1
|
Du J, Xu S, Zhu W. Structure-function coupling alterations in cognitively normal individuals with white matter hyperintensities. J Alzheimers Dis 2025:13872877241309098. [PMID: 39791245 DOI: 10.1177/13872877241309098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear. OBJECTIVE This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults. METHODS We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden). Neuroimaging data were used to calculate SDI, and gene enrichment analysis was conducted to explore related molecular pathways. RESULTS An increased spatial gradient of SDI from the sensory-motor cortex to the associative cortex was observed. Compared to the low WMH burden group, the high WMH group exhibited elevated SDI in the right superior frontal gyrus, bilateral orbital gyrus, bilateral precentral gyrus, bilateral cingulate gyrus, bilateral thalamus, and bilateral striatum. In the high WMH burden group, SDI in the left thalamus and right cingulate gyrus negatively correlated with memory, while SDI in the right orbital gyrus and left precentral gyrus positively correlated with processing speed. Gene enrichment analysis highlighted associations with pathways involved in neural system function, potassium ion transmembrane transport, synaptic signaling, neuron projection development, and cell secretion regulation. CONCLUSIONS The findings suggest SDI alterations as a potential mechanistic pathway in WMH, which is associated with significant molecular pathways and cognitive impairments. This study provides a theoretical framework for understanding the pathophysiology of WMH progression and subsequent cognitive deficits.
Collapse
Affiliation(s)
- Junyong Du
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Srivastava Y, Donta M, Mireles LL, Paulucci-Holthauzen A, Waxham MN, McCrea PD. Role of a Pdlim5:PalmD complex in directing dendrite morphology. Front Cell Neurosci 2024; 18:1315941. [PMID: 38414752 PMCID: PMC10896979 DOI: 10.3389/fncel.2024.1315941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching. We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g., via adducin/spectrin) and to regulate membrane shaping. Functionally, the knockdown of PalmD or Pdlim5 in rat primary hippocampal neurons dramatically reduces branching and conversely, PalmD exogenous expression promotes dendrite branching as does Pdlim5. Further, we show that each proteins' effects are dependent on the presence of the other. In summary, using primary rat hippocampal neurons we reveal the contributions of a novel Pdlim5:PalmD protein complex, composed of functionally inter-dependent components responsible for shaping neuronal dendrites.
Collapse
Affiliation(s)
- Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maxsam Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
| | - Lydia L. Mireles
- Department of Neurobiology and Anatomy, UTHealth, Houston, TX, United States
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, UTHealth, Houston, TX, United States
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
| |
Collapse
|
3
|
Myers SJ, Yuan H, Perszyk RE, Zhang J, Kim S, Nocilla KA, Allen JP, Bain JM, Lemke JR, Lal D, Benke TA, Traynelis SF. Classification of missense variants in the N-methyl-d-aspartate receptor GRIN gene family as gain- or loss-of-function. Hum Mol Genet 2023; 32:2857-2871. [PMID: 37369021 PMCID: PMC10508039 DOI: 10.1093/hmg/ddad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.
Collapse
Affiliation(s)
- Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, Köln 50923, Germany
| | - Timothy A Benke
- Department of Pediatrics, Pharmacology and Neurology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Srivastava Y, Donta M, Mireles LL, Paulucci-Holthauzen A, Waxham MN, McCrea PD. Role of a Pdlim5:PalmD complex in directing dendrite morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.553334. [PMID: 37662414 PMCID: PMC10473622 DOI: 10.1101/2023.08.22.553334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching (Baumert et al., J Cell Biol 2020). We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g., via adducin/ spectrin) and to regulate membrane shaping. Functionally, the knockdown of PalmD or Pdlim5 in rat primary hippocampal neurons dramatically reduces branching and conversely, PalmD exogenous expression promotes dendrite branching as does Pdlim5. Further, we show that effects of each protein are dependent on the presence of the other. In summary, using primary rat hippocampal neurons we reveal the contributions of a novel Pdlim5:PalmD protein complex, composed of functionally inter-dependent components responsible for shaping neuronal dendrites.
