1
|
Islas-Preciado D, Estrada-Camarena E, Galea LAM. Menstrually-related mood disorders and postpartum depression: Convergent aspects in aetiology. Front Neuroendocrinol 2024; 76:101171. [PMID: 39638001 DOI: 10.1016/j.yfrne.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Females diagnosed with Menstrually-related mood disorders (MRMDs) have more risk to develop postpartum depression (PPD). There are overlapping symptoms between MRMDs and PPD such as anxiety, depressed mood, irritability, that can contribute to a lower quality of life. MRMDs and PPD share components in their etiology such as dramatic hormonal oscillations, and alterations in Hypothalamus-Pituitary-Adrenal (HPA) axis activity that may impair GABAergic neurotransmission. As well, stressful events that impact HPA regulation may play an important role in the etiology of MRMDs and PPD. Here we review common hormone fluctuations across the menstrual cycle and pregnancy/postpartum to identify shared pathways that could contribute to greater sensitivity in people with MRMDs and PPD. This review summarizes hormone sensitivity, HPA axis activity and neurosteroids effects on GABAergic transmission and the potential role of chronic stress in developing MRMDs and PPD. In addition, other potential etiopathological factors, such as serotonin and the immune system, are discussed. Investigating the etiopathology of MRMDs and PDD will help to better understand the complexity of factors involved in these disorders that affect females across the reproductive years.
Collapse
Affiliation(s)
- D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México; Centre for Brain Health, University of British Columbia, Vancouver, Canada; Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México.
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México
| | - L A M Galea
- Centre for Brain Health, University of British Columbia, Vancouver, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
2
|
Garcia de Leon R, Hodges TE, Brown HK, Bodnar TS, Galea LAM. Inflammatory signalling during the perinatal period: Implications for short- and long-term disease risk. Psychoneuroendocrinology 2024; 172:107245. [PMID: 39561569 DOI: 10.1016/j.psyneuen.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
During pregnancy and the postpartum, there are dynamic fluctuations in steroid and peptide hormone levels as well as inflammatory signalling. These changes are required for a healthy pregnancy and can persist well beyond the postpartum. Many of the same hormone and inflammatory signalling changes observed during the perinatal period also play a role in symptoms related to autoimmune disorders, psychiatric disorders, and perhaps neurodegenerative disease later in life. In this review, we outline hormonal and immunological shifts linked to pregnancy and the postpartum and discuss the possible role of these shifts in increasing psychiatric, neurodegenerative disease risk and autoimmune symptoms during and following pregnancy. Furthermore, we discuss how key variables such as the number of births (parity) and sex of the fetus can influence inflammatory signalling, and possibly future disease risk, but are not often studied. We conclude by discussing the importance of studying female experiences such as pregnancy and parenting on physiology and disease.
Collapse
Affiliation(s)
- Romina Garcia de Leon
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | | | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Wang H, Wang X, Wang H, Shao S, Zhu J. Chronic Corticosterone Administration-Induced Mood Disorders in Laboratory Rodents: Features, Mechanisms, and Research Perspectives. Int J Mol Sci 2024; 25:11245. [PMID: 39457027 PMCID: PMC11508944 DOI: 10.3390/ijms252011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Mood disorders mainly affect the patient's daily life, lead to suffering and disability, increase the incidence rate of many medical illnesses, and even cause a trend of suicide. The glucocorticoid (GC)-mediated hypothalamus-pituitary-adrenal (HPA) negative feedback regulation plays a key role in neuropsychiatric disorders. The balance of the mineralocorticoid receptor (MR)/glucocorticoid receptor (GR) level contributes to maintaining the homeostasis of the neuroendocrine system. Consistently, a chronic excess of GC can also lead to HPA axis dysfunction, triggering anxiety, depression, memory loss, and cognitive impairment. The animal model induced by chronic corticosterone (CORT) administration has been widely adopted because of its simple replication and strong stability. This review summarizes the behavioral changes and underlying mechanisms of chronic CORT administration-induced animal models, including neuroinflammatory response, pyroptosis, oxidative stress, neuroplasticity, and apoptosis. Notably, CORT administration at different doses and cycles can destroy the balance of the MR/GR ratio to make dose-dependent effects of CORT on the central nervous system (CNS). This work aims to offer an overview of the topic and recommendations for future cognitive function research.
