr.2022.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.
Collapse
Affiliation(s)
- Russ E Carpenter
- University Writing Program, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Boris Sabirzhanov
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Timothy G Clark
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
17
|
Chronic orexin-1 receptor blockage attenuates depressive behaviors and provokes PSD-95 expression in a rat model of depression. Behav Brain Res 2023; 437:114123. [PMID: 36154849 DOI: 10.1016/j.bbr.2022.114123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022]
Abstract
Depression is a devastating mood disorder affecting more than 300 million people worldwide. Almost 30 % of patients still suffer from treatment resistant depression. Although many reports support the involvement of orexin in the pathophysiology of depression, the precise role of orexin is still unclear. In this study, we evaluated the role of the orexin 1 receptor (Orx1R) on depressive behaviors and the alterations in postsynaptic density-95 (PSD-95) protein in the chronic mild stress (CMS) model of depression. Fifty-four male Wistar rats were randomly allocated to 6 groups; Control, CMS, acute SB-334867 (SB), CMS+SB, chronic SB (CSB) and CMS+CSB. Rats were exposed to one or two unpredictable stressors each day for three weeks for the induction of CMS. Intracerebroventricular (icv) injection of SB-334867, a selective Orx1R antagonist, was performed either 30 min before behavioral tests (acute) or once daily for 14 days (chronic). Behavioral despair was assessed by immobility time in the forced swim test (FST), sucrose consumption in sucrose preference test (SPT), and the number of crosses in the open field test (OFT) on days 1, 11, and 22 of the experiment. Finally, rats were decapitated, and brain tissue of the hippocampus (HPC) and prefrontal cortex (PFC) were collected, and the relative expression of PSD-95 was evaluated by western blotting. The CMS model rats showed a significant increase in FST immobility time (P = 0.001) and a decrease in locomotion (P = 0.04) and sucrose preference (P = 0.039). Chronic application of SB decreased immobility time to the control values (P = 0.001) and diminished locomotion (P = 0.047) and sucrose preference (P = 0.042) in comparison to the CMS group. Acute SB reversed just the immobility time (P ≤ 0.006). Chronic SB treatment increased the relative PSD-95 expression in PFC (P = 0.001). Hence, chronic antagonism of Orx1R alleviates depressive behaviors induced by CMS and improves PSD-95 expression in PFC.
Collapse
|
18
|
Ecological validity of social defeat stressors in mouse models of vulnerability and resilience. Neurosci Biobehav Rev 2023; 145:105032. [PMID: 36608919 DOI: 10.1016/j.neubiorev.2023.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Laboratory mouse models offer opportunities to bridge the gap between basic neuroscience and applied stress research. Here we consider the ecological validity of social defeat stressors in mouse models of emotional vulnerability and resilience. Reports identified in PubMed from 1980 to 2020 are reviewed for the ecological validity of social defeat stressors, sex of subjects, and whether results are discussed in terms of vulnerability alone, resilience alone, or both vulnerability and resilience. Most of the 318 reviewed reports (95%) focus on males, and many reports (71%) discuss vulnerability and resilience. Limited ecological validity is associated with increased vulnerability and decreased resilience. Elements of limited ecological validity include frequent and repeated exposure to defeat stressors without opportunities to avoid or escape from unfamiliar conspecifics that are pre-screened and selected for aggressive behavior. These elements ensure defeat and may be required to induce vulnerability, but they are not representative of naturalistic conditions. Research aimed at establishing causality is needed to determine whether ecologically valid stressors build resilience in both sexes of mice.
Collapse
|
19
|
Orexin Receptor Antagonists in the Treatment of Depression: A Leading Article Summarising Pre-clinical and Clinical Studies. CNS Drugs 2023; 37:1-12. [PMID: 36436175 DOI: 10.1007/s40263-022-00974-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/28/2022]
Abstract
The orexin (hypocretin) system comprises two neuropeptides (orexin-A and orexin-B) and two G-protein coupled receptors (the orexin type 1 and the orexin type 2 receptor). The system regulates several biological functions including appetite, the sleep-wake cycle, the stress response, and motivation and reward processing. Dysfunction of the orexin system has been implicated in the pathophysiology of depression in human and animal studies, although the exact nature of this dysfunction remains unclear. Orexin receptor antagonists (ORAs) are a class of compounds developed for the treatment of insomnia and have demonstrated efficacy in this area. Three dual orexin receptor antagonists (DORAs) have received licences for treatment of primary insomnia and some ORAs have since been investigated as potential treatments for major depressive disorder (MDD). In this leading article, we summarise the existing literature on use of ORAs in depression, in pre-clinical and clinical studies. In rodent models of depression, investigated ORAs have included the DORA almorexant and TCS1102, the selective orexin 1 receptor antagonists SB334867 and SB674042 and the selective orexin 2 receptor antagonists LSN2424100, MK-1064 and TCS-OX2-29. These pre-clinical studies suggest a possible antidepressant effect of systemic DORA treatment, however the evidence from selective ORAs is conflicting. To date, four published RCTs (one with the DORA filorexant and three with the selective orexin 2 receptor antagonist seltorexant), have compared an ORA with placebo in the treatment of MDD. Only one of these demonstrated a statistically significant difference relative to placebo.
