1
|
Cristofori I, Cohen-Zimerman S, Krueger F, Jabbarinejad R, Delikishkina E, Gordon B, Beuriat PA, Grafman J. Studying the social mind: An updated summary of findings from the Vietnam Head Injury Study. Cortex 2024; 174:164-188. [PMID: 38552358 DOI: 10.1016/j.cortex.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
Lesion mapping studies allow us to evaluate the potential causal contribution of specific brain areas to human cognition and complement other cognitive neuroscience methods, as several authors have recently pointed out. Here, we present an updated summary of the findings from the Vietnam Head Injury Study (VHIS) focusing on the studies conducted over the last decade, that examined the social mind and its intricate neural and cognitive underpinnings. The VHIS is a prospective, long-term follow-up study of Vietnam veterans with penetrating traumatic brain injury (pTBI) and healthy controls (HC). The scope of the work is to present the studies from the latest phases (3 and 4) of the VHIS, 70 studies since 2011, when the Raymont et al. paper was published (Raymont et al., 2011). These studies have contributed to our understanding of human social cognition, including political and religious beliefs, theory of mind, but also executive functions, intelligence, and personality. This work finally discusses the usefulness of lesion mapping as an approach to understanding the functions of the human brain from basic science and clinical perspectives.
Collapse
Affiliation(s)
- Irene Cristofori
- Institute of Cognitive Sciences Marc Jeannerod CNRS, UMR 5229, Bron, France; University of Lyon, Villeurbanne, France.
| | - Shira Cohen-Zimerman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Manassas, VA, USA; Department of Psychology, George Mason University, Fairfax, VA, USA.
| | - Roxana Jabbarinejad
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - Ekaterina Delikishkina
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
| | - Barry Gordon
- Cognitive Neurology/Neuropsychology Division, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD USA.
| | - Pierre-Aurélien Beuriat
- Institute of Cognitive Sciences Marc Jeannerod CNRS, UMR 5229, Bron, France; University of Lyon, Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Bron, France.
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA; Departments of Neurology, Psychiatry, and Cognitive Neurology & Alzheimer's Disease, Feinberg School of Medicine, Chicago, IL, USA; Department of Psychology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Willbrand EH, Jackson S, Chen S, Hathaway CB, Voorhies WI, Bunge SA, Weiner KS. Sulcal variability in anterior lateral prefrontal cortex contributes to variability in reasoning performance among young adults. Brain Struct Funct 2024; 229:387-402. [PMID: 38184493 DOI: 10.1007/s00429-023-02734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/12/2023] [Indexed: 01/08/2024]
Abstract
Identifying structure-function correspondences is a major goal among biologists, cognitive neuroscientists, and brain mappers. Recent studies have identified relationships between performance on cognitive tasks and the presence or absence of small, shallow indentations, or sulci, of the human brain. Building on the previous finding that the presence of the ventral para-intermediate frontal sulcus (pimfs-v) in the left anterior lateral prefrontal cortex (aLPFC) was related to reasoning task performance in children and adolescents, we tested whether this relationship extended to a different sample, age group, and reasoning task. As predicted, the presence of this aLPFC sulcus was also associated with higher reasoning scores in young adults (ages 22-36). These findings have not only direct developmental, but also evolutionary relevance-as recent work shows that the pimfs-v is exceedingly rare in chimpanzees. Thus, the pimfs-v is a key developmental, cognitive, and evolutionarily relevant feature that should be considered in future studies examining how the complex relationships among multiscale anatomical and functional features of the brain give rise to abstract thought.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of WI-Madison, Madison, WI, USA
| | - Samantha Jackson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Szeshuen Chen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Ramawat S, Marc IB, Ceccarelli F, Ferrucci L, Bardella G, Ferraina S, Pani P, Brunamonti E. The transitive inference task to study the neuronal correlates of memory-driven decision making: A monkey neurophysiology perspective. Neurosci Biobehav Rev 2023; 152:105258. [PMID: 37268179 DOI: 10.1016/j.neubiorev.2023.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A vast amount of literature agrees that rank-ordered information as A>B>C>D>E>F is mentally represented in spatially organized schemas after learning. This organization significantly influences the process of decision-making, using the acquired premises, i.e. deciding if B is higher than D is equivalent to comparing their position in this space. The implementation of non-verbal versions of the transitive inference task has provided the basis for ascertaining that different animal species explore a mental space when deciding among hierarchically organized memories. In the present work, we reviewed several studies of transitive inference that highlighted this ability in animals and, consequently, the animal models developed to study the underlying cognitive processes and the main neural structures supporting this ability. Further, we present the literature investigating which are the underlying neuronal mechanisms. Then we discuss how non-human primates represent an excellent model for future studies, providing ideal resources for better understanding the neuronal correlates of decision-making through transitive inference tasks.