Collapse
Affiliation(s)
- Hao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Huan Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Shuijin Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Jing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| |
Collapse
|
4
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Metabolic Fingerprints of Effective Fluoxetine Treatment in the Prefrontal Cortex of Chronically Socially Isolated Rats: Marker Candidates and Predictive Metabolites. Int J Mol Sci 2023; 24:10957. [PMID: 37446133 PMCID: PMC10341512 DOI: 10.3390/ijms241310957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The increasing prevalence of depression requires more effective therapy and the understanding of antidepressants' mode of action. We carried out untargeted metabolomics of the prefrontal cortex of rats exposed to chronic social isolation (CSIS), a rat model of depression, and/or fluoxetine treatment using liquid chromatography-high resolution mass spectrometry. The behavioral phenotype was assessed by the forced swim test. To analyze the metabolomics data, we employed univariate and multivariate analysis and biomarker capacity assessment using the receiver operating characteristic (ROC) curve. We also identified the most predictive biomarkers using a support vector machine with linear kernel (SVM-LK). Upregulated myo-inositol following CSIS may represent a potential marker of depressive phenotype. Effective fluoxetine treatment reversed depressive-like behavior and increased sedoheptulose 7-phosphate, hypotaurine, and acetyl-L-carnitine contents, which were identified as marker candidates for fluoxetine efficacy. ROC analysis revealed 4 significant marker candidates for CSIS group discrimination, and 10 for fluoxetine efficacy. SVM-LK with accuracies of 61.50% or 93.30% identified a panel of 7 or 25 predictive metabolites for depressive-like behavior or fluoxetine effectiveness, respectively. Overall, metabolic fingerprints combined with the ROC curve and SVM-LK may represent a new approach to identifying marker candidates or predictive metabolites for ongoing disease or disease risk and treatment outcome.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany; (J.I.); (M.S.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg-Kiel-Lübeck, 20251 Hamburg, Germany
- Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany;
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany; (J.I.); (M.S.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg-Kiel-Lübeck, 20251 Hamburg, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (D.I.); (S.B.)
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (D.I.); (S.B.)
| |
Collapse
|
5
|
Duarte B, Feijão E, Cruz de Carvalho R, Duarte IA, Marques AP, Maia M, Hertzog J, Matos AR, Cabrita MT, Caçador I, Figueiredo A, Silva MS, Cordeiro C, Fonseca VF. Untargeted Metabolomics Reveals Antidepressant Effects in a Marine Photosynthetic Organism: The Diatom Phaeodactylum tricornutum as a Case Study. BIOLOGY 2022; 11:1770. [PMID: 36552278 PMCID: PMC9775013 DOI: 10.3390/biology11121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The increased use of antidepressants, along with their increased occurrence in aquatic environments, is of concern for marine organisms. Although these pharmaceutical compounds have been shown to negatively affect marine diatoms, their mode of action in these non-target, single-cell phototrophic organisms is yet unknown. Using a Fourier-transform ion cyclotron-resonance mass spectrometer (FT-ICR-MS) we evaluated the effects of fluoxetine in the metabolomics of the model diatom Phaeodactylum tricornutum, as well as the potential use of the identified metabolites as exposure biomarkers. Diatom growth was severely impaired after fluoxetine exposure, particularly in the highest dose tested, along with a down-regulation of photosynthetic and carbohydrate metabolisms. Notably, several mechanisms that are normally down-regulated by fluoxetine in mammal organisms were also down-regulated in diatoms (e.g., glycerolipid metabolism, phosphatidylinositol signalling pathway, vitamin metabolism, terpenoid backbone biosynthesis and serotonin remobilization metabolism). Additionally, the present work also identified a set of potential biomarkers of fluoxetine exposure that were up-regulated with increasing fluoxetine exposure concentration and are of high metabolic significance following the disclosed mode of action, reinforcing the use of metabolomics approaches in ecotoxicology.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Eduardo Feijão
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Irina A. Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana Patrícia Marques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Marisa Maia
- Université de Lorraine, LCP-A2MC, F-57000 Metz, France
| | | | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal
- Associated Laboratory Terra, 1349-017 Lisbon, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Andreia Figueiredo
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Marta Sousa Silva
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Carlos Cordeiro
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Vanessa F. Fonseca
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
6
|
Animal models of postpartum depression revisited. Psychoneuroendocrinology 2022; 136:105590. [PMID: 34839082 DOI: 10.1016/j.psyneuen.2021.105590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