Collapse
|
20
|
Justinussen JL, Egebjerg C, Kornum BR. How hypocretin agonists may improve the quality of wake in narcolepsy. Trends Mol Med 2023; 29:61-69. [PMID: 36400667 DOI: 10.1016/j.molmed.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Excessive daytime sleepiness (EDS) is a complex symptom characterized by a strong urge to sleep during daytime accompanied by problems such as attention deficits, anxiety, and lower cognitive performance. The efficacy of treatments for EDS is determined by their ability to decrease sleepiness, and less attention has been given to the effects these compounds have on the quality of the wake itself. Hypocretin (HCRT; orexin) signalling is implicated in narcolepsy, and hypocretin receptor 2 (HCRTR2) agonists are in clinical trials for treating EDS in narcolepsy. Here, we review preclinical research to determine how HCRTR2 agonists may affect attention and anxiety compared with other EDS treatment strategies. We conclude that such compounds may improve not only the quantity but also the quality of wake, and we hope that they will create opportunities for more nuanced treatment strategies in narcolepsy.
Collapse
Affiliation(s)
| | - Christine Egebjerg
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
21
|
Saadati N, Bananej M, Khakpai F, Zarrindast MR, Alibeik H. The effects of citalopram, SB-334867 and orexin-1, alone or in various combinations, on the anxiogenic-like effects of REM sleep deprivation in male mice. Behav Pharmacol 2022; 33:559-566. [PMID: 36165531 DOI: 10.1097/fbp.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep deprivation may induce anxiety. On the other hand, anxiety disorders elicit main changes in the quality of sleep. Moreover, orexin and citalopram play a role in the modulation of insomnia and mood diseases. Thus, we planned preclinical research to evaluate the effect of combinations of orexin agents and citalopram on anxiety behavior in rapid eye movement (REM) sleep-deprived mice. For drug intracerebroventricular (i.c.v.) infusion, the guide cannula was surgically implanted in the left lateral ventricle of mice. REM sleep deprivation was conducted via water tank apparatus for 24 h. The anxiety behavior of mice was evaluated using the elevated plus maze (EPM). Our results revealed that REM sleep deprivation reduced the percentage of open arm time (%OAT) and the percentage of the open arm entries (%OAE) but not closed arm entries (locomotor activity) in the EPM test, presenting an anxiogenic response ( P < 0.05). We found a sub-threshold dose of SB-334867, orexin-1 receptor antagonist, and orexin-1 which did not alter anxiety reaction in the REM sleep-deprived mice ( P > 0.05). Intraperitoneal (i.p.) injections of citalopram (5 and 10 mg/kg) increased both %OAT and %OAE ( P < 0.001) representing an anxiolytic effect, but not locomotor activity in the REM sleep-deprived mice. Interestingly, co-treatment of citalopram (1, 5 and 10 mg/kg; i.p.) and SB-334867 (0.1 µg/mouse; i.c.v.) potentiated the anxiolytic effect in the REM sleep-deprived mice. On the other hand, co-treatment of different dosages of citalopram along with a sub-threshold dose of orexin-1 did not alter %OAT, %OAE, and locomotor activity in the REM sleep-deprived mice. We found a synergistic anxiolytic effect of citalopram and SB-334867 in the REM sleep-deprived mice. These results suggested an interaction between citalopram and SB-334867 to prevent anxiogenic behavior in the REM sleep-deprived mice.
Collapse
Affiliation(s)
- Naghmeh Saadati
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| | - Maryam Bananej
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine
- Iranian National Center for Addiction Studies
- Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Alibeik
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| |
Collapse
|
22
|
Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel) 2022; 12:262. [PMID: 36004833 PMCID: PMC9405013 DOI: 10.3390/bs12080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In modern society, there has been a rising trend of depression and anxiety. This trend heavily impacts the population's mental health and thus contributes significantly to morbidity and, in the worst case, to suicides. Modern medicine, with many antidepressants and anxiolytics at hand, is still unable to achieve remission in many patients. The pathophysiology of depression and anxiety is still only marginally understood, which encouraged researchers to focus on neuropeptides, as they are a vast group of signaling molecules in the nervous system. Neuropeptides are involved in the regulation of many physiological functions. Some act as neuromodulators and are often co-released with neurotransmitters that allow for reciprocal communication between the brain and the body. Most studied in the past were the antidepressant and anxiolytic effects of oxytocin, vasopressin or neuropeptide Y and S, or Substance P. However, in recent years, more and more novel neuropeptides have been added to the list, with implications for the research and development of new targets, diagnostic elements, and even therapies to treat anxiety and depressive disorders. In this review, we take a close look at all currently studied neuropeptides, their related pathways, their roles in stress adaptation, and the etiology of anxiety and depression in humans and animal models. We will focus on the latest research and information regarding these associated neuropeptides and thus picture their potential uses in the future.
