1
|
Shaw NC, Chen K, Farley KO, Hedges M, Forbes C, Baynam G, Lassmann T, Fear VS. Identifying SETBP1 haploinsufficiency molecular pathways to improve patient diagnosis using induced pluripotent stem cells and neural disease modelling. Mol Autism 2024; 15:42. [PMID: 39350244 PMCID: PMC11443744 DOI: 10.1186/s13229-024-00625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND SETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter, resulting in removal of SKI and/or SET domains, and a point mutation p.Thr1387Met in the SET domain. METHODS Genetic variants were introduced into induced pluripotent stem cells (iPSCs) and subsequently differentiated into neurons to model the disease. We measured changes in cellular differentiation, SETBP1 protein localisation, and gene expression changes. RESULTS The data indicated a change in the WNT pathway, RNA polymerase II pathway and identified GATA2 as a central transcription factor in disease perturbation. In addition, the genetic variants altered the expression of gene sets related to neural forebrain development matching characteristics typical of the SETBP1-HD phenotype. LIMITATIONS The study investigates changes in cellular function in differentiation of iPSC to neural progenitor cells as a human model of SETBP1 HD disorder. Future studies may provide additional information relevant to disease on further neural cell specification, to derive mature neurons, neural forebrain cells, or brain organoids. CONCLUSIONS We developed a human SETBP1-HD model and identified perturbations to the WNT and POL2RA pathway, genes regulated by GATA2. Strikingly neural cells for both the SETBP1 truncation mutations and the single nucleotide variant displayed a SETBP1-HD-like phenotype.
Collapse
Affiliation(s)
- Nicole C Shaw
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Kevin Chen
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Kathryn O Farley
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Mitchell Hedges
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Catherine Forbes
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Gareth Baynam
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, Australia
| | - Timo Lassmann
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Vanessa S Fear
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
2
|
Saxena H, Weintraub NL, Tang Y. Potential Therapeutic Targets for Hypotension in Duchenne Muscular Dystrophy. Med Hypotheses 2024; 185:111318. [PMID: 38585412 PMCID: PMC10993928 DOI: 10.1016/j.mehy.2024.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is marked by genetic mutations occurring in the DMD gene, which is widely expressed in the cardiovascular system. In addition to developing cardiomyopathy, patients with DMD have been reported to be susceptible to the development of symptomatic hypotension, although the mechanisms are unclear. Analysis of single-cell RNA sequencing data has identified potassium voltage-gated channel subfamily Q member 5 (KCNQ5) and possibly ryanodine receptor 2 (RyR2) as potential candidate hypotension genes whose expression is significantly upregulated in the vascular smooth muscle cells of DMD mutant mice. We hypothesize that heightened KCNQ5 and RyR2 expression contributes to decreased arterial blood pressure in patients with DMD. Exploring pharmacological approaches to inhibit the KCNQ5 and RyR2 channels holds promise in managing the systemic hypotension observed in individuals with DMD. This avenue of investigation presents new prospects for improving clinical outcomes for these patients.
Collapse
Affiliation(s)
- Harshi Saxena
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
4
|
Bono F, Fiorentini C, Mutti V, Tomasoni Z, Sbrini G, Trebesova H, Marchi M, Grilli M, Missale C. Central nervous system interaction and crosstalk between nAChRs and other ionotropic and metabotropic neurotransmitter receptors. Pharmacol Res 2023; 190:106711. [PMID: 36854367 DOI: 10.1016/j.phrs.2023.106711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in both the peripheral and the central nervous systems. nAChRs exert a crucial modulatory influence on several brain biological processes; they are involved in a variety of neuronal diseases including Parkinson's disease, Alzheimer's disease, epilepsy, and nicotine addiction. The influence of nAChRs on brain function depends on the activity of other neurotransmitter receptors that co-exist with nAChRs on neurons. In fact, the crosstalk between receptors is an important mechanism of neurotransmission modulation and plasticity. This may be due to converging intracellular pathways but also occurs at the membrane level, because of direct physical interactions between receptors. In this line, this review is dedicated to summarizing how nAChRs and other ionotropic and metabotropic receptors interact and the relevance of nAChRs cross-talks in modulating various neuronal processes ranging from the classical modulation of neurotransmitter release to neuron plasticity and neuroprotection.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giulia Sbrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Hanna Trebesova
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy.
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
6
|
Abstract
KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.
Collapse
|
7
|
Accili E. An ion channel in the company of a transporter. J Gen Physiol 2020; 152:151884. [PMID: 32579683 PMCID: PMC7335010 DOI: 10.1085/jgp.202012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric Accili
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Chow LWC, Leung YM. The versatile Kv channels in the nervous system: actions beyond action potentials. Cell Mol Life Sci 2020; 77:2473-2482. [PMID: 31894358 PMCID: PMC11104815 DOI: 10.1007/s00018-019-03415-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/16/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Voltage-gated K+ (Kv) channel opening repolarizes excitable cells by allowing K+ efflux. Over the last two decades, multiple Kv functions in the nervous system have been found to be unrelated to or beyond the immediate control of excitability, such as shaping action potential contours or regulation of inter-spike frequency. These functions include neuronal exocytosis and neurite formation, neuronal cell death, regulation of astrocyte Ca2+, glial cell and glioma proliferation. Some of these functions have been shown to be independent of K+ conduction, that is, they suggest the non-canonical functions of Kv channels. In this review, we focus on neuronal or glial plasmalemmal Kv channel functions which are unrelated to shaping action potentials or immediate control of excitability. Similar functions in other cell types will be discussed to some extent in appropriate contexts.