Postpartum depression (PPD) is a heterogeneous mood disorder and the most frequent psychiatric complication of the postnatal period. Given its potential long-lasting repercussions on the well-being of the mother and the infants, it should be a priority in public health. In spite of efforts devoted to clinical investigation and preclinical studies, the underlying neurobiological mechanisms of this disorder remain unknown in detail. Much of the progress in the area has been made from animal models, especially rodent models. The aim of this mini-review is to update the current rodent models in PPD research and their main contributions to the field. Animal models are critical tools to advance understanding of the pathophysiological basis of this disorder and to help the development of new therapeutic strategies. Here, we group PPD models into 2 main categories (Models based on hormone manipulations, Models based on stress exposure), each of which includes different paradigms that reflect risk factors or physiological conditions associated with this disease. Finally, we provide an overview of emerging models that provide new perspectives on the study of possible pathophysiological factors related to PPD, to contribute to tackling potential therapeutic targets.
Collapse
|
7
|
Schroeder R, Nguyen L, Pieper AA, Stevens HE. Maternal treatment with P7C3-A20 protects from impaired maternal care after chronic gestational stress. Behav Brain Res 2022; 416:113558. [PMID: 34453970 PMCID: PMC8573727 DOI: 10.1016/j.bbr.2021.113558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
Chronic stress during pregnancy harms both the mother and developing child, and there is an urgent unmet need to understand this process in order to develop protective treatments. Here, we report that chronic gestational stress (CGS) causes aberrant maternal care behavior in the form of increased licking and grooming, decreased nursing, and increased time spent nest building. Treatment of CGS-exposed dams with the NAD+-stabilizing agent P7C3-A20 during pregnancy and postpartum, however, preserved normal maternal care behavior. CGS also caused abnormally low weight gain during gestation and postpartum, which was partially ameliorated by maternal treatment with P7C3-A20. Dams also displayed hyperactive locomotion after CGS, which was not affected by P7C3-A20. Although dams did not display a classic depressive-like phenotype after CGS, some changes in anxiety- and depressive-like behaviors were observed. Our results highlight the need for further characterization of the effects of chronic gestational stress on maternal care behavior and provide clues to possible protective mechanisms.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa, Iowa City, IA,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa, Iowa City, IA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA,Department of Psychiatry, Case Western Reserve University,Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA,University of Texas Southwestern Medical Center, Dallas, Texas USA,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106 USA,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, NY, NY, USA
| | - Hanna E. Stevens
- Department of Psychiatry, University of Iowa, Iowa City, IA,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Medina J, De Guzman RM, Workman JL. Lactation is not required for maintaining maternal care and active coping responses in chronically stressed postpartum rats: Interactions between nursing demand and chronic variable stress. Horm Behav 2021; 136:105035. [PMID: 34488064 DOI: 10.1016/j.yhbeh.2021.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Women who do not breastfeed or discontinue breastfeeding early are more likely to develop postpartum depression (PPD) and stress is a significant risk factor for depression, including PPD. Using a rat model, we investigated whether the absence of nursing would increase the susceptibility to chronic stress-related behavioral and neural changes during the postpartum period. Adult female rats underwent thelectomy (thel; removal of teats), sham surgery, or no surgery (control) and were paired with males for breeding. All litters were rotated twice daily until postpartum day (PD) 26. Sham rats served as surrogates for thel litters, yielding a higher nursing demand for sham rats. Concurrently, rats received either no stress or chronic variable stress until PD 25. Rats were observed for maternal behaviors and tested in a series of tasks including open field, sucrose preference, and forced swim. We used immunohistochemistry (IHC) for doublecortin (DCX; to label immature neurons) or for mineralocorticoid receptor (MR). Contrary to our expectations, non-nursing thel rats were resistant to the effects of stress in all dependent measures. Our data indicate that even in chronic adverse conditions, nursing is not required for maintaining stable care to offspring or active coping responses in an acutely stressful task. We discuss the possible role of offspring contact and consider future directions for biomedical and clinical research. In rats with high nursing demand, however, chronic stress increased immobility, hippocampal neurogenesis, and MR expression (largely in opposition to the effects of stress in rats with typical nursing demand). We discuss these patterns in the context of energetics and allostatic load. This research highlights the complexity in relationships between stress, nursing, and neurobehavioral outcomes in the postpartum period and underscores the need for additional biomedical and clinical research geared toward optimizing treatments and interventions for women with PPD, regardless of breastfeeding status. SIGNIFICANCE STATEMENT: The goal of this research was to determine how the absence of nursing and higher nursing demand impact stress-coping behaviors and neural changes associated with chronic stress in order to disentangle the complex interplay of factors that contribute to psychological illness during the postpartum period.