Collapse
Affiliation(s)
- Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Ivan Grgac
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| |
Collapse
|
23
|
Yaeger JDW, Krupp KT, Summers TR, Summers CH. Contextual generalization of social stress learning is modulated by orexin receptors in basolateral amygdala. Neuropharmacology 2022; 215:109168. [PMID: 35724928 PMCID: PMC9285878 DOI: 10.1016/j.neuropharm.2022.109168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 01/22/2023]
Abstract
Fear-associated memories and behavior are often expressed in contexts/environments distinctively different from those in which they are created. This generalization process contributes to psychological disorders, particularly PTSD. Stress-related neurocircuits in the basolateral amygdala (BLA) receive inputs from hypothalamic orexin (Orx) neurons, which mediate neuronal activity by targeting orexin 1 (Orx1R) and orexin 2 (Orx2R) receptors via opposing functions. In BLA, inhibition of Orx1R or activation of Orx2R ameliorate stress responsiveness and behavior. We discovered that most Orx1R+ cells also express CamKIIα, while a majority of Orx2R+ cells are colocalized with GAD67. Further, Orx1R gene Hcrtr1 expression was positively correlated, and Orx2R gene Hcrtr2 expression was negatively correlated, with freezing in a phenotype-dependent fashion (Escape vs Stay) in the Stress Alternatives Model (SAM). The SAM consists of 4-days of social interaction between test mice and novel larger aggressors. Exits positioned at opposite ends of the SAM oval arena provide opportunities to actively avoid aggression. By Day 2, mice commit to behavioral phenotypes: Escape or Stay. Pharmacologically manipulating Orx receptor activity in the BLA, before Day 3 of the SAM, was followed with standard tests of anxiety: Open Field (OF) and Elevated Plus Maze (EPM). In Stay mice, freezing in response to social conflict and locomotion during SAM interaction (not home cage locomotion) were generalized to OF, and blocked by intra-BLA Orx1R antagonism, but not Orx2R antagonism. Moreover, patterns of social avoidance for Escape and Stay mice were recapitulated in OF, with generalization mediated by Orx1R and Orx2R antagonism, plus Orx2R stimulation.
Collapse
Affiliation(s)
- Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
24
|
Vasiliu O. Investigational Drugs for the Treatment of Depression (Part 1): Monoaminergic, Orexinergic, GABA-Ergic, and Anti-Inflammatory Agents. Front Pharmacol 2022; 13:884143. [PMID: 35774601 PMCID: PMC9237478 DOI: 10.3389/fphar.2022.884143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022] Open
Abstract
Therapeutic management of depression has currently important limitations, and its low efficacy is reflected in high rates of non-response even after multiple trials of antidepressants. Almost two-thirds of the patients diagnosed with major depression who received a 4–6 weeks trial of antidepressant could not reach remission, and more than 30% of these patients are considered treatment-resistant. In bipolar depression, the situation is also discouraging if we analyze the high suicide rate, the risk for the treatment-emergent affective switch when antidepressants are added, the high rate of treatment resistance (up to 25%), and the severe functional impairments associated with these episodes. Therefore, new therapeutic agents are needed, as well as new pathogenetic models for depression. The vast majority of the currently approved antidepressants are based on the monoamine hypothesis, although new drugs exploiting different neurotransmitter pathways have been recently approved by FDA. Brexanolone, an allopregnanolone analog, is an example of such new antidepressants, and its approval for post-partum depression inspired the search for a new generation of neurosteroids and GABA-ergic modulators, with an easier way of administration and superior tolerability profile. Orexin receptors antagonists are also extensively studied for different psychiatric disorders, depression included, in phase II trials. Antiinflammatory drugs, both cyclo-oxygenase 2 inhibitors and biological therapy, are investigated in patients with depressive disorders based on the proven correlation between inflammation and mood disorders in preclinical and clinical studies. Also, a new generation of monoamine-based investigational drugs is explored, ranging from triple reuptake inhibitors to atypical antipsychotics, in patients with major depression. In conclusion, there is hope for new treatments in uni- and bipolar depression, as it became clear, after almost seven decades, that new pathogenetic pathways should be targeted to increase these patients’ response rate.
Collapse
|
25
|
Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022; 186:106-122. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter system neurons, autonomic neurons, the hypothalamic-pituitaryadrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalocortical- hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and the HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Undergraduate Program in Neuroscience, Boston University, Boston, MA, 02215 USA
| | - Hryhoriy Zhoba
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA
| |
Collapse
|
26
|
Abstract
The hypocretins (Hcrts), also known as orexins, are two neuropeptides produced exclusively in the lateral hypothalamus. They act on two specific receptors that are widely distributed across the brain and involved in a myriad of neurophysiological functions that include sleep, arousal, feeding, reward, fear, anxiety and cognition. Hcrt cell loss in humans leads to narcolepsy with cataplexy (narcolepsy type 1), a disorder characterized by intrusions of sleep into wakefulness, demonstrating that the Hcrt system is nonredundant and essential for sleep/wake stability. The causal link between Hcrts and arousal/wakefulness stabilisation has led to the development of a new class of drugs, Hcrt receptor antagonists to treat insomnia, based on the assumption that blocking orexin-induced arousal will facilitate sleep. This has been clinically validated: currently, two Hcrt receptor antagonists are approved to treat insomnia (suvorexant and lemborexant), with a New Drug Application recently submitted to the US Food and Drug Administration for a third drug (daridorexant). Other therapeutic applications under investigation include reduction of cravings in substance-use disorders and prevention of neurodegenerative disorders such as Alzheimer's disease, given the apparent bidirectional relationship between poor sleep and worsening of the disease. Circuit neuroscience findings suggest that the Hcrt system is a hub that integrates diverse inputs modulating arousal (e.g., circadian rhythms, metabolic status, positive and negative emotions) and conveys this information to multiple output regions. This neuronal architecture explains the wealth of physiological functions associated with Hcrts and highlights the potential of the Hcrt system as a therapeutic target for a number of disorders. We discuss present and future possible applications of drugs targeting the Hcrt system for the treatment of circuit-related neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
27
|
Yaeger JDW, Krupp KT, Jacobs BM, Onserio BO, Meyerink BL, Cain JT, Ronan PJ, Renner KJ, DiLeone RJ, Summers CH. Orexin 1 Receptor Antagonism in the Basolateral Amygdala Shifts the Balance From Pro- to Antistress Signaling and Behavior. Biol Psychiatry 2022; 91:841-852. [PMID: 35279280 PMCID: PMC9020795 DOI: 10.1016/j.biopsych.2021.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA). METHODS We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies. RESULTS In the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA. CONCLUSIONS Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA.
