1
|
Choi BM, Gu SM, Jabborov A, Yang MS, Yeon SW, Park CW, Lee MK, Yun J. Hinokinin Decreases Methamphetamine-Induced Hyperlocomotion via the Regulatory Effects on Dopamine Levels. ACS Chem Neurosci 2025; 16:393-404. [PMID: 39838725 DOI: 10.1021/acschemneuro.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
The global abuse of stimulant methamphetamine (METH) imposes a significant social burden. Despite this, effective therapeutic interventions for mitigating the harmful effects associated with METH-induced central nervous system (CNS) stimulation remain elusive. Chamaecyparis obtusa (hinoki), containing hinokinin as its active constituent, has been identified to exhibit CNS depressant properties. Here, we explored the potential of the hinoki extract and hinokinin in modulating METH-induced hyperlocomotion through the regulation of dopaminergic neuronal activity. We discovered that pretreatment with hinokinin significantly attenuates METH-induced locomotor activity, indicative of reduced CNS stimulation. Furthermore, treatment with hinokinin was observed to inhibit the METH-induced elevation in dopamine levels and the concomitant decrease in dopamine transporter (DAT) function within striatal brain slices of mice. In silico analysis coupled with pull-down assays and the dose-response curve substantiated the direct binding of hinokinin to DAT. We propose that hinokinin mitigates METH-induced hyperlocomotion via the inhibition of dopaminergic neurotransmission, with allosteric modulation of DAT playing a critical role in this regulatory mechanism. Collectively, our research suggests the potential of hinokinin to mitigate dopamine-mediated central nervous system excitation.
Collapse
Affiliation(s)
- Byoung Mo Choi
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Abdulaziz Jabborov
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Min-Seok Yang
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sang Won Yeon
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|
2
|
Yadav-Samudrala BJ, Fitting S. Exploring new frontiers in the treatment of HIV-associated neurocognitive disorder. J Pharmacol Exp Ther 2025; 392:100040. [PMID: 40023588 DOI: 10.1016/j.jpet.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 03/04/2025] Open
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
3
|
Jimenez-Torres AC, Hastie JA, Davis SE, Porter KD, Lei B, Moukha-Chafiq O, Zhang S, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhu J. Identification of pyrimidine structure-based compounds as allosteric ligands of the dopamine transporter as therapeutic agents for NeuroHIV. J Pharmacol Exp Ther 2025; 392:100021. [PMID: 40023582 DOI: 10.1124/jpet.124.002138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 01/22/2025] Open
Abstract
The disruption of dopamine (DA) neurotransmission by the HIV-1 transactivator of transcription (Tat) during HIV-1 infection has been linked to the development of neurocognitive disorders, even under combined antiretroviral therapy treatment. We have demonstrated that Southern Research Institute (SRI) 32742, a novel allosteric modulator of DA transporter (DAT), attenuates cocaine- and Tat-binding to DAT, alleviates Tat-induced cognitive deficits and potentiation of cocaine reward in inducible Tat transgenic mice. The current study determined the in vitro pharmacological profile of SRI-32743 and its optimized second-generation analogs and their effects as allosteric modulators. Through structure-activity relationship studies of SRI-32743, 170 compounds were synthesized and evaluated for their ability to modulate DAT function. We identified 21 analogs as atypical competitors of DAT (maximum attributable drug effect, ≤60%). Four compounds, SRI-46564, SRI-47056, SRI-46286, and SRI-47867, displayed IC50 values for [3H]DA uptake inhibition from 9.33 ± 0.50 to 0.96 ± 0.05 μM and from 3.96 ± 1.36 to 1.29 ± 0.19 for DAT binding, respectively. The 4 analogs also displayed high potency at 2 different concentrations (0.5 nM and 0.05 nM) to attenuate Tat-induced inhibition of [3H]DA uptake and cocaine-mediated dissociation of [3H]WIN35,428 binding in Chinese hamster ovary cells expressing human DAT, suggesting that the effects occur through an allosteric mechanism. In further ex vivo studies using fast scan cyclic voltammetry, we demonstrated that the analogs do not disrupt the baseline phasic-like DA release. These findings provide a new insight into the potential for development of novel therapeutic agents to attenuate DAT-Tat interactions to normalize DA neurotransmission in NeuroHIV. SIGNIFICANCE STATEMENT: The allosteric inhibition of the dopamine (DA) transporter by the HIV-1 transactivator of transcription (Tat) disrupts DA homeostasis, leading to HIV-associated neurocognitive disorders. Analogs of Southern Research Institute 32743, a novel allosteric modulator of the Tat-DA transporter (DAT) interaction, were evaluated in the current study and characterized as atypical ligands of DA uptake. Four novel lead compounds demonstrated high potency to attenuate Tat-induced inhibition of human DAT-mediated DA uptake in an allosteric modulatory manner with no effects on the dynamics of DA uptake-release in DAT.