Collapse
Affiliation(s)
- Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | | | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
4
|
Camarena HO, García-Leal Ó, Delgadillo-Orozco J, Barrón E. Probabilistic reinforcement precludes transitive inference: A preliminary study. Front Psychol 2023; 14:1111597. [PMID: 37063537 PMCID: PMC10097881 DOI: 10.3389/fpsyg.2023.1111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
In the basic verbal task from Piaget, when a relation of the form if A > B and B > C is given, a logical inference A > C is expected. This process is called transitive inference (TI). The adapted version for animals involves the presentation of a simultaneous discrimination between stimuli pairs. In this way, when A+B-, B+C-, C+D-, D+E- is trained, a B>D preference is expected, assuming that if A>B>C>D>E, then B>D. This effect has been widely reported using several procedures and different species. In the current experiment TI was evaluated employing probabilistic reinforcement. Thus, for the positive stimuli a .7 probability was administered and for the negative stimuli a .3 probability was administered. Under this arrangement the relation A>B>C>D>E is still allowed, but TI becomes more difficult. Five pigeons (Columba Livia) were exposed to the mentioned arrangement. Only one pigeon reached the criterion in C+D- discrimination, whereas the remaining did not. Only the one who successfully solved C+D- was capable of learning TI, whereas the others were not. Additionally, it was found that correct response ratios did not predict BD performance. Consequently, probabilistic reinforcement disrupted TI, but some positional ordering was retained in the test. The results suggest that TI might be affected by associative strength but also by the positional ordering of the stimuli. The discussion addresses the two main accounts of TI: the associative account and the ordinal representation account.
Collapse
Affiliation(s)
- Héctor O. Camarena
- Centro de Estudios e Investigaciones en Comportamiento, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- *Correspondence: Héctor O. Camarena
| | - Óscar García-Leal
- Department of Environmental Sciences, University of Guadalajara, Guadalajara, Mexico
- School of Doctoral Studies and Research, Universidad Europea de Madrid, Madrid, Spain
| | - Julieta Delgadillo-Orozco
- Centro de Estudios e Investigaciones en Comportamiento, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Erick Barrón
- Basic Psychology Department, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
5
|
Palmiero M, Di Vita A, Teghil A, Piccardi L. The Verbal Judgement Task: Normative data of verbal abstract reasoning in a sample of 18- to 40-years old. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:562-569. [PMID: 32654520 DOI: 10.1080/23279095.2020.1789986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, normative data for the age-range 18-40 years have been provided for the Verbal Judgment Test (VJT), which underpins abstract reasoning on the basis of four subtests: "Differences", "Proverbs", "Absurdities" and "Classifications". 554 participants (280 males and 274 females) were recruited and the following data were provided: means and standard deviations divided by gender, educational level (8, 13 and 18 years) and age group (18-20 years, 21-25 years, 26-30 years, 31-35 years and 36-40 years) for each subtest and the total score; percentiles for each subtest, divided by age group, and, when appropriate, educational level and/or gender; Rho correlations between age group, gender, educational level, intelligence and VJT scores. Age-, education- and gender differences were also assessed carrying out non parametric tests. Results showed that age and education positively affected performance in the subtests of Differences, Proverbs and Classifications, which are mostly based on previous knowledge, experience, and crystallized intelligence, but did not affect performance in the Absurdities subtest, which encompasses to some extent fluid intelligence. In addition, males showed higher scores than females in the subtests of Differences and Proverbs and in the total VJT, probably reflecting higher knowledge acquisition. Implications for future research are briefly discussed.