Collapse
Affiliation(s)
- Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| | - Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Benjamin M Jacobs
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Texas Christian University School of Medicine, Fort Worth, Texas
| | - Benard O Onserio
- Department of Biology, University of South Dakota, Vermillion, South Dakota
| | - Brandon L Meyerink
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota
| | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Ralph J DiLeone
- Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, South Dakota; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota.
| |
Collapse
|
28
|
Neurobiology of the Orexin System and Its Potential Role in the Regulation of Hedonic Tone. Brain Sci 2022; 12:brainsci12020150. [PMID: 35203914 PMCID: PMC8870430 DOI: 10.3390/brainsci12020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Orexin peptides comprise two neuropeptides, orexin A and orexin B, that bind two G-protein coupled receptors (GPCRs), orexin receptor 1 (OXR1) and orexin receptor 2 (OXR2). Although cell bodies that produce orexin peptides are localized in a small area comprising the lateral hypothalamus and adjacent regions, orexin-containing fibres project throughout the neuraxis. Although orexins were initially described as peptides that regulate feeding behaviour, research has shown that orexins are involved in diverse functions that range from the modulation of autonomic functions to higher cognitive functions, including reward-seeking, behaviour, attention, cognition, and mood. Furthermore, disruption in orexin signalling has been shown in mood disorders that are associated with low hedonic tone or anhedonia, including depression, anxiety, attention deficit hyperactivity disorder, and addiction. Notably, projections of orexin neurons overlap circuits involved in the modulation of hedonic tone. Evidence shows that orexins may potentiate hedonic behaviours by increasing the feeling of pleasure or reward to various signalling, whereas dysregulation of orexin signalling may underlie low hedonic tone or anhedonia. Further, orexin appears to play a key role in regulating behaviours in motivationally charged situations, such as food-seeking during hunger, or drug-seeking during withdrawal. Therefore, it would be expected that dysregulation of orexin expression or signalling is associated with changes in hedonic tone. Further studies investigating this association are warranted.
Collapse
|
29
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12:24-58. [PMID: 35111578 PMCID: PMC8783163 DOI: 10.5498/wjp.v12.i1.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions.
Collapse
Affiliation(s)
| | | | - Maria P García-Pardo
- Faculty of Social and Human Sciences, University of Zaragoza, Teruel 44003, Spain
| | - Maria A Aguilar
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
30
|
|
31
|
Hsu CW, Wang S. Changes in the Orexin System in Rats Exhibiting Learned Helplessness Behaviors. Brain Sci 2021; 11:brainsci11121634. [PMID: 34942932 PMCID: PMC8699801 DOI: 10.3390/brainsci11121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Orexin-A (OX-A) and orexin-B (OX-B) are neuropeptides produced in the hypothalamus. Preclinical and clinical studies suggest that depression and anxiety are associated with the orexin system. In the current study, we used the learned helplessness (LH) animal model of depression to identify rats displaying LH behaviors (LH rats) and those that did not (No-LH rats). We compared the number of orexin-containing neurons in the hypothalamus of LH, No-LH, and control rats. Orexin peptides, orexin receptor 1 (OXR1) and 2 (OXR2) in brain areas involved in major depression and serum OX-A and corticosterone (CORT) concentrations were quantified and compared between rat groups. We found that LH and No-LH rats displayed higher serum OX-A concentrations compared with control rats. Comparison between LH and No-LH rats revealed that No-LH rats had significantly higher OX-A levels in the brain, more OX-A neurons, and more OX-A neuron activation. LH rats had more OX-B neurons and more OX-B neuron activation. Orexin peptides and receptors in the brain areas involved in major depression exhibited different patterns in LH and NoLH rats. Our findings revealed that activation of OX-A neurons could promote resilient behaviors under stressful situations and OX-A and OX-B neuropeptides exhibit dissimilar functions in LH behaviors.
Collapse
|
32
|
Song Y, Li J, Li H, Cai M, Miao D. The role of ventral tegmental area orexinergic afferents in depressive-like behavior in a chronic unpredictable mild stress (CUMS) mouse model. Biochem Biophys Res Commun 2021; 579:22-28. [PMID: 34583191 DOI: 10.1016/j.bbrc.2021.09.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Orexin has been implicated in comorbid diseases of depression, making it a promising target for anti-depression treatment. Although orexin neurons exhibit abnormal activity in depression, the neurocircuit mechanism of orexin remains unclear. As one of the important downstream factors of orexin neurons, the ventral tegmental area (VTA) is considered crucial to the mechanism of depression. However, the role of VTA orexinergic afferents in depression remains unclear. In this study, we applied a combination of opto/chemogenetic and neuropharmacology methods to investigate whether the VTA orexinergic afferents participate in the pathogenesis of depression in a chronic unpredictable mild stress (CUMS) mouse model. We found that c-Fos expression in these VTA-projecting orexin neurons specifically decreased in CUMS-treated mice. Optogenetic and chemogenetic activation of orexin terminals in the VTA significantly reversed depressive behavior. Microinjection of orexin-A, but not orexin-B, into the VTA significantly improved depressive-like behavior. Our study provided direct evidence that the VTA orexinergic afferents participate in the mechanism of depression, and the orexin-1 receptor plays a major role.