Collapse
Affiliation(s)
- Ana Catya Jimenez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Jamison A Hastie
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Katherine D Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Bin Lei
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina.
| |
Collapse
|
4
|
Zhu J, Cirincione AB, Strauss MJ, Davis SE, Eans SO, Tribbitt DK, Alshakhshir N, McLaughlin JP. Impact of HIV-1 tat protein on methamphetamine-induced inhibition of vesicular monoamine transporter2-mediated dopamine transport and methamphetamine conditioned place preference in HIV-1 tat transgenic mice. Eur J Pharmacol 2024; 984:177030. [PMID: 39366503 PMCID: PMC11563864 DOI: 10.1016/j.ejphar.2024.177030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Perturbation of dopamine transmission has been implicated as a contributing factor in HIV-1 associated neurocognitive disorders with concurrent methamphetamine (METH) abuse. We have demonstrated that the HIV-1 protein, transactivator of transcription (Tat), decreases dopamine transport through inhibition of vesicular monoamine transporter2 (VMAT2). This study determined the effects of Tat protein on METH-inhibited VMAT2 function and METH-conditioned place preference (CPP). In vitro exposure of isolated mouse whole brain vesicles to recombinant Tat1-86 or METH displayed a concentration-dependent inhibition of the vesicular [3H]Dopamine uptake, in which a combination of Tat and METH induced a greater reduction of dopamine uptake compared to Tat or METH alone. In vivo, the maximal velocity (Vmax) of vesicular [3H]Dopamine uptake was decreased in inducible Tat transgenic (iTat-tg) mice harvested after treatment with either 21-day doxycycline (Dox) or 14-day METH (3 mg/kg, i.p., daily), whereas these mice treated with both Dox and METH displayed an additive reduction of the Vmax compared to either Tat or METH alone. Moreover, Dox-induced Tat expression increased METH-CPP in an exposure-dependent manner, with iTat-tg mice demonstrating a 2.3-fold potentiation of METH-CPP compared with Tat null control mice upon administration of Dox for 14 days. Furthermore, a 7-day administration of Dox reinstated extinguished METH-CPP. Collectively, these results suggest a synergistic effect of Tat protein and METH on inhibition of VMAT2-mediated DA transport, potentially contributing to potentiation of METH-CPP in iTat-tg mice.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Abagail B Cirincione
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Danielle K Tribbitt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nadine Alshakhshir
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
5
|
Jiménez-Torres AC, Porter KD, Hastie JA, Adeniran C, Moukha-Chafiq O, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhan CG, Zhu J. Effects of SRI-32743, a Novel Quinazoline Structure-Based Compound, on HIV-1 Tat and Cocaine Interaction with Norepinephrine Transporter. Int J Mol Sci 2024; 25:7881. [PMID: 39063123 PMCID: PMC11277056 DOI: 10.3390/ijms25147881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Prolonged exposure to HIV-1 transactivator of transcription (Tat) protein dysregulates monoamine transmission, a physiological change implicated as a key factor in promoting neurocognitive disorders among people living with HIV. We have demonstrated that in vivo expression of Tat in Tat transgenic mice decreases dopamine uptake through both dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex. Further, our novel allosteric inhibitor of monoamine transporters, SRI-32743, has been shown to attenuate Tat-inhibited dopamine transport through DAT and alleviates Tat-potentiated cognitive impairments. The current study reports the pharmacological profiles of SRI-32743 in basal and Tat-induced inhibition of human NET (hNET) function. SRI-32743 exhibited less affinity for hNET binding than desipramine, a classical NET inhibitor, but displayed similar potency for inhibiting hDAT and hNET activity. SRI-32743 concentration-dependently increased hNET affinity for [3H]DA uptake but preserved the Vmax of dopamine transport. SRI-32743 slowed the cocaine-mediated dissociation of [3H]Nisoxetine binding and reduced both [3H]DA and [3H]MPP+ efflux but did not affect d-amphetamine-mediated [3H]DA release through hNET. Finally, we determined that SRI-32743 attenuated a recombinant Tat1-86-induced decrease in [3H]DA uptake via hNET. Our findings demonstrated that SRI-32743 allosterically disrupts the recombinant Tat1-86-hNET interaction, suggesting a potential treatment for HIV-infected individuals with concurrent cocaine abuse.