Collapse
Affiliation(s)
- Massimiliano Palmiero
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.,Department of Life, Health and Environmental Sciences, L'Aquila University, L'Aquila, Italy
| | - Antonella Di Vita
- Department of Psychology, University of Rome 'Sapienza', Rome, Italy.,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alice Teghil
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Laura Piccardi
- Department of Psychology, University of Rome 'Sapienza', Rome, Italy.,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
6
|
Knowledge Across Reference Frames: Cognitive Maps and Image Spaces. Trends Cogn Sci 2020; 24:606-619. [PMID: 32586649 DOI: 10.1016/j.tics.2020.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
In human and non-human animals, conceptual knowledge is partially organized according to low-dimensional geometries that rely on brain structures and computations involved in spatial representations. Recently, two separate lines of research have investigated cognitive maps, that are associated with the hippocampal formation and are similar to world-centered representations of the environment, and image spaces, that are associated with the parietal cortex and are similar to self-centered spatial relationships. We review evidence supporting cognitive maps and image spaces, and we propose a hippocampal-parietal network that can account for the organization and retrieval of knowledge across multiple reference frames. We also suggest that cognitive maps and image spaces may be two manifestations of a more general propensity of the mind to create low-dimensional internal models.
Collapse
|
7
|
Towards an ontology of cognitive processes and their neural substrates: A structural equation modeling approach. PLoS One 2020; 15:e0228167. [PMID: 32040518 PMCID: PMC7010254 DOI: 10.1371/journal.pone.0228167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/08/2020] [Indexed: 01/27/2023] Open
Abstract
A key challenge in the field of cognitive neuroscience is to identify discriminable cognitive functions, and then map these functions to brain activity. In the current study, we set out to explore the relationships between performance arising from different cognitive tasks thought to tap different domains of cognition, and then to test whether these distinct latent cognitive abilities also are subserved by corresponding “latent” brain substrates. To this end, we tested a large sample of adults under the age of 40 on twelve cognitive tasks as they underwent fMRI scanning. Exploratory factor analysis revealed 4-factor model, dissociating tasks into processes corresponding to episodic memory retrieval, reasoning, speed of processing and vocabulary. An analysis of the topographic covariance patterns of the BOLD-response acquired during each task similarity also converged on four neural networks that corresponded to the 4 latent factors. These results suggest that distinct ontologies of cognition are subserved by corresponding distinct neural networks.
Collapse
|
8
|
Mental models use common neural spatial structure for spatial and abstract content. Commun Biol 2020; 3:17. [PMID: 31925291 PMCID: PMC6952387 DOI: 10.1038/s42003-019-0740-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/05/2019] [Indexed: 01/10/2023] Open
Abstract
Mental models provide a cognitive framework allowing for spatially organizing information while reasoning about the world. However, transitive reasoning studies often rely on perception of stimuli that contain visible spatial features, allowing the possibility that associated neural representations are specific to inherently spatial content. Here, we test the hypothesis that neural representations of mental models generated through transitive reasoning rely on a frontoparietal network irrespective of the spatial nature of the stimulus content. Content within three models ranges from expressly visuospatial to abstract. All mental models participants generated were based on inferred relationships never directly observed. Here, using multivariate representational similarity analysis, we show that patterns representative of mental models were revealed in both superior parietal lobule and anterior prefrontal cortex and converged across stimulus types. These results support the conclusion that, independent of content, transitive reasoning using mental models relies on neural mechanisms associated with spatial cognition. Alfred et al. find that there is a common spatial representation for mental models created through transitive reasoning. This is shown by probing patterns of neural activity in research participants tasked with reasoning problems with different spatial content, from visuospatial to abstract.