Collapse
Affiliation(s)
- Yunyun Song
- Department of Medical Psychology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Danmin Miao
- Department of Medical Psychology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
33
|
Soares VPMN, de Andrade TGCS, Canteras NS, Coimbra NC, Wotjak CT, Almada RC. Orexin 1 and 2 Receptors in the Prelimbic Cortex Modulate Threat Valuation. Neuroscience 2021; 468:158-167. [PMID: 34126185 DOI: 10.1016/j.neuroscience.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The ability to distinguish between threatening (repulsors), neutral and appetitive stimuli (attractors) stimuli is essential for survival. The orexinergic neurons of hypothalamus send projections to the limbic structures, such as different subregions of the medial prefrontal cortex (mPFC), suggesting that the orexinergic mechanism in the prelimbic cortex (PL) is involved in the processing of fear and anxiety. We investigated the role of orexin receptors type 1 (OX1R) and type 2 (OX2R) in the PL in such processes upon confrontation with an erratically moving robo-beetle in mice. The selective blockade of OX1R and OX2R in the PL with SB 334867 (3, 30, 300 nM) and TCS OX2 29 (3, 30, 300 nM), respectively, did not affect general exploratory behavior or reactive fear such as avoidance, jumping or freezing, but significantly enhances tolerance and approach behavior at the highest dose of each antagonist tested (300 nM). We interpret these findings as evidence for an altered cognitive appraisal of the potential threatening stimulus. Consequently, the orexin system seems to bias the perception of stimuli towards danger or threat via OX1R and OX2R in the PL.
Collapse
Affiliation(s)
- Victor P M N Soares
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Telma G C S de Andrade
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Biomedical Sciences Institute of the University of São Paulo (ICB-USP), São Paulo, São Paulo, Brazil
| | - Norberto C Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael C Almada
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
34
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
35
|
Nakajo H, Chou MY, Kinoshita M, Appelbaum L, Shimazaki H, Tsuboi T, Okamoto H. Hunger Potentiates the Habenular Winner Pathway for Social Conflict by Orexin-Promoted Biased Alternative Splicing of the AMPA Receptor Gene. Cell Rep 2021; 31:107790. [PMID: 32579920 DOI: 10.1016/j.celrep.2020.107790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Many animals fight for dominance between conspecifics. Because winners could obtain more resources than losers, fighting outcomes are important for the animal's survival, especially in a situation with insufficient resources, such as hunger. However, it remains unclear whether and how hunger affects fighting outcomes. Herein, we investigate the effects of food deprivation on brain activity and fighting behaviors in zebrafish. We report that starvation induces winning in social conflicts. Before the fights, starved fish show potentiation of the lateral subregion of the dorsal habenula (dHbL)-dorsal/intermediate interpeduncular nucleus (d/iIPN) pathway, which is known to be essential for and potentiated after winning fights. Circuit potentiation is mediated by hypothalamic orexin/hypocretin neuropeptides, which prolong AMPA-type glutamate receptor (AMPAR) activity by increasing the expression of a flip type of alternative splicing variant of the AMPAR subunit. This mechanism may underlie how hungry vertebrates win fights and may be commonly shared across animal phylogeny.
Collapse
Affiliation(s)
- Haruna Nakajo
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ming-Yi Chou
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Hideaki Shimazaki
- Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
36
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
37
|
Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides 2021; 86:102127. [PMID: 33607407 DOI: 10.1016/j.npep.2021.102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Anxiety is a neurological disorder that is characterized by excessive, persistent, and unreasonable worry about everyday things like family, work, money, and relationships. The current therapy used for the treatment has many disadvantages like higher cost, severe adverse reactions, and has suboptimal efficiency. There is a need to look for more innovative approaches for the treatment of anxiety disorder which overcomes the disadvantages of conventional treatment. Recent findings suggest a strong correlation of glutamate with anxiety. Some promising drugs which have a novel mechanism for anxiolytic action are currently under clinical development for generalized anxiety disorder, social anxiety disorder, panic disorder, obsessive-compulsive disorder, or post-traumatic stress disorder. Similarly, an interrelation of oxytocin with neuropeptide S or glutamate or vasopressin can also be considered for further evaluation for the development of new drugs for anxiety treatment. Anxiolytic drug development is a multi-target approach, with the idea of more efficiently equilibrating perturbed circuits. This review focuses on targeting unconventional targets like the glutamate system, voltage-gated ion channels, and neuropeptides system either alone or in combination for the treatment of anxiety disorder.
Collapse
Affiliation(s)
- Priti Ramakant Gupta
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Kedar Prabhavalkar
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
38
|
Karamani C, Antoniadou IT, Dimou A, Andreou E, Kostakis G, Sideri A, Vitsos A, Gkavanozi A, Sfiniadakis I, Skaltsa H, Papaioannou GT, Rallis MC, Maibach H. Optimization of psoriasis mouse models. J Pharmacol Toxicol Methods 2021; 108:107054. [PMID: 33775808 DOI: 10.1016/j.vascn.2021.107054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Psoriasis, is a common, chronic, autoimmune, inflammatory, relapsing disease, which would benefit from reliable and human-relevant animal models to test drugs pre-clinically and to understand their mechanism of action. Because of its ease of use, convenience and low cost, the imiquimod (IMQ)-induced psoriasis-like model is widely utilized; however, it is not known whether all mouse strains are equivalent and if the hairless mouse is appropriate, so that the imiquimod model can be further optimized. METHODS Under similar experimental conditions, common mouse strains (BALB/c, C57BL/6J, and ApoE) and a new hairless strain (ApoE/SKH-hr2) as well as several inducers (IMQ, IMQ + acetic acid (AcOH) topical and IMQ + AcOH systemic) were compared by clinical, histopathological, biophysical and locomotor activity assessments. RESULTS AND DISCUSSION The BALB/c mice yielded an optimal psoriasis-like phenotype with IMQ + AcOH topical treatment, and the corresponding phenotypes for the other mouse strains were C57BL/6J moderate and ApoE mild. In contrast, the ApoE/SKH-hr2 mice, as a result of the absence of a Munro abscess in the histopathology analysis, left doubt about the psoriasis-like acquisition. Locomotor activity of BALB/c mice treated with IMQ, IMQ + AcOH topically and IMQ + AcOH systemically showed decreased distance and rearing coverage and increased immobility with all treatments. Hence, the BALB/c mouse strain appears to be an optimal psoriasis-like model when utilizing IMQ + AcOH topical application.