Collapse
|
5
|
Trpevski D, Khodadadi Z, Carannante I, Hellgren Kotaleski J. Glutamate spillover drives robust all-or-none dendritic plateau potentials-an in silico investigation using models of striatal projection neurons. Front Cell Neurosci 2023; 17:1196182. [PMID: 37469606 PMCID: PMC10352111 DOI: 10.3389/fncel.2023.1196182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Plateau potentials are a critical feature of neuronal excitability, but their all-or-none behavior is not easily captured in modeling. In this study, we investigated models of plateau potentials in multi-compartment neuron models and found that including glutamate spillover provides robust all-or-none behavior. This result arises due to the prolonged duration of extrasynaptic glutamate. When glutamate spillover is not included, the all-or-none behavior is very sensitive to the steepness of the Mg2+ block. These results suggest a potentially significant role of glutamate spillover in plateau potential generation, providing a mechanism for robust all-or-none behavior across a wide range of slopes of the Mg2+ block curve. We also illustrate the importance of the all-or-none plateau potential behavior for nonlinear computation with regard to the nonlinear feature binding problem.
Collapse
Affiliation(s)
- Daniel Trpevski
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zahra Khodadadi
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ilaria Carannante
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, Mohar B, Hanson TL, Hasseman JP, Reep D, Tsegaye G, Yao P, Ji X, Kloos M, Walpita D, Patel R, Mohr MA, Tillberg PW, Looger LL, Marvin JS, Hoppa MB, Konnerth A, Kleinfeld D, Schreiter ER, Podgorski K. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. Nat Methods 2023; 20:925-934. [PMID: 37142767 PMCID: PMC10250197 DOI: 10.1038/s41592-023-01863-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.
Collapse
Affiliation(s)
- Abhi Aggarwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Yang Chen
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Amelia J Ralowicz
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | | | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Boaz Mohar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel Reep
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Getahun Tsegaye
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Pantong Yao
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Marinus Kloos
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Manuel A Mohr
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Basel, Switzerland
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arthur Konnerth
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
- Section of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|
7
|
Pennock RL, Coddington LT, Yan X, Overstreet-Wadiche L, Wadiche JI. Afferent convergence to a shared population of interneuron AMPA receptors. Nat Commun 2023; 14:3113. [PMID: 37253743 PMCID: PMC10229553 DOI: 10.1038/s41467-023-38854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Precise alignment of pre- and postsynaptic elements optimizes the activation of glutamate receptors at excitatory synapses. Nonetheless, glutamate that diffuses out of the synaptic cleft can have actions at distant receptors, a mode of transmission called spillover. To uncover the extrasynaptic actions of glutamate, we localized AMPA receptors (AMPARs) mediating spillover transmission between climbing fibers and molecular layer interneurons in the cerebellar cortex. We found that climbing fiber spillover generates calcium transients mediated by Ca2+-permeable AMPARs at parallel fiber synapses. Spillover occludes parallel fiber synaptic currents, indicating that separate, independently regulated afferent pathways converge onto a common pool of AMPARs. Together these findings demonstrate a circuit motif wherein glutamate 'spill-in' from an unconnected afferent pathway co-opts synaptic receptors, allowing activation of postsynaptic AMPARs even when canonical glutamate release is suppressed.
Collapse
Affiliation(s)
- Reagan L Pennock
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Luke T Coddington
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Xiaohui Yan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Bossi S, Pizzamiglio L, Paoletti P. Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling. Trends Neurosci 2023:S0166-2236(23)00127-3. [PMID: 37248111 DOI: 10.1016/j.tins.2023.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior. In this review, we summarize the emerging knowledge regarding these underappreciated receptors. The existence of eGlyRs reshapes current understanding of NMDAR diversity and of glycinergic signaling, previously thought to be primarily inhibitory. Given that GluN3A expression is concentrated in brain regions regulating emotional responses, eGlyRs are potential new targets of therapeutic interest in neuropsychiatry.