Collapse
|
9
|
Goel V. Hemispheric asymmetry in the prefrontal cortex for complex cognition. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:179-196. [PMID: 31590729 DOI: 10.1016/b978-0-12-804281-6.00010-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
With the exception of language, hemispheric asymmetry has not historically been an important issue in the frontal lobe literature. Data generated over the past 20 years is forcing a reconsideration of this position. There is now considerable evidence to suggest that the left prefrontal cortex is an inference engine that automatically makes simple conceptual, logical, and causal connections to fill in missing information and eliminate uncertainty or indeterminacy. This is a fine-tuning of the "left hemisphere interpreter" account from the callosotomy patient literature. What is new is an understanding of the important contributions of the right prefrontal cortex to formal logical inference, conflict detection, and indeterminacy tolerance and maintenance. This chapter articulates these claims and reviews the data on which they are based. The chapter concludes by speculating that the inference capabilities of the left prefrontal cortex are built into the very fabric of language and can be accounted for by the left hemisphere dominance for language. The roles of the right PFC require multiple mechanisms for explanation. Its role in formal inference may be a function of its visual-spatial processing capabilities. Its role in conflict detection may be explained as a system for checking for consistency between existing beliefs and new information coming into the system and inferences drawn from beliefs and/or new information. There are at least three possible mechanisms to account for its role in indeterminacy tolerance. First, it could contain a representational system with properties very different from those of language, and an accompanying inference engine. Second, it could just contain this different representational system, and the information is at some point passed back to the left prefrontal cortex for inference. Third, the role of the right prefrontal cortex may be largely preventative. That is, it doesn't provide alternative representational and inference capabilities but simply prevents the left prefrontal cortex from settling on initial, local inferences. The current data do not allow differentiating between these possibilities. Successful real-world functioning requires the participation of both hemispheres.
Collapse
Affiliation(s)
- Vinod Goel
- Department of Psychology, York University, Toronto, ON, Canada; Department of Psychology, Capital Normal University, Beijing, China.
| |
Collapse
|
10
|
Wertheim J, Ragni M. The Neural Correlates of Relational Reasoning: A Meta-analysis of 47 Functional Magnetic Resonance Studies. J Cogn Neurosci 2018; 30:1734-1748. [DOI: 10.1162/jocn_a_01311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is a core cognitive ability of humans to represent and reason about relational information, such as “the train station is north of the hotel” or “Charles is richer than Jim.” However, the neural processes underlying the ability to draw conclusions about relations are still not sufficiently understood. Central open questions are as follows: (1) What are the neural correlates of relational reasoning? (2) Where can deductive and inductive reasoning be localized? (3) What is the impact of different informational types on cerebral activity? For that, we conducted a meta-analysis of 47 neuroimaging studies. We found activation of the frontoparietal network during both deductive and inductive reasoning, with additional activation in an extended network during inductive reasoning in the basal ganglia and the inferior parietal cortex. Analyses revealed a double dissociation concerning the lateral and medial Brodmann's area 6 during deductive and inductive reasoning, indicating differences in terms of processing verbal information in deductive and spatial information in inductive tasks. During semantic and symbolic tasks, the frontoparietal network was found active, whereas geometric tasks only elicited prefrontal activation, which can be explained by the reduced demand for the construction of a mental representation in geometric tasks. Our study provides new insights into the cognitive mechanisms underlying relational reasoning and clarifies previous controversies concerning involved brain areas.