Collapse
Affiliation(s)
- Christina Karamani
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Ivi Theodosia Antoniadou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Aikaterini Dimou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Evgenia Andreou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Georgios Kostakis
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Asimina Sideri
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Andreas Vitsos
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Athena Gkavanozi
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | | | - Helen Skaltsa
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmacognosy and Chemistry of Natural Products, Panepistimiopolis, 15784 Athens, Greece
| | - Georgios Theodoros Papaioannou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Michail Christou Rallis
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece.
| | - Howard Maibach
- Department of Dermatology, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94115, USA
| |
Collapse
|
39
|
Rajkumar RP. Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Front Psychol 2021; 12:621853. [PMID: 33815205 PMCID: PMC8012770 DOI: 10.3389/fpsyg.2021.621853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
Healthcare workers are at a high risk of psychological morbidity in the face of the COVID-19 pandemic. However, there is significant variability in the impact of this crisis on individual healthcare workers, which can be best explained through an appreciation of the construct of resilience. Broadly speaking, resilience refers to the ability to successfully adapt to stressful or traumatic events, and thus plays a key role in determining mental health outcomes following exposure to such events. A proper understanding of resilience is vital in enabling a shift from a reactive to a proactive approach for protecting and promoting the mental well-being of healthcare workers. Research in the past decade has identified six areas that provide promising leads in understanding the biological basis of individual variations in resilience. These are: (1) the key role played by the monoamines noradrenaline and serotonin, (2) the centrality of the hypothalamic-pituitary-adrenal axis in influencing stress vulnerability and resilience, (3) the intimate links between the immune system and stress sensitivity, (4) the role of epigenetic modulation of gene expression in influencing the stress response, (5) the role played by certain neuropeptides as a natural “brake” mechanism in the face of stress, and (6) the neurobiological mechanisms by which environmental factors, such as exercise, diet, and social support, influence resilience to subsequent life events. Though much of this research is still in its early stages, it has already provided valuable information on which strategies – including dietary changes, lifestyle modification, environmental modification, psychosocial interventions, and even pharmacological treatments – may prove to be useful in fostering resilience in individuals and groups. This paper examines the above evidence more closely, with a specific focus on the challenges faced by healthcare workers during the COVID-19 pandemic, and provides suggestions regarding how it may be translated into real-world interventions, as well as how the more tentative hypotheses advanced in this field may be tested during this critical period.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
40
|
Wang D, Li A, Dong K, Li H, Guo Y, Zhang X, Cai M, Li H, Zhao G, Yang Q. Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress. Neurobiol Stress 2021; 14:100298. [PMID: 33569507 PMCID: PMC7859368 DOI: 10.1016/j.ynstr.2021.100298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Social stress, a common stressor, causes multiple forms of physical and mental dysfunction. Prolonged exposure to social stress is associated with a higher risk of psychological disorders, including anxiety disorders and major depressive disorder (MDD). The orexinergic system is involved in the regulation of multiple motivated behaviors. The current study examined the regulatory effect of orexinergic projections from the lateral hypothalamic area (LHA) to the lateral habenula (LHb) in depression- and anxiety-like behaviors after chronic social defeat stress. When mice were defeated during social interaction, both orexinergic neurons in the LHA and glutamatergic neurons in the LHb were strongly activated, as indicated by the FosTRAP strategy. Infusion of orexin in the LHb significantly alleviated social avoidance and depression-like behaviors induced by chronic social defeat stress. Administration of an orexin receptor 2 antagonist in the LHb further aggravated the depressive phenotype. Photoactivation of orexinergic cell bodies in the LHA or terminals in the LHb relieved anxiety-like behaviors induced by chronic social defeat stress. Collectively, we identified the antidepressant and anxiolytic effects of the circuit from LHA orexinergic neurons to the LHb in response to chronic social stress, providing new evidence of the antidepressant properties of LHA orexin circuits.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Keyi Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Huihui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Yongxin Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Xi'an, Shaanxi, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Pu C, Tian S, He S, Chen W, He Y, Ren H, Zhu J, Tang J, Huang X, Xiang Y, Fu Y, Xiang T. Depression and stress levels increase risk of liver cancer through epigenetic downregulation of hypocretin. Genes Dis 2020; 9:1024-1037. [PMID: 35685472 PMCID: PMC9170575 DOI: 10.1016/j.gendis.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that Hypocretin (HCRT, Orexin) are involved in stress regulation of depression through the hypothalamic-pituitary-adrenal (HPA) axis. However, the molecular mechanism by which Hypocretin regulate neurobiological responses is unknown. Herein, the effects of chronic stress on the epigenetic modification of HCRT and its association with depression were explored with regard to a potential role in cancer progression. In the study, Sprague Dawley (SD) rats were used to establish an animal model of cancer with depression by administrating n-nitrosodiethylamine (DEN) and chronic unpredictable mild stress (CUMS). RNA-sequencing was used to detect differentially expressed genes in the hippocampus of rats and quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of RNA-sequencing. The status of HCRT promoter methylation was assessed by methylation specific polymerase chain reaction. Behavioral tests showed that rats exposed to CUMS had significant depressive-like behaviors. The number of liver tumors and tumor load in depressed rats exposed to CUMS was higher than in SD rats without CUMS. RNA-sequencing revealed that HCRT was one of the most siginificantly downregulated gene in the hippocampus of SD rats with CUMS compared to non-stressed group, which was validated by qRT-PCR. HCRT mRNA expression was downregulated and the promoter for HCRT was hyper-methylated in those with depression. These results identified a critical role for chronic psychological stressors in tumorigenesis and cancer progression, via epigenetic HCRT downregulation. Such epigenetic downregulation may be the molecular basis for the association of cancer with depression.