Collapse
Affiliation(s)
- Ana Catya Jiménez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Katherine D. Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Jamison A. Hastie
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Charles Adeniran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (C.A.); (C.-G.Z.)
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Theresa H. Nguyen
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Corinne E. Augelli-Szafran
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (C.A.); (C.-G.Z.)
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| |
Collapse
|
6
|
League AF, Yadav-Samudrala BJ, Kolagani R, Cline CA, Jacobs IR, Manke J, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. A helping HAND: therapeutic potential of MAGL inhibition against HIV-1-associated neuroinflammation. Front Immunol 2024; 15:1374301. [PMID: 38835765 PMCID: PMC11148243 DOI: 10.3389/fimmu.2024.1374301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.
Collapse
Affiliation(s)
- Alexis F. League
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ramya Kolagani
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Calista A. Cline
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian R. Jacobs
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Micah J. Niphakis
- Department of Chemistry, Scripps Research, La Jolla, CA, United States
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Buck LA, Xie Q, Willis M, Side CM, Giacometti LL, Gaskill PJ, Park K, Shaheen F, Guo L, Gorantla S, Barker JM. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. Commun Biol 2024; 7:387. [PMID: 38553542 PMCID: PMC10980811 DOI: 10.1038/s42003-024-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilizes a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impairs cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict. Behavioral alterations are accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes are observed in human cytokines, including HIV-induced reductions in human TNFα, and cocaine and HIV interactions on GM-CSF levels. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.
Collapse
Affiliation(s)
- Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Graduate Program in Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michelle Willis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kyewon Park
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Farida Shaheen
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Medical Center, University of Nebraska, Omaha, NE, USA
| | | | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Hammond HR, Eans SO, Cirino TJ, Ananthan S, Jimenez-Torres AC, Zhu J, McLaughlin JP. SRI-30827, a novel allosteric modulator of the dopamine transporter, alleviates HIV-1 Tat-induced potentiation of cocaine conditioned place preference in mice. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:1-6. [PMID: 38711842 PMCID: PMC11073800 DOI: 10.1515/nipt-2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Objectives HIV-1 Tat (transactivator of transcription) protein disrupts dopaminergic transmission and potentiates the rewarding effects of cocaine. Allosteric modulators of the dopamine transporter (DAT) have been shown to reverse Tat-induced DAT dysfunction. We hypothesized that a novel DAT allosteric modulator, SRI-30827, would counteract Tat-induced potentiation of cocaine reward. Methods Doxycycline (Dox)-inducible Tat transgenic (iTat-tg) mice and their G-tg (Tat-null) counterparts were tested in a cocaine conditioned place preference (CPP) paradigm. Mice were treated 14 days with saline, or Dox (100 mg/kg/day, i.p.) to induce Tat protein. Upon induction, mice were place conditioned two days with cocaine (10 mg/kg/day) after a 1-h daily intracerebroventricular (i.c.v.) pretreatment with SRI-30827 (1 nmol) or a vehicle control, and final place preference assessed as a measure of cocaine reward. Results Dox-treatment significantly potentiated cocaine-CPP in iTat-tg mice over the response of saline-treated control littermates. SRI-30827 treatment eliminated Tat-induced potentiation without altering normal cocaine-CPP in saline-treated mice. Likewise, SRI-30827 did not alter cocaine-CPP in both saline- and Dox-treated G-tg mice incapable of expressing Tat protein. Conclusions These findings add to a growing body of evidence that allosteric modulation of DAT could provide a promising therapeutic intervention for patients with comorbid HIV-1 and cocaine use disorder (CUD).