Collapse
|
11
|
Schwartz F, Epinat-Duclos J, Léone J, Poisson A, Prado J. Impaired neural processing of transitive relations in children with math learning difficulty. NEUROIMAGE-CLINICAL 2018; 20:1255-1265. [PMID: 30389345 PMCID: PMC6308383 DOI: 10.1016/j.nicl.2018.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 11/24/2022]
Abstract
Math learning difficulty (i.e., MLD) is common in children and can have far-reaching consequences in personal and professional life. Converging evidence suggests that MLD is associated with impairments in the intraparietal sulcus (IPS). However, the role that these impairments play in MLD remains unclear. Although it is often assumed that IPS deficits affect core numerical abilities, the IPS is also involved in several non-numerical processes that may contribute to math skills. For instance, the IPS supports transitive reasoning (i.e., the ability to integrate relations such as A > B and B > C to infer that A > C), a skill that is central to many aspects of math learning in children. Here we measured fMRI activity of 8- to 12-year-olds with MLD and typically developing (TD) peers while they listened to stories that included transitive relations. Children also answered questions evaluating whether transitive inferences were made during story comprehension. Compared to non-transitive relations (e.g., A > B and C > D), listening to transitive relations (e.g., A > B and B > C) was associated with enhanced activity in the IPS in TD children. In children with MLD, the difference in activity between transitive and non-transitive relations in the IPS was (i) non-reliable and (ii) smaller than in TD children. Finally, children with MLD were less accurate than TD peers when making transitive inferences based on transitive relations. Thus, a deficit in the online processing of transitive relations in the IPS might contribute to math difficulties in children with MLD. Transitive reasoning is central to mathematical thinking. Transitive reasoning relies on the intra-parietal sulcus (IPS) in healthy children. Math learning difficulty (MLD) is associated with IPS impairments. Transitive reasoning is impaired in children with MLD. Transitive reasoning does not engage the IPS in children with MLD.
Collapse
Affiliation(s)
- Flora Schwartz
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, 67 Boulevard Pinel, 69675 Bron cedex, France.
| | - Justine Epinat-Duclos
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, 67 Boulevard Pinel, 69675 Bron cedex, France
| | - Jessica Léone
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, 67 Boulevard Pinel, 69675 Bron cedex, France
| | - Alice Poisson
- GénoPsy, Reference center for rare diseases with psychiatric symptoms, Centre Hospitalier le Vinatier, 69678 Bron cedex, France
| | - Jérôme Prado
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, 67 Boulevard Pinel, 69675 Bron cedex, France.
| |
Collapse
|
12
|
Modroño C, Navarrete G, Nicolle A, González-Mora JL, Smith KW, Marling M, Goel V. Developmental grey matter changes in superior parietal cortex accompany improved transitive reasoning. THINKING & REASONING 2018; 25:151-170. [PMID: 31057331 PMCID: PMC6474737 DOI: 10.1080/13546783.2018.1481144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/12/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
The neural basis of developmental changes in transitive reasoning in parietal regions was examined, using voxel-based morphometry. Young adolescents and adults performed a transitive reasoning task, subsequent to undergoing anatomical magnetic resonance imaging (MRI) brain scans. Behaviorally, adults reasoned more accurately than did the young adolescents. Neural results showed (i) less grey matter density in superior parietal cortex in the adults than in the young adolescents, possibly due to a developmental period of synaptic pruning; (ii) improved performance in the reasoning task was negatively correlated with grey matter density in superior parietal cortex in the adolescents, but not in the adult group; and (iii) the latter results were driven by the more difficult trials, requiring greater spatial manipulation. Taken together, the results support the idea that during development, regions in superior parietal cortex are fine-tuned, to support more robust spatial manipulation, resulting in greater accuracy and efficiency in transitive reasoning.
Collapse
Affiliation(s)
- Cristián Modroño
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de La Salud, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna (Tenerife), España, Spain
| | - Gorka Navarrete
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | | | - José Luis González-Mora
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de La Salud, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna (Tenerife), España, Spain
| | - Kathleen W Smith
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Miriam Marling
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Vinod Goel
- Department of Psychology, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Goel V, Lam E, Smith KW, Goel A, Raymont V, Krueger F, Grafman J. Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material. Neuropsychologia 2017; 99:236-245. [PMID: 28263798 PMCID: PMC5496820 DOI: 10.1016/j.neuropsychologia.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers.