Collapse
Affiliation(s)
- Louis W C Chow
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- UNIMED Medical Institute, Hong Kong, China
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Yuk- Man Leung
- Department of Physiology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
9
|
Abbott GW. KCNQs: Ligand- and Voltage-Gated Potassium Channels. Front Physiol 2020; 11:583. [PMID: 32655402 PMCID: PMC7324551 DOI: 10.3389/fphys.2020.00583] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) family are essential features of a broad range of excitable and non-excitable cell types and are found in organisms ranging from Hydra vulgaris to Homo sapiens. Although they are firmly in the superfamily of S4 domain-bearing voltage-sensing ion channels, KCNQ channels are highly sensitive to a range of endogenous and exogenous small molecules that act directly on the pore, the voltage-sensing domain, or the interface between the two. The focus of this review is regulation of KCNQs by direct binding of neurotransmitters and metabolites from both animals and plants and the role of the latter in the effects of plants consumed for food and as traditional folk medicines. The conceptual question arises: Are KCNQs voltage-gated channels that are also sensitive to ligands or ligand-gated channels that are also sensitive to voltage?
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Kong Q, Yu M, Zhang M, Wei C, Gu H, Yu S, Sun W, Li N, Zhou Y. Conditional Dnmt3b deletion in hippocampal dCA1 impairs recognition memory. Mol Brain 2020; 13:42. [PMID: 32183852 PMCID: PMC7079487 DOI: 10.1186/s13041-020-00574-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022] Open
Abstract
AIM Active changes in neuronal DNA methylation and demethylation appear to act as controllers of synaptic scaling and glutamate receptor trafficking in learning and memory formation. DNA methyltransferases (DNMTs), including proteins encoded by Dnmt1, Dnmt3a and Dnmt3b, are dominant enzymes carrying out DNA methylation. Our previous study demonstrated the important roles that DNMT1 and DNMT3a play in synaptic function and memory. In this study, we aim to explore the role of DNMT3b and its-mediated DNA methylation in memory processes. METHODS Dnmt3b was knocked down specifically in dorsal CA1 neurons of adult mice hippocampus by AAV-syn-Cre-GFP virus injection. Behavioral tests were used to evaluate memory performance. Gene expression microarray analysis followed by quantitative RT-PCR were performed to find differential expression genes. RESULTS Dnmt3bflox/flox mice receiving Cre-virus infection showed impaired novel object-place recognition (NPR) and normal novel object recognition (NOR), in comparison to mice receiving control GFP-virus infection. Microarray analysis revealed differential expression of K+ channel subunits in the hippocampus of Dnmt3bflox/flox mice receiving Cre-virus injection. Increased Kcne2 expression was confirmed by following qRT-PCR analysis. We also found that NPR training and testing induced up-regulation of hippocampal Dnmt1 and Dnmt3a mRNA expression in control mice, but not in Cre-virus injected mice. Our findings thus demonstrate that conditional Dnmt3b deletion in a sub-region of the hippocampus impairs a specific form of recognition memory that is hippocampus-dependent.
Collapse
Affiliation(s)
- Qingnuan Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
- Department of Pathology, Qingdao Municipal hospital, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Chuang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Huating Gu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Shaoyang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Wei Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
11
|
Manville RW, Abbott GW. Potassium channels act as chemosensors for solute transporters. Commun Biol 2020; 3:90. [PMID: 32111967 PMCID: PMC7048750 DOI: 10.1038/s42003-020-0820-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/06/2020] [Indexed: 01/27/2023] Open
Abstract
Potassium channels form physical complexes with solute transporters in vivo, yet little is known about their range of possible signaling modalities and the underlying mechanisms. The KCNQ2/3 potassium channel, which generates neuronal M-current, is voltage-gated and its activity is also stimulated by binding of various small molecules. KCNQ2/3 forms reciprocally regulating complexes with sodium-coupled myo-inositol transporters (SMITs) in mammalian neurons. Here, we report that the neurotransmitter γ-aminobutyric acid (GABA) and other small molecules directly regulate myo-inositol transport in rat dorsal root ganglia, and by human SMIT1-KCNQ2/3 complexes in vitro, by inducing a distinct KCNQ2/3 pore conformation. Reciprocally, SMIT1 tunes KCNQ2/3 sensing of GABA and related metabolites. Ion permeation and mutagenesis studies suggest that SMIT1 and GABA similarly alter KCNQ2/3 pore conformation but via different KCNQ subunits and molecular mechanisms. KCNQ channels therefore act as chemosensors to enable co-assembled myo-inositol transporters to respond to diverse stimuli including neurotransmitters, metabolites and drugs.
Collapse
Affiliation(s)
- Rίan W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|