Collapse
|
42
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
43
|
Jin K, Lu J, Yu Z, Shen Z, Li H, Mou T, Xu Y, Huang M. Linking peripheral IL-6, IL-1β and hypocretin-1 with cognitive impairment from major depression. J Affect Disord 2020; 277:204-211. [PMID: 32829196 DOI: 10.1016/j.jad.2020.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/06/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognitive impairment has long challenged the patients with major depressive disorder (MDD), hypocretins and inflammation have recently been implicated in cognitive function. However, limited studies have compressively assessed their associations with cognitive impairment in MDD. METHODS A total of 100 MDD patients and 100 healthy controls (HC) were recruited for this study. They were tested with HAMD, HAMA, and MCCB scales. The plasma level of selected inflammatory factors (IL-1β, IL-6, and TNF-α) and hypocretin-1 were determined using enzyme-linked immunosorbent assay (ELISA). Correlation analysis was performed to explore the relationship between the plasma level of the factors and clinical performances. RESULTS Patients with MDD showed cognitive impairment in each MCCB subdomain except working memory compared with HC. The levels of IL-6, IL-1β and hypocretin-1 in MDD patients were higher than HC. Besides, IL-1β levels was negatively correlated with overall cognitive function in the combined group. Hypocretin-1 was positively correlated with socially cognitive impairment in MDD patients. A negative correlation between plasma hypocretin-1 levels and HAMA scales was also observed in MDD patients. LIMITATION The study was cross-sectional, thereby limiting causal inference, and had a relatively small sample size. There are no subcategories for MDD based on characteristics. CONCLUSION IL-1β, IL-6 and Hypocretin-1 were reported as potential factors involved in MDD pathology. Hypocretin-1 could contribute to the biological mechanisms of anxiety relief. Hypocretin-1, therefore, may be important in exploring the pathological mechanisms of social cognitive impairment in MDD patients. Conclusively, this study provides new insights for exploring cognitive impairment in depression.
Collapse
Affiliation(s)
- Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejjiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejjiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Zhebin Yu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Zhe Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejjiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Haimei Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejjiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejjiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejjiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejjiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
44
|
Faesel N, Kolodziejczyk MH, Koch M, Fendt M. Orexin deficiency affects sociability and the acquisition, expression, and extinction of conditioned social fear. Brain Res 2020; 1751:147199. [PMID: 33160959 DOI: 10.1016/j.brainres.2020.147199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Accumulating evidence indicates that the central orexin (hypocretin) system plays an important role in regulating emotional processes in both humans and rodents. Thus, the orexin system has been repeatedly implicated in the pathophysiology of several neuropsychiatric disorders, such as anxiety disorders. Among others, symptoms like social fear and social withdrawal are frequently observed in these disorders. Based on this, we investigated the role of orexin deficiency in social (fear) behavior. For that, female and male orexin-deficient mice were tested for (1) sociability and social novelty, and (2) acquisition, expression, and extinction of conditioned social fear. We found that female orexin-deficient mice displayed reduced sociability and decreased preference for social novelty compared to their wild-type littermates. These effects of orexin deficiency were not observed in males. Moreover, orexin deficiency facilitated the acquisition and/or expression of conditioned social fear and impaired the extinction of social fear in both sexes. Taken together, our results indicate an important, partly sex-dependent, regulatory role of the orexin system in social (fear) behavior. Our findings support the hypothesis of orexin being an integrator of motivation, affect, and emotion.
Collapse
Affiliation(s)
- Nadine Faesel
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany.
| | - Malgorzata H Kolodziejczyk
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| |
Collapse
|
45
|
James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2020; 183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
An estimated 50-90% of individuals with cocaine use disorder (CUD) also report using alcohol. Cocaine users report coabusing alcohol to 'self-medicate' against the negative emotional side effects of the cocaine 'crash', including the onset of anxiety. Thus, pharmaceutical strategies to treat CUD would ideally reduce the motivational properties of cocaine, alcohol, and their combination, as well as reduce the onset of anxiety during drug withdrawal. The hypothalamic orexin (hypocretin) neuropeptide system offers a promising target, as orexin neurons are critically involved in activating behavioral and physiological states to respond to both positive and negative motivators. Here, we seek to describe studies demonstrating efficacy of orexin receptor antagonists in reducing cocaine, alcohol- and stress-related behaviors, but note that these studies have largely focused on each of these phenomena in isolation. For orexin-based compounds to be viable in the clinical setting, we argue that it is imperative that their efficacy be tested in animal models that account for polysubstance use patterns. To begin to examine this, we present new data showing that rats' preferred level of cocaine intake is significantly increased following chronic homecage access to alcohol. We also report that cocaine intake and motivation are reduced by a selective orexin-1 receptor antagonist when rats have a history of cocaine + alcohol, but not a limited history of cocaine alone. In light of these proof-of-principle data, we outline what we believe to be the key priorities going forward with respect to further examining the orexin system in models of polysubstance use. This article is part of the special issue on Neurocircuitry Modulating Drug and Alcohol Abuse.