Collapse
Affiliation(s)
- Vinod Goel
- Department of Psychology, York University, Canada; IRCCS Fondazione Ospedale San Camillo, Lido, Venice, Italy
| | - Elaine Lam
- Department of Psychology, York University, Canada
| | | | - Amit Goel
- School of Medicine, University of Western Ontario, Canada
| | - Vanessa Raymont
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Medicine, Imperial College, London, UK
| | - Frank Krueger
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA; Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Jordan Grafman
- Northwestern University Medical School, Cognitive Neurology and Psychiatry and Behavioral Sciences and Physical Medicine and Rehabilitation, Chicago, IL, USA
| |
Collapse
|
14
|
Basagni B, Luzzatti C, Navarrete E, Caputo M, Scrocco G, Damora A, Giunchi L, Gemignani P, Caiazzo A, Gambini MG, Avesani R, Mancuso M, Trojano L, De Tanti A. VRT (verbal reasoning test): a new test for assessment of verbal reasoning. Test realization and Italian normative data from a multicentric study. Neurol Sci 2017; 38:643-650. [DOI: 10.1007/s10072-017-2817-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
15
|
Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications. Brain 2016; 139:1783-99. [DOI: 10.1093/brain/aww072] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/19/2016] [Indexed: 01/06/2023] Open
|
16
|
Ragni M, Franzmeier I, Maier S, Knauff M. Uncertain relational reasoning in the parietal cortex. Brain Cogn 2016; 104:72-81. [PMID: 26970943 DOI: 10.1016/j.bandc.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
Abstract
The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions.
Collapse
Affiliation(s)
- Marco Ragni
- University of Giessen, Experimental Psychology and Cognitive Science, Germany; University of Freiburg, Technical Faculty, Germany.
| | | | - Simon Maier
- University of Freiburg, Dept. of Cognitive Science, Germany; Medical Center - University of Freiburg, Freiburg Brain Imaging, Germany
| | - Markus Knauff
- University of Giessen, Experimental Psychology and Cognitive Science, Germany
| |
Collapse
|
17
|
Cummings L. Theory of mind in utterance interpretation: the case from clinical pragmatics. Front Psychol 2015; 6:1286. [PMID: 26379602 PMCID: PMC4549655 DOI: 10.3389/fpsyg.2015.01286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022] Open
Abstract
The cognitive basis of utterance interpretation is an area that continues to provoke intense theoretical debate among pragmatists. That utterance interpretation involves some type of mind-reading or theory of mind (ToM) is indisputable. However, theorists are divided on the exact nature of this ToM-based mechanism. In this paper, it is argued that the only type of ToM-based mechanism that can adequately represent the cognitive basis of utterance interpretation is one which reflects the rational, intentional, holistic character of interpretation. Such a ToM-based mechanism is supported on conceptual and empirical grounds. Empirical support for this view derives from the study of children and adults with pragmatic disorders. Specifically, three types of clinical case are considered. In the first case, evidence is advanced which indicates that individuals with pragmatic disorders exhibit deficits in reasoning and the use of inferences. These deficits compromise the ability of children and adults with pragmatic disorders to comply with the rational dimension of utterance interpretation. In the second case, evidence is presented which suggests that subjects with pragmatic disorders struggle with the intentional dimension of utterance interpretation. This dimension extends beyond the recognition of communicative intentions to include the attribution of a range of cognitive and affective mental states that play a role in utterance interpretation. In the third case, evidence is presented that children and adults with pragmatic disorders struggle with the holistic character of utterance interpretation. This serves to distort the contexts in which utterances are processed for their implicated meanings. The paper concludes with some thoughts about the role of theorizing in relation to utterance interpretation.
Collapse
Affiliation(s)
- Louise Cummings
- English, Culture and Media Studies, School of Arts and Humanities, Nottingham Trent University Nottingham, UK
| |
Collapse
|
18
|
Wendelken C, Ferrer E, Whitaker KJ, Bunge SA. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability. Cereb Cortex 2015; 26:2178-90. [PMID: 25824536 DOI: 10.1093/cercor/bhv050] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence.
