1
|
Hatai D, Levenson MT, Rehan VK, Allard P. Inter- and trans-generational impacts of environmental exposures on the germline resolved at the single-cell level. CURRENT OPINION IN TOXICOLOGY 2024; 38:100465. [PMID: 38586548 PMCID: PMC10993723 DOI: 10.1016/j.cotox.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Reproduction is a remarkably intricate process involving the interaction of multiple cell types and organ systems unfolding over long periods of time and that culminates with the production of gametes. The initiation of germ cell development takes place during embryogenesis but only completes decades later in humans. The complexity inherent to reproduction and its study has long hampered our ability to decipher how environmental agents disrupt this process. Single-cell approaches provide an opportunity for a deeper understanding of the action of toxicants on germline function and analyze how the response to their exposure is differentially distributed across tissues and cell types. In addition to single-cell RNA sequencing, other single-cell or nucleus level approaches such as ATAC-sequencing and multi-omics have expanded the strategies that can be implemented in reproductive toxicological studies to include epigenomic and the nuclear transcriptomic data. Here we will discuss the current state of single-cell technologies and how they can best be utilized to advance reproductive toxicological studies. We will then discuss case studies in two model organisms (Caenorhabditis elegans and mouse) studying different environmental exposures (alcohol and e-cigarettes respectively) to highlight the value of single-cell and single-nucleus approaches for reproductive biology and reproductive toxicology.
Collapse
Affiliation(s)
- Dylan Hatai
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T. Levenson
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Virender K. Rehan
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Allard
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Dali O, Muriel-Muriel JA, Vargas-Baco A, Tevosian S, Zubcevic J, Smagulova F, Hayward LF. Prenatal nicotine exposure leads to epigenetic alterations in peripheral nervous system signaling genes in the testis of the rat. Epigenetics Chromatin 2024; 17:14. [PMID: 38715099 PMCID: PMC11075221 DOI: 10.1186/s13072-024-00539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Prenatal nicotine exposure (PNE) has been documented to cause numerous deleterious effects on fetal development. However, the epigenetic changes promoted by nicotine exposure on germ cells are still not well understood. OBJECTIVES In this study, we focused on elucidating the impact of prenatal nicotine exposure on regulatory epigenetic mechanisms important for germ cell development. METHODS Sprague-Dawley rats were exposed to nicotine during pregnancy and male progeny was analyzed at 11 weeks of age. Testis morphology was analyzed using frozen testis sections and expression of germ cell markers was examined by RT-qPCR; histone modifications were assessed by Western Blot (WB). DNA methylation analysis was performed by methylation-specific PCR of bisulfite converted DNA. Genome-wide DNA methylation was analyzed using Methylated DNA immunoprecipitation (MeDIP)-seq. We also carried out transcriptomics analysis of pituitary glands by RNA-seq. RESULTS We show that gestational exposure to nicotine reduces germ cell numbers, perturbs meiosis, affects the expression of germ line reprogramming responsive genes, and impacts the DNA methylation of nervous system genes in the testis. PNE also causes perturbation of gene expression in the pituitary gland of the brain. CONCLUSIONS Our data demonstrate that PNE leads to perturbation of male spermatogenesis, and the observed effects are associated with changes of peripheral nervous system signaling pathways. Alterations in the expression of genes associated with diverse biological activities such as cell migration, cell adhesion and GABA signaling in the pituitary gland underscore the complexity of the effects of nicotine exposure during pregnancy.
Collapse
Affiliation(s)
- Ouzna Dali
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Jose Antonio Muriel-Muriel
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Ana Vargas-Baco
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Sergei Tevosian
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
| | - Fatima Smagulova
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France.
| | - Linda F Hayward
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| |
Collapse
|
3
|
Jones SK, McCarthy DM, Stanwood GD, Schatschneider C, Bhide PG. Learning and memory deficits produced by aspartame are heritable via the paternal lineage. Sci Rep 2023; 13:14326. [PMID: 37652922 PMCID: PMC10471780 DOI: 10.1038/s41598-023-41213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Environmental exposures produce heritable traits that can linger in the population for one or two generations. Millions of individuals consume substances such as artificial sweeteners daily that are declared safe by regulatory agencies without evaluation of their potential heritable effects. We show that consumption of aspartame, an FDA-approved artificial sweetener, daily for up to 16-weeks at doses equivalent to only 7-15% of the FDA recommended maximum daily intake value (equivalent to 2-4 small, 8 oz diet soda drinks per day) produces significant spatial learning and memory deficits in mice. Moreover, the cognitive deficits are transmitted to male and female descendants along the paternal lineage suggesting that aspartame's adverse cognitive effects are heritable, and that they are more pervasive than current estimates, which consider effects in the directly exposed individuals only. Traditionally, deleterious environmental exposures of pregnant and nursing women are viewed as risk factors for the health of future generations. Environmental exposures of men are not considered to pose similar risks. Our findings suggest that environmental exposures of men can produce adverse impact on cognitive function in future generations and demonstrate the need for considering heritable effects via the paternal lineage as part of the regulatory evaluations of artificial sweeteners.
Collapse
Affiliation(s)
- Sara K Jones
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
| | - Deirdre M McCarthy
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA.