Collapse
Affiliation(s)
- Joanna Medina
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, United States of America
| | - Rose M De Guzman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, United States of America
| | - Joanna L Workman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, United States of America; Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, United States of America.
| |
Collapse
|
9
|
Qiu W, Go KA, Wen Y, Duarte-Guterman P, Eid RS, Galea LAM. Maternal fluoxetine reduces hippocampal inflammation and neurogenesis in adult offspring with sex-specific effects of periadolescent oxytocin. Brain Behav Immun 2021; 97:394-409. [PMID: 34174336 DOI: 10.1016/j.bbi.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
Untreated perinatal depression can have severe consequences for the mother and her children. However, both the efficacy to mothers and safety to exposed infants of pharmacological antidepressants such as selective serotonin reuptake inhibitors (SSRIs), have been questioned. We previously reported that maternal SSRI exposure increased hippocampal IL-1β levels, which may be tied to limited efficacy of SSRIs during the postpartum to the dam but is not yet known whether maternal postpartum SSRIs affect the neuroinflammatory profile of adult offspring. In addition, although controversial, perinatal SSRI exposure has been linked to increased risk of autism spectrum disorder (ASD) in children. Oxytocin (OT) is under investigation as a treatment for ASD, but OT is a large neuropeptide that has difficulty crossing the blood-brain barrier (BBB). TriozanTM is a nanoformulation that can facilitate OT to cross the BBB. Thus, we investigated the impact of maternal postpartum SSRIs and offspring preadolescent OT treatment on adult offspring neuroinflammation, social behavior, and neurogenesis in the hippocampus. Using a model of de novo postpartum depression, corticosterone (CORT) was given in the postpartum to the dam with or without treatment with the SSRI, fluoxetine (FLX) for 21 days postpartum. Offspring were then subsequently treated with either OT, OT + TriozanTM, or vehicle for 10 days prior to adolescence (PD25-34). Maternal FLX decreased hippocampal IL-10 and IL-13 and neurogenesis in both sexes, whereas maternal CORT increased hippocampal IL-13 in both sexes. Maternal CORT treatment shifted the neuroimmune profile towards a more proinflammatory profile in offspring hippocampus, whereas oxytocin, independent of formulation, normalized this profile. OT treatment increased hippocampal neurogenesis in adult males but not in adult females, regardless of maternal treatment. OT treatment increased the time spent with a novel social stimulus animal (social investigation) in both adult male and female offspring, although this effect depended on maternal CORT. These findings underscore that preadolescent exposure to OT can reverse some of the long-lasting effects of postpartum maternal CORT and FLX treatments in the adult offspring. In addition, we found that maternal treatments that reduce (CORT) or increase (FLX) hippocampal inflammation in dams resulted in opposing patterns of hippocampal inflammation in adult offspring.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Kimberly A Go
- Department of Psychology, University of British Columbia, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Canada
| | | | - Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
10
|
Qiu W, Go KA, Lamers Y, Galea LAM. Postpartum corticosterone and fluoxetine shift the tryptophan-kynurenine pathway in dams. Psychoneuroendocrinology 2021; 130:105273. [PMID: 34051656 DOI: 10.1016/j.psyneuen.2021.105273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Perinatal depression (PND) affects 15% of mothers. Selective serotonin reuptake inhibitors (SSRIs) are currently the first-line of treatment for PND but are not always efficacious. Previously, we found significant reductions in plasma tryptophan concentrations and higher hippocampal proinflammatory cytokine, IL-1β levels, due to maternal SSRI treatment. Both inflammation and tryptophan-kynurenine