Collapse
|
19
|
Vendetti MS, Johnson EL, Lemos CJ, Bunge SA. Hemispheric differences in relational reasoning: novel insights based on an old technique. Front Hum Neurosci 2015; 9:55. [PMID: 25709577 PMCID: PMC4321644 DOI: 10.3389/fnhum.2015.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Abstract
Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical conclusion, is a critical component of higher cognition. A bilateral brain network involving lateral prefrontal and parietal cortices has been consistently implicated in relational reasoning. Some data suggest a preferential role for the left hemisphere in this form of reasoning, whereas others suggest that the two hemispheres make important contributions. To test for a hemispheric asymmetry in relational reasoning, we made use of an old technique known as visual half-field stimulus presentation to manipulate whether stimuli were presented briefly to one hemisphere or the other. Across two experiments, 54 neurologically healthy young adults performed a visuospatial transitive inference task. Pairs of colored shapes were presented rapidly in either the left or right visual hemifield as participants maintained central fixation, thereby isolating initial encoding to the contralateral hemisphere. We observed a left-hemisphere advantage for encoding a series of ordered visuospatial relations, but both hemispheres contributed equally to task performance when the relations were presented out of order. To our knowledge, this is the first study to reveal hemispheric differences in relational encoding in the intact brain. We discuss these findings in the context of a rich literature on hemispheric asymmetries in cognition.
Collapse
Affiliation(s)
- Michael S Vendetti
- Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA
| | - Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA ; Department of Psychology, University of California at Berkeley , Berkeley, CA , USA
| | - Connor J Lemos
- Department of Psychology, University of California at Berkeley , Berkeley, CA , USA
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA ; Department of Psychology, University of California at Berkeley , Berkeley, CA , USA
| |
Collapse
|
20
|
Wendelken C. Meta-analysis: how does posterior parietal cortex contribute to reasoning? Front Hum Neurosci 2015; 8:1042. [PMID: 25653604 PMCID: PMC4301007 DOI: 10.3389/fnhum.2014.01042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/13/2014] [Indexed: 12/02/2022] Open
Abstract
Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations—including spatial attention, mathematical cognition, working memory, long-term memory, and language—and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: (1) reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC; and (3) reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific to reasoning.
Collapse
Affiliation(s)
- Carter Wendelken
- Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
| |
Collapse
|
21
|
Hinton EC, Wise RG, Singh KD, von Hecker U. Reasoning with linear orders: differential parietal cortex activation in sub-clinical depression. An FMRI investigation in sub-clinical depression and controls. Front Hum Neurosci 2015; 8:1061. [PMID: 25646078 PMCID: PMC4298224 DOI: 10.3389/fnhum.2014.01061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022] Open
Abstract
The capacity to learn new information and manipulate it for efficient retrieval has long been studied through reasoning paradigms, which also has applicability to the study of social behavior. Humans can learn about the linear order within groups using reasoning, and the success of such reasoning may vary according to affective state, such as depression. We investigated the neural basis of these latter findings using functional neuroimaging. Using BDI-II criteria, 14 non-depressed (ND) and 12 mildly depressed volunteers took part in a linear-order reasoning task during functional magnetic resonance imaging. The hippocampus, parietal, and prefrontal cortices were activated during the task, in accordance with previous studies. In the learning phase and in the test phase, greater activation of the parietal cortex was found in the depressed group, which may be a compensatory mechanism in order to reach the same behavioral performance as the ND group, or evidence for a different reasoning strategy in the depressed group.
Collapse
Affiliation(s)
- Elanor C Hinton
- Clinical Research and Imaging Centre, University of Bristol , Bristol , UK
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University , Cardiff , UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University , Cardiff , UK
| | | |
Collapse
|
22
|
Liang P, Goel V, Jia X, Li K. Different neural systems contribute to semantic bias and conflict detection in the inclusion fallacy task. Front Hum Neurosci 2014; 8:797. [PMID: 25368563 PMCID: PMC4202773 DOI: 10.3389/fnhum.2014.00797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/18/2014] [Indexed: 11/13/2022] Open
Abstract
The inclusion fallacy is a phenomenon in which generalization from a specific premise category to a more general conclusion category is considered stronger than a generalization to a specific conclusion category nested within the more general set. Such inferences violate rational norms and are part of the reasoning fallacy literature that provides interesting tasks to explore cognitive and neural basis of reasoning. To explore the functional neuroanatomy of the inclusion fallacy, we used a 2 × 2 factorial design, with factors for quantification (explicit and implicit) and response (fallacious and non-fallacious). It was found that a left fronto-temporal system, along with a superior medial frontal system, was specifically activated in response to fallacious responses consistent with a semantic biasing of judgment explanation. A right fronto-parietal system was specifically recruited in response to detecting conflict associated with the heightened fallacy condition. These results are largely consistent with previous studies of reasoning fallacy and support a multiple systems model of reasoning.