Collapse
Affiliation(s)
- Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA; Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Jennifer E Fragale
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Shayna L O'Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Benjamin A Zimmer
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
46
|
Inhibition of orexin receptor 1 contributes to the development of morphine dependence via attenuation of cAMP response element-binding protein and phospholipase Cβ3. J Chem Neuroanat 2020; 108:101801. [DOI: 10.1016/j.jchemneu.2020.101801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022]
|
47
|
Pan YP, Liu C, Liu MF, Wang Y, Bian K, Xue Y, Chen L. Involvement of orexin-A in the regulation of neuronal activity and emotional behaviors in central amygdala in rats. Neuropeptides 2020; 80:102019. [PMID: 31980205 DOI: 10.1016/j.npep.2020.102019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The amygdala is a complex structure involved in the regulation of emotional behaviors including fear and anxiety. The central amygdala is the main output of the amygdala and plays an important role in emotional processing. Recent studies indicate that orexin, a kind of neuropeptides responsible for maintaining wakefulness, is also associated with emotion-related behaviors, such as depression- and anxiety-like behaviors. Central amygdala receives orexinergic fibers originating from the lateral hypothalamus and expresses OX1 receptors in rats. To test the electrophysiological and behavioral effects of orexins in the central amygdala, single unit in vivo extracellular recordings, open field and elevated plus maze tests were performed in rats. Micro-pressure administration of orexin-A (0.01 mmol/L) increased the firing rate in 18 out of the 31 central amygdala neurons, while the other 13 neurons were not excited by orexin-A. The excitatory effects of orexin-A on central amygdala neurons were mainly mediated by OX1 receptors rather than OX2 receptors. Orexin-B (0.01 mmol/L) did not change the firing activity in all recorded central amygdala neurons. Selectively blocking OX1 receptors by SB-334867 (0.01 mmol/L) significantly decreased the spontaneous firing rate in 14 out of the 33 central amygdala neurons, leaving the remaining 19 neurons were not affected. However, blocking OX2 receptors by TCS-OX2-29 (0.01 mmol/L) did not change the firing activity. Finally, both open field test and elevated plus maze test showed that bilateral microinjection of orexin-A into the central amygdala induced significantly anxiolytic-like behaviors. The specific OX1 receptor antagonist tended to produce opposite effects although there was no statistical difference. The present electrophysiological and behavioral studies suggested that orexin-A participates in anxiety-like behaviors by modulating the spontaneous firing activity of central amygdala neurons.
Collapse
Affiliation(s)
- Yi-Peng Pan
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei-Fang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kang Bian
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
48
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Abounoori M, Maddah MM, Akbari E, Houshmand G, Ardeshiri MR. The Effect of Orexin Receptor Antagonism on Quinpirole-Induced Compulsive-Like Checking Behavior in Rats. Neurotox Res 2020; 38:18-26. [PMID: 32207079 DOI: 10.1007/s12640-020-00196-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
Abstract
The orexinergic system supposedly plays a role in stress circuits for arousing behaviors during anxiety, suggesting that it may play a role also in neural circuits mediating the compulsive behavior characteristic of obsessive-compulsive disorder (OCD). This study aims to investigate the roles of the orexinergic system in the development of OCD behaviors, using as preparation the induction of compulsive checking by chronic treatment with the D2/D3 agonist, quinpirole. Repeated injections of quinpirole (0.5 mg/kg, twice per week for a total of 10 injections) were used to induce compulsive checking. In separate groups of rats, OX1R (SB334867-A; 10 μg i.c.v) and OX2R (TCS-OX2-29; 10 μg i.c.v) receptor antagonists were co-administered together with quinpirole. Checking behavior in a large open field was measured after the first, fifth, and tenth injections of the drugs. SB334867-A attenuated checking behavior and the level of anxiety. TCS-OX2-29 administration ameliorated anxiety but did not block the development of compulsive checking. Orexin 1 receptors seem to play a more critical role than orexin 2 receptors in the induction of compulsive checking. Considering that the quinpirole sensitization model of OCD involves activation of dopamine systems and sensitization to quinpirole, it is suggested that neural interaction between orexigenic and dopamine systems may be important in the pathogenesis of OCD.
Collapse
Affiliation(s)
- Mahdi Abounoori
- Medical Student, Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Moein Maddah
- Medical Student, Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Esmaeil Akbari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, P.O. Box: 481751665, Sari, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Motahareh Rouhi Ardeshiri
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, P.O. Box: 481751665, Sari, Iran.
| |
Collapse
|
50
|
Dhangar RR, Kale PP, Kadu PK, Prabhavalkar K. Possible Benefits of Considering Glutamate with Melatonin or Orexin or Oxytocin as a Combination Approach in the Treatment of Anxiety. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|