Collapse
Affiliation(s)
- Simon Bossi
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
9
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
10
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
11
|
Oliveira JF, Araque A. Astrocyte regulation of neural circuit activity and network states. Glia 2022; 70:1455-1466. [PMID: 35460131 PMCID: PMC9232995 DOI: 10.1002/glia.24178] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/13/2022]
Abstract
Astrocytes are known to influence neuronal activity through different mechanisms, including the homeostatic control of extracellular levels of ions and neurotransmitters and the exchange of signaling molecules that regulate synaptic formation, structure, and function. While a great effort done in the past has defined many molecular mechanisms and cellular processes involved in astrocyte-neuron interactions at the cellular level, the consequences of these interactions at the network level in vivo have only relatively recently been identified. This review describes and discusses recent findings on the regulatory effects of astrocytes on the activity of neuronal networks in vivo. Accumulating but still limited, evidence indicates that astrocytes regulate neuronal network rhythmic activity and synchronization as well as brain states. These studies demonstrate a critical contribution of astrocytes to brain activity and are paving the way for a more thorough understanding of the cellular bases of brain function.
Collapse
Affiliation(s)
- João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Rusakov DA, Giese KP, Sandi C, Dommett E, Overton PG. Remembering Mike Stewart. Neuropharmacology 2022; 207:108962. [PMID: 35051447 DOI: 10.1016/j.neuropharm.2022.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Karl Peter Giese
- Institute of Psychiatry, Physiology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Carmen Sandi
- Swiss Federal Institute of Technology in Lausanne (EPFL), Rte Cantonale, 1015, Lausanne, Switzerland
| | - Eleanore Dommett
- Institute of Psychiatry, Physiology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Vicar Lane, Sheffield, S1 2LT, UK
| |
Collapse
|
13
|
Frenguelli BG. The glutamatergic synapse - A key hub in neuronal metabolism, signalling and plasticity. Neuropharmacology 2022; 207:108945. [PMID: 34999011 DOI: 10.1016/j.neuropharm.2022.108945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Special Issue of Neuropharmacology on the glutamatergic synapse is one of a series of Special Issues celebrating the 40th anniversary of Dick Evans and Jeff Watkins's seminal review on excitatory amino acids (Watkins and Evans, 1981). Through a careful appraisal of the literature extending several decades prior to the 1980s, and their own development and use of ligands for excitatory amino acid receptors, Dick and Jeff provided incontrovertible proof for the veracity and importance of glutamate as a neurotransmitter in the central nervous system. While other Special Issues in this series examine the receptors activated by glutamate (AMPA, NMDA, Kainate, mGluR and Delta/Orphan glutamate receptors) this Special Issue examines the glutamatergic synapse itself, and considers its evolution, metabolism, structure, properties and plasticity that have placed it so firmly at the centre of neuronal signalling in the central nervous system.
Collapse
|
14
|
Aleksejenko N, Heller J. Super-resolution imaging to reveal the nanostructure of tripartite synapses. Neuronal Signal 2021; 5:NS20210003. [PMID: 34737894 PMCID: PMC8536832 DOI: 10.1042/ns20210003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Even though neurons are the main drivers of information processing in the brain and spinal cord, other cell types are important to mediate adequate flow of information. These include electrically passive glial cells such as microglia and astrocytes, which recently emerged as active partners facilitating proper signal transduction. In disease, these cells undergo pathophysiological changes that propel disease progression and change synaptic connections and signal transmission. In the healthy brain, astrocytic processes contact pre- and postsynaptic structures. These processes can be nanoscopic, and therefore only electron microscopy has been able to reveal their structure and morphology. However, electron microscopy is not suitable in revealing dynamic changes, and it is labour- and time-intensive. The dawn of super-resolution microscopy, techniques that 'break' the diffraction limit of conventional light microscopy, over the last decades has enabled researchers to reveal the nanoscopic synaptic environment. In this review, we highlight and discuss recent advances in our understanding of the nano-world of the so-called tripartite synapses, the relationship between pre- and postsynapse as well as astrocytic processes. Overall, novel super-resolution microscopy methods are needed to fully illuminate the intimate relationship between glia and neuronal cells that underlies signal transduction in the brain and that might be affected in diseases such as Alzheimer's disease and epilepsy.
Collapse
Affiliation(s)
- Natalija Aleksejenko
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City University, Glasnevin, Ireland
| | - Janosch P. Heller
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City University, Glasnevin, Ireland
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|