Collapse
Affiliation(s)
- Peipeng Liang
- Xuanwu Hospital, Capital Medical University , Beijing , China ; Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics , Beijing , China
| | - Vinod Goel
- Department of Psychology, York University , Toronto, ON , Canada ; IRCCS Fondazione Ospedale San Camillo , Venice , Italy
| | - Xiuqin Jia
- Xuanwu Hospital, Capital Medical University , Beijing , China ; Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics , Beijing , China
| | - Kuncheng Li
- Xuanwu Hospital, Capital Medical University , Beijing , China ; Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics , Beijing , China
| |
Collapse
|
23
|
Brunamonti E, Mione V, Di Bello F, De Luna P, Genovesio A, Ferraina S. The NMDAr antagonist ketamine interferes with manipulation of information for transitive inference reasoning in non-human primates. J Psychopharmacol 2014; 28:881-7. [PMID: 24944084 DOI: 10.1177/0269881114538543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the most remarkable traits of highly encephalized animals is their ability to manipulate knowledge flexibly to infer logical relationships. Operationally, the corresponding cognitive process can be defined as reasoning. One hypothesis is that this process relies on the reverberating activity of glutamate neural circuits, sustained by NMDA receptor (NMDAr) mediated synaptic transmission, in both parietal and prefrontal areas. We trained two macaque monkeys to perform a form of deductive reasoning - the transitive inference task - in which they were required to learn the relationship between six adjacent items in a single session and then deduct the relationship between nonadjacent items that had not been paired in the learning phase. When the animals had learned the sequence, we administered systemically a subanaesthetic dose of ketamine (a NMDAr antagonist) and measured their performance on learned and novel problems. We observed impairments in determining the relationship between novel pairs of items. Our results are consistent with the hypothesis that transitive inference premises are integrated during learning in a unified representation and that reducing NMDAr activity interferes with the use of this mental model, when decisions are required in comparing pairs of items that have not been learned.
Collapse
Affiliation(s)
| | - Valentina Mione
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Fabio Di Bello
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Paolo De Luna
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
24
|
Silverman JL, Gastrell PT, Karras MN, Solomon M, Crawley JN. Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb Cortex 2013; 25:1133-42. [PMID: 24293564 DOI: 10.1093/cercor/bht293] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cognitive abilities are impaired in neurodevelopmental disorders, including autism spectrum disorder (ASD) and schizophrenia. Preclinical models with strong endophenotypes relevant to cognitive dysfunctions offer a valuable resource for therapeutic development. However, improved assays to test higher order cognition are needed. We employed touchscreen technology to design a complex transitive inference (TI) assay that requires cognitive flexibility and relational learning. C57BL/6J (B6) mice with good cognitive skills and BTBR T+tf/J (BTBR), a model of ASD with cognitive deficits, were evaluated in simple and complex touchscreen assays. Both B6 and BTBR acquired visual discrimination and reversal. BTBR displayed deficits on components of TI, when 4 stimuli pairs were interspersed, which required flexible integrated knowledge. BTBR displayed impairment on the A > E inference, analogous to the A > E deficit in ASD. B6 and BTBR mice both reached criterion on the B > D comparison, unlike the B > D impairment in schizophrenia. These results demonstrate that mice are capable of complex discriminations and higher order tasks using methods and equipment paralleling those used in humans. Our discovery that a mouse model of ASD displays a TI deficit similar to humans with ASD supports the use of the touchscreen technology for complex cognitive tasks in mouse models of neurodevelopmental disorders.
Collapse
Affiliation(s)
- J L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA Laboratory of Behavioral Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892-3730, USA
| | - P T Gastrell
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892-3730, USA
| | - M N Karras
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892-3730, USA
| | - M Solomon
- MIND Institute, Department of Psychiatry and Behavioral Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA Imaging Research Center, University of California Davis, Sacramento, CA 95817, USA
| | - J N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA Laboratory of Behavioral Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892-3730, USA
| |
Collapse
|