Collapse
Affiliation(s)
- Haylee R. Hammond
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas J. Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Subramaniam Ananthan
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL 35205, USA
| | - Ana Catya Jimenez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1345 Center Drive, Building JHMHC, P.O. Box 100487, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Nguyen H, Cheng MH, Lee JY, Aggarwal S, Mortensen OV, Bahar I. Allosteric modulation of serotonin and dopamine transporters: New insights from computations and experiments. Curr Res Physiol 2024; 7:100125. [PMID: 38836245 PMCID: PMC11148570 DOI: 10.1016/j.crphys.2024.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/06/2024] Open
Abstract
Human monoamine transporters (MATs) are critical to regulating monoaminergic neurotransmission by translocating their substrates from the synaptic space back into the presynaptic neurons. As such, their primary substrate binding site S1 has been targeted by a wide range of compounds for treating neuropsychiatric and neurodegenerative disorders including depression, ADHD, neuropathic pain, and anxiety disorders. We present here a comparative study of the structural dynamics and ligand-binding properties of two MATs, dopamine transporter (DAT) and serotonin transporter (SERT), with focus on the allosteric modulation of their transport function by drugs or substrates that consistently bind a secondary site S2, proposed to serve as an allosteric site. Our systematic analysis of the conformational space and dynamics of a dataset of 50 structures resolved for DAT and SERT in the presence of one or more ligands/drugs reveals the specific residues playing a consistent role in coordinating the small molecules bound to subsites S2-I and S2-II within S2, such as R476 and Y481 in dDAT and E494, P561, and F556 in hSERT. Further analysis reveals how DAT and SERT differ in their two principal modes of structural changes, PC1 and PC2. Notably, PC1 underlies the transition between outward- and inward-facing states of the transporters as well as their gating; whereas PC2 supports the rearrangements of TM helices near the S2 site. Finally, the examination of cross-correlations between structural elements lining the respective sites S1 and S2 point to the crucial role of coupled motions between TM6a and TM10. In particular, we note the involvement of hSERT residues F335 and G338, and E493-E494-T497 belonging to these two respective helices, in establishing the allosteric communication between S1 and S2. These results help understand the molecular basis of the action of drugs that bind to the S2 site of DAT or SERT. They also provide a basis for designing allosteric modulators that may provide better control of specific interactions and cellular pathways, rather than indiscriminately inhibiting the transporter by targeting its orthosteric site.
Collapse
Affiliation(s)
- Hoang Nguyen
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology and, USA
| | - Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
10
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
11
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Barker J, Buck L, Xie Q, Willis M, Side C, Giacometti L, Gaskill P, Park K, Shaheen F, Guo L, Gorantla S. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. RESEARCH SQUARE 2023:rs.3.rs-3276379. [PMID: 37841842 PMCID: PMC10571607 DOI: 10.21203/rs.3.rs-3276379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impaired cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict were observed. Behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human cytokines, including HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα, and cocaine induced alterations in mouse GM-CSF. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.