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Zeid D, Gould TJ. Chronic nicotine exposure alters sperm small RNA content in C57BL/6J mouse model. Dev Psychobiol 2023; 65:e22367. [PMID: 36811365 PMCID: PMC9978956 DOI: 10.1002/dev.22367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Multigenerational inheritance is a nongenomic form of heritability characterized by altered phenotypes in the first generation born from the exposed parent. Multigenerational factors may account for inconsistencies and gaps in heritable nicotine addiction vulnerability. Our lab previously found that F1 offspring of male C57BL/6J mice chronically exposed to nicotine exhibited altered hippocampus functioning and related learning, nicotine-seeking, nicotine metabolism, and basal stress hormones. In an effort to identify germline mechanisms underlying these multigenerational phenotypes, the current study sequenced small RNA extracted from sperm of males chronically administered nicotine using our previously established exposure model. We identified 16 miRNAs whose expression in sperm was dysregulated by nicotine exposure. A literature review of previous research on these transcripts suggested an enrichment for regulation of psychological stress and learning. mRNAs predicted to be regulated by differentially expressed sperm small RNAs were further analyzed using exploratory enrichment analysis, which suggested potential modulation of pathways related to learning, estrogen signaling, and hepatic disease, among other findings. Overall, our findings point to links between nicotine-exposed F0 sperm miRNA and altered F1 phenotypes in this multigenerational inheritance model, particularly F1 memory, stress, and nicotine metabolism. These findings provide a valuable foundation for future functional validation of these hypotheses and characterization of mechanisms underlying male-line multigenerational inheritance.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Psychology, Temple University, Philadelphia PA, USA
| | - Thomas J. Gould
- Department of Biobehavioral Health, Penn State University, University Park PA, USA
| |
Collapse
|
5
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
6
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Gallo A. Reprotoxic Impact of Environment, Diet, and Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1303. [PMID: 35162326 PMCID: PMC8834893 DOI: 10.3390/ijerph19031303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Reproductive health is progressively declining due to multiples endogenous and exogenous factors, such as environmental contaminants, diet and behavior. Accumulated evidences confirm that fertility and reproductive function have been adversely affected by exposure to chemical contaminants released in the environment. Today, the impact of diet and behavior on reproductive processes is also receiving special attention from the scientific community. Indeed, a close relationship between diet and fertility has been proven. Furthermore, a combination of unhealthy behavior, such as exposure to hazardous compounds and stress factors, poses living organisms at higher risk of reprotoxic effects. In particular, it has been described that poor life behaviors are associated with reduced male and female fertility due to decreased gamete quality and function. Most of the erroneous behaviors are, furthermore, a source of oxidative stress that, leading to epigenetic alterations, results in an impaired reproductive fitness. This review reports the detrimental impact of the most common environmental chemical stressors, diet, and behavior on reproductive functionality and success. Although clear evidences are still scarce, reassuring data are provided that a healthy diet and reverting unhealthy lifestyles may be of help to recover physiological reproductive conditions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
8
|
Jenkins S, Harker A, Gibb R. Distinct sex-dependent effects of maternal preconception nicotine and enrichment on the early development of rat offspring brain and behavior. Neurotoxicol Teratol 2022; 91:107062. [PMID: 34998861 DOI: 10.1016/j.ntt.2021.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Developmental nicotine exposure is harmful to offspring. Whereas much is known about the consequences of prenatal nicotine exposure, relatively little is understood about how maternal preconception nicotine impacts the next generation. Positive experiences, such as environmental enrichment/complexity, have considerable potential to improve developmental outcomes and even treat and prevent drug addiction. Therefore, the current study sought to identify how maternal exposure to moderate levels of nicotine prior to conception impacts offspring development, and if the presumably negative consequence of nicotine could be reversed by concurrent exposure to an enriched environment. We treated female Long Evans rats with nicotine in their drinking water (15 mg nicotine salt/L) for seven weeks while residing in either standard or enriched conditions. Both experiences occurred exclusively prior to mating. Nicotine exposure reduced dam fertility by ~20% (p = .06). Females reared their own litters, and offspring were tested in two assessments of early development: negative geotaxis and open field. Offspring were euthanized at weaning (P21), and their brains were processed with Golgi-Cox solution to allow quantification of dendritic spine density. Results indicate that neither maternal nicotine or enrichment had an impact on maternal care, but male offspring were impaired at negative geotaxis due to maternal nicotine, female offspring showed altered open field exploration due to maternal enrichment, and offspring of both sexes had increased spine density in OFC due to maternal enrichment. Therefore, this experiment provides novel insights into the unique, sex-dependent consequences of maternal preconception nicotine and enrichment on the early development of rat behavior and brain.
Collapse
Affiliation(s)
- Serena Jenkins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Allonna Harker
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Robbin Gibb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
9
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Kabbani N, Olds JL. Nicotinic receptor targeting in physiological and environmental vulnerability: A whole of biosphere perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146642. [PMID: 34001335 DOI: 10.1016/j.scitotenv.2021.146642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
We propose a biosphere model of convergent interactions between nicotine and neonicotinoids (neonics) within a related framework of nicotinic receptor targeting agents (NrTA) across the globe. We explore how rising global trends in the use nicotine as well as neonics impacts vulnerability, within and across species, and posit that evolutionary conservation at the nicotinic acetylcholine receptor (nAChR) provides an operational strategy map for pathogens and disease. Furthermore, we examine the effects of NrTA exposure on balance within extant and developing ecological niches, food chains, and human societies. We advocate for a global strategy for biomonitoring across agriculture, wildlife, and human centers. Such a strategy would relate emergent pathogenic and infectious diseases, amongst others, along a tractable biological stress pathway. This new framework aims to better prepare society in the face of emergent pandemics through 1. identifying primary chemical drivers that can impact emergent diseases; 2. outlining data-driven strategy options for health and environmental policy decision makers.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, USA.
| | - James L Olds
- Schar School for Policy and Government, George Mason University, USA
| |
Collapse
|
11
|
Papke RL, De Biasi M, Damaj MI. Nicotine: Understanding the big picture while also studying the details. Neuropharmacology 2021; 196:108715. [PMID: 34271018 DOI: 10.1016/j.neuropharm.2021.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| |
Collapse
|