metabolic pathway (TKP) are associated with SSRI efficacy in individuals with major depressive disorder (MDD). TKP is divided into neuroprotective and neurotoxic pathways. Higher metabolite concentrations of the neurotoxic pathway are associated with depression onset and implicated in SSRI efficacy. Metabolites in TKP were investigated in a rodent model of de novo postpartum depression (PPD) given treatment with the SSRI, fluoxetine (FLX). Dams were administered corticosterone (CORT) (40 mg/kg, s.c.), and treated with the SSRI, fluoxetine (FLX) (10 mg/kg, s.c.), during the postpartum for 22 days after parturition. Plasma TKP metabolite concentrations were quantified on the last day of treatment. Maternal postpartum CORT increased neurotoxic metabolites and co-enzyme/cofactors in dams (3-hydroxykynurenine, 3-hydroxyanthranilic acid, vitamin B2, flavin adenine dinucleotide). The combination of both CORT and FLX shifted the neuroprotective-to-neurotoxic ratio towards neurotoxicity. Postpartum FLX decreased plasma xanthurenic acid concentrations. Together, our data indicate higher neurotoxic TKP expression due to maternal postpartum CORT treatment, similar to clinical presentation of MDD. Moreover, maternal FLX treatment showed limited efficacy to influence TKP metabolites, which may correspond to its limited efficacy to treat depressive-like endophenotypes in the postpartum. Overall suggesting changes in TKP may be used as a biomarker of de novo PPD and antidepressant efficacy and targeting this pathway may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Kimberly A Go
- Department of Psychology, University of British Columbia, Canada
| | - Yvonne Lamers
- Food Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
11
|
Bilgiç A, Abuşoğlu S, Sadıç Çelikkol Ç, Oflaz MB, Akça ÖF, Sivrikaya A, Baysal T, Ünlü A. Altered kynurenine pathway metabolite levels in toddlers and preschool children with autism spectrum disorder. Int J Neurosci 2020; 132:826-834. [DOI: 10.1080/00207454.2020.1841187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ayhan Bilgiç
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sedat Abuşoğlu
- Department of Biochemistry, School of Medicine, Selcuk University, Konya, Turkey
| | - Çağla Sadıç Çelikkol
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Burhan Oflaz
- Department of Pediatric Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, School of Medicine, Selcuk University, Konya, Turkey
| | - Tamer Baysal
- Department of Pediatric Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ali Ünlü
- Department of Biochemistry, School of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
12
|
Qiu W, Hodges TE, Clark EL, Blankers SA, Galea LAM. Perinatal depression: Heterogeneity of disease and in animal models. Front Neuroendocrinol 2020; 59:100854. [PMID: 32750403 DOI: 10.1016/j.yfrne.2020.100854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Perinatal depression (PND) can have either an antepartum or postpartum onset. Although the greatest risk factor for PND is previous depression history,de novoPND occurs with the majority of cases occurring in the postpartum. Timing of depression can impact etiology, prognosis, and response to treatment. Thus, it is crucial to study the impact of the heterogeneity of PND for better health outcomes. In this review, we outline the differences between antepartum and postpartum depression onset of PND. We discuss maternal physiological changes that differ between pregnancy and postpartum and how these may differentially impact depression susceptibility. We highlight changes in the maternal steroid and peptide hormone levels, immune signalling, serotonergic tone, metabolic factors, brain morphology, and the gut microbiome. Finally, we argue that studying the heterogeneity of PND in clinical and preclinical models can lead to improved knowledge of disease etiopathology and treatment outcomes.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Travis E Hodges
- Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Emily L Clark
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|