Collapse
|
13
|
Buck LA, Xie Q, Willis M, Side CM, Giacometti LL, Gaskill PJ, Park K, Shaheen F, Guo L, Gorantla S, Barker JM. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552858. [PMID: 37645889 PMCID: PMC10462035 DOI: 10.1101/2023.08.11.552858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between progressive HIV infection and cocaine use disorder is likely bidirectional, with cocaine use having direct effects on immune function while HIV infection can alter addiction-related behavior. To better characterized the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of progressive HIV infection on cocaine-related behaviors in a cocaine conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection did not impact the formation of a cocaine CPP, but did result in resistance to extinction of the CPP. No effects of HIV on yohimbine-primed reinstatement or cocaine seeking under conflict were observed. These behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human markers. Among other targets, this included HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα and cocaine-induced alterations in human TNFα and mouse GM-CSF such that cocaine exposure increases both cytokines only in the absence of HIV infection. Together these data provide new insights into the unique neurobehavioral processes underlying HIV infection and cocaine use disorders, and further how they interact to effect immune responses.
Collapse
|
14
|
Davis SE, Ferris MJ, Ananthan S, Augelli-Szafran CE, Zhu J. Novel Allosteric Modulator Southern Research Institute-32743 Reverses HIV-1 Transactivator of Transcription-Induced Increase in Dopamine Release in the Caudate Putamen of Inducible Transactivator of Transcription Transgenic Mice. J Pharmacol Exp Ther 2023; 384:306-314. [PMID: 36456195 PMCID: PMC9875314 DOI: 10.1124/jpet.122.001291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Development of neurocognitive disorder in human immunodeficiency virus (HIV)-infected patients has been linked to dysregulation of dopamine by the HIV-1 transactivator of transcription (Tat) protein, a negative allosteric modulator of dopamine transporter (DAT). Using fast scan cyclic voltammetry, the present study determined the effects of in vivo Tat expression on dopamine release in the caudate putamen of inducible Tat transgenic (iTat-tg) mice and the impact of a novel DAT allosteric modulator, Southern Research Institute (SRI)-32743, on the Tat effect. We found that 7- or 14-day doxycycline (Dox)-induced Tat expression in iTat-tg mice resulted in a 2-fold increase in phasic but not tonic stimulated baseline dopamine release relative to saline control mice. To determine whether the Tat-induced increase in dopamine release is mediated by DAT regulation, we examined the effect of an in vitro applied DAT inhibitor, nomifensine, on the dopamine release. Nomifensine (1 nM-10 µM) concentration-dependently enhanced phasic stimulated dopamine release in both saline- and Dox-treated iTat-tg mice, while the magnitude of the nomifensine-mediated dopamine release was unchanged between saline and Dox treatment groups. A single systemic administration of SRI-32743 prior to animal sacrifice reversed the increased dopamine release in the baseline of phasic dopamine release and nomifensine-augmented dopamine levels in Dox-treated iTat-tg mice, while SRI-32743 alone did not alter baseline of dopamine release. These findings suggest that Tat expression induced an increase in extracellular dopamine levels by not only inhibiting DAT-mediated dopamine transport but also stimulating synaptic dopamine release. Thus, DAT allosteric modulators may serve as a potential therapeutic intervention for HIV infection-dysregulated dopamine system observed in HIV-1 positive individuals. SIGNIFICANCE STATEMENT: HIV infection-induced dysregulation of the dopaminergic system has been implicated in the development of neurocognitive impairments observed in HIV positive patients. Understanding the mechanisms underlying HIV-1 Tat protein-induced alteration of extracellular dopamine levels will provide insights into the development of molecules that can attenuate Tat interaction with targets in the dopaminergic system. Here, we determined whether Tat alters dopamine release and how the novel DAT allosteric modulator, SRI-32743, impacts dopamine neurotransmission to attenuate Tat-induced effects on extracellular dopamine dynamics.
Collapse
Affiliation(s)
- Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Mark J Ferris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Subramaniam Ananthan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Corinne E Augelli-Szafran
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| |